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Very accurate variational calculations of the complete pure vibrational spectrum of the ditritium (T2)
molecule are performed within the framework where the Born-Oppenheimer approximation is not
assumed. After separating out the center-of-mass motion from the total laboratory-frame Hamil-
tonian, T2 becomes a three-particle problem. States corresponding to the zero total angular mo-
mentum, which are pure vibrational states, are spherically symmetric in this framework. The wave
functions of these states are expanded in terms of all-particle, one-center, spherically symmetric ex-
plicitly correlated Gaussian functions multiplied by even non-negative powers of the internuclear
distance. In the calculations the total energies, the dissociation energies, and expectation values of
some operators dependent on interparticle distances are determined. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4870935]

I. INTRODUCTION

Treating the nuclei and electrons on equal footing and
not assuming the clamped nucleus approximation makes the
problem of calculating stationary, bound states of a molecular
system much more complicated than the problem of deter-
mining bound states of electrons in the field of stationary nu-
clei, as it is done in calculations where the Born-Oppenheimer
(BO) approximation is assumed. In non-BO calculations one
deals with describing three types of correlation effects, i.e.,
the electron-electron, nucleus-nucleus, and nucleus-electron
correlations. This places more demands on the basis functions
which are used to expand the wave function representing a
stationary state of the system. Also, for a non-BO calculation
to be relevant it has to describe the system very accurately
and, thus, the basis functions have to be capable of providing
very accurate representation of the considered state. This can
only happen if the basis functions used in the non-BO calcu-
lations explicitly depend on the distances between all pairs of
particles forming the system.

The system we consider in the calculations performed in
the present work is the T2 hydrogen isotopologue. The ba-
sis functions for expanding the non-BO wave functions cor-
responding to the pure vibrational states of T2 are multi-
particle explicitly correlated Gaussian functions (ECG). It has
been shown that the exponential dependence on the inter-
particle distances of these functions facilitates very effective
description of the inter-electron correlation effects. Also, as
the Gaussian functions have maxima at zero inter-particle dis-
tances, they are adequate for describing the nucleus-electron
correlation. However, the strong nuclear-nuclear correlation
is more difficult to describe with Gaussians only dependent
on the inter-particle distances in the exponent because due

to their repulsion and much heavier masses the wave func-
tion practically vanishes when two nuclei approach each
other. To describe this behavior we multiply the all-particle
ECGs by powers of the internuclear distances (by the in-
ternuclear distance in the case of a diatomic molecule).1–3

The basis functions of this kind have been shown to very ef-
fectively represent zero-angular-momentum bound states of
small diatomics.4, 5 They are also effective in describing the
oscillations of the wave function which arise when the system
becomes vibrationally excited.

The T2 molecule is a good model for testing non-BO cal-
culations because its pure vibrational spectrum includes as
many as 27 bound states. The main contribution to the wave
function of the highest excited 27th state has 26 nodes. As
in the non-BO calculations the coupling of the vibrational
and electronic motions is explicitly included, the wave func-
tion may also include some minor contributions with nodes in
terms of both the electron-nucleus and electron-electron dis-
tances. This effect is called the nonadiabatic state mixing in
the approach based on the BO approximation. As in our non-
BO approach no restrictions (other than the symmetry restric-
tions) are imposed on the wave function, the state mixing is
automatically permitted to occur in the calculation. With this
full accounting for the adiabatic and non-adiabatic effects is
directly obtained in the calculation and one does not need to
resort to the perturbation theory to account for these effects as
it is done in the approach based on the BO approximation.

Recently we calculated the two lowest pure vibrational
states of T2 using a basis set of 10 000 ECGs for each state6

using the non-BO approach. In this work the non-BO calcula-
tions are performed for all 27 bound pure vibrational states of
this system. The sizes of the basis sets used range from 11 000
for the lowest ν = 0 state to 16 000 for the 25th state. In the
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non-BO calculations we are using a non-relativistic Hamilto-
nian obtained by rigorously separating out the motion of the
center of mass from the laboratory-frame Hamiltonian. The
“internal” Hamiltonian obtained this way is rotationally in-
variant and its eigenfunctions transform according to the irre-
ducible representations of the group of 3D rotations (SO(3)).
In particular, the ground state or any rotationless N = 0 state
of a system with positive (natural) parity is represented by a
spherically symmetric wave function, which can be expanded
in terms of spherically symmetric ECGs. All zero-angular-
momentum bound states (i.e., the pure vibrational states) of
T2 are such states.

The presentation of the results begins with a brief de-
scription of the method used in the calculations (a more com-
plete description of the method can be found in our recent
reviews1, 2). The results obtained in the calculations are pre-
sented and discussed in Sec. III.

II. THE METHOD USED IN THE CALCULATIONS

In this work we consider all existing 27 bound rotation-
less states of the T2 molecule. The standard Rayleigh-Ritz
variational method is employed to minimize the internal en-
ergy and to optimize the wave function for each state. Each
state is calculated independently. The rigorous separation of
the center-of-mass kinetic energy from the laboratory-frame
Hamiltonian results in the internal nonrelativistic Hamilto-
nian, Ĥnonrel, which for T2 has the following form:

Ĥnonrel = −1
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In (1), q0 = q1 = 1 are the charges of the nuclei and q2 = q3

= −1 are the electron charges, ri, i = 1, 2, 3, are the po-
sition vectors of the second nucleus and the two electrons
with respect to the first nucleus (placed in the center of the
internal coordinate system; we call this nucleus the “refer-
ence particle”), ri are their lengths, rij = |rj − ri|, m0 = m1

= 5496.92158me are the triton masses, m2 = m3 = me = 1
are the electron masses,7 and μi = m0mi/(m0 + mi) is the re-
duced mass of particle i. One can describe Hamiltonian (1)
as representing three “pseudoparticles” with charges equal to
the charges of the original particles, but with masses being the
reduce masses, moving in the central potential of the charge
of the reference particle. The motions of the three pseu-
doparticles are coupled through the Coulomb interactions and
through the mass-polarization terms, − 1
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As mentioned, spherically symmetric ECGs that include

even non-negative powers of the internuclear distance, r1, as
preexponential multipliers are used in expanding the spatial
parts of the non-BO wave functions of the rotationless states
of T2.3 These ECGs have the following form:

φk = r
mk

1 exp[−r′(Ak ⊗ I3)r], (2)

where r = {r′
1, r′

2, r′
3}′ and ′ denotes the vector (matrix) trans-

position. Ak in (2) is a symmetric 2 × 2 matrix. The mk power
ranges from 0 to 250 in the present calculations.

The appropriate symmetry with respect to electron and
nucleus permutations is imposed on basis functions (2). As
the present calculations concern states which have singlet
multiplicities for the electrons and for the nuclei, each ba-
sis function is made symmetric with respect to the permu-
tations of both the electrons and nuclei. Since the transfor-
mation between the laboratory and the internal coordinates
is linear, the symmetrization operators, which originally are
defined with respect to the laboratory coordinates, can be ex-
pressed in terms of the internal coordinates and directly ap-
plied to functions (2).3

As mentioned, 10 000 ECGs were used for each state in
the previous calculations concerning the lowest two pure vi-
brational states of T2.6 In this work these two basis sets are
increased to 11 000 for the ν = 0 state and to 12 000 for the
ν = 1 state. The increase is done by adding new functions to
the set. The functions are added one by one in subsets of 100
and their non-linear parameters are optimized by the varia-
tional energy minimization. Each time the parameters of the
optimized function are changed, the generalized eigenvalue
problem is solved to determine the linear expansion coeffi-
cients and to assure that the total energy is an upper bound to
the exact nonrelativistic energy of the state considered in the
calculation.

The initial form of the newly added function is generated
by randomly perturbing the non-linear parameters of some
most contributing functions already included in the basis set
and choosing the function which lowers the energy the most.
After the addition of each 100-ECG subset to the basis set
the whole set is reoptimized. In this reoptimization the ECGs
are again optimized one by one. Such an approach allows for
better control over linear dependencies between ECGs, which
may arise in the optimization, because each reoptimized func-
tion can be checked for linear dependencies with all other
functions in the set and, if any are found, the function is re-
turned to its original form it had before the reoptimization.

The ECGs used in the calculations have to be square in-
tegrable. This automatically happens if Ak is represented in a
Cholesky-factored form, Ak ≡ LkL

′
k , with Lk being a lower

triangular real matrix. The non-zero matrix elements of Lk

can vary in the (−∞, +∞) range. The elements of the Lk

matrices are the nonlinear parameters which are optimized
for each basis functions. Additionally, the mk power of r1 of
the function is also optimized. This is done only once after
the function is first included in the basis set. The nonlinear-
parameter optimization is the most time consuming step of
the calculation. To expedite the optimization process for the
Lk matrix elements the analytical gradient of the energy func-
tional determined with respect to these elements is used in the
optimization.

The above-described procedure is also applied to gener-
ate the basis sets for the remaining ν = 2, . . . , 26 states. Again,
for each state the basis set is generated in a separate calcula-
tion. At the start of the calculation, 10 000 ECGs generated
for the state located just below the considered state are in-
cluded in the basis set and their Lk parameters are thoroughly
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TABLE I. The convergence of the total nonrelativistic non-BO energies of the pure vibrational states of T2 with the number of basis functions. The energies are compared with the energies obtained by Wolniewicz9

using the BO approach and corrected for the adiabatic and nonadiabatic effects. � (expressed in cm−1) is the difference between the present results and the results of Wolniewicz. All energies are given in a.u. (hartrees).

No. ECGs ν Energy ν Energy ν Energy ν Energy ν Energy ν Energy ν Energy

10 000 0 − 1.168 535 675 68 1 − 1.157 306 577 68 2 − 1.146 441 883 40 4 − 1.135 936 001 47 5 − 1.125 784 215 45 6 − 1.115 982 713 59 7 − 1.106 528 627 71
11 000 − 1.168 535 675 71 − 1.157 306 577 79 − 1.146 441 883 69 − 1.135 936 001 90 − 1.125 784 216 01 − 1.115 982 714 31 − 1.106 528 628 77
12 000 − 1.157 306 577 87 − 1.146 441 883 89 − 1.135 936 002 23 − 1.125 784 216 46 − 1.115 982 714 88 − 1.106 528 629 62

Wolniewicz − 1.168 535 631 56 − 1.157 306 532 20 − 1.146 441 837 70 − 1.135 935 956 07 − 1.125 780 930 10 − 1.115 982 669 96 − 1.106 528 586 98
� 0.0097 0.0100 0.0101 0.0101 0.0101 0.0097 0.0094

10 000 7 − 1.097 420 088 04 8 − 1.088 656 280 67 9 − 1.080 237 537 82 10 − 1.072 165 427 33 11 − 1.064 442 889 54 12 − 1.057 074 356 58 13 − 1.050 065 902 09
11 000 − 1.097 420 089 13 − 1.088 656 282 10 − 1.080 237 539 59 − 1.072 165 430 03 − 1.064 442 892 29 − 1.057 074 363 73 − 1.050 065 931 07
12 000 − 1.097 420 089 95 − 1.088 656 283 24 − 1.080 237 540 97 − 1.072 165 432 22 − 1.064 442 894 48 − 1.057 074 368 63 − 1.050 065 954 61
13 000 − 1.057 074 372 18 − 1.050 065 972 74
14 000 − 1.050 065 981 06

Wolniewicz − 1.097 420 049 58 − 1.088 656 246 39 − 1.080 237 507 96 − 1.072 165 405 70 − 1.064 442 873 36 − 1.057 074 355 45 − 1.050 065 986 78
� 0.0089 0.0081 0.0072 0.0058 0.0046 0.0029 − 0.0013

10 000 14 − 1.043 425 760 41 15 − 1.037 163 605 67 16 − 1.031 292 609 99 17 − 1.025 829 412 10 18 − 1.020 791 287 62 19 − 1.016 201 950 62 20 − 1.012 089 213 02
11 000 − 1.043 425 776 56 − 1.037 163 923 02 − 1.031 293 249 61 − 1.025 829 450 74 − 1.020 791 326 71 − 1.016 202 002 61 − 1.012 089 269 08
12 000 − 1.043 425 790 98 − 1.037 163 999 48 − 1.031 293 349 97 − 1.025 829 483 59 − 1.020 791 359 15 − 1.016 202 045 29 − 1.012 089 316 80
13 000 − 1.043 425 800 50 − 1.037 164 025 90 − 1.031 293 380 91 − 1.025 829 503 27 − 1.020 791 384 85 − 1.016 202 073 24 − 1.012 089 350 12
14 000 − 1.043 425 807 45 − 1.037 164 038 10 − 1.031 293 398 53 − 1.025 829 516 38 − 1.020 791 404 68 − 1.016 202 093 07 − 1.012 089 368 07
15 000 − 1.025 829 523 61 − 1.020 791 412 19 − 1.016 202 103 84 − 1.012 089 379 99

Wolniewicz − 1.04342581144 − 1.03716404919 − 1.03129342128 − 1.02582954993 − 1.02079145115 − 1.01620214708 − 1.01208943335
� − 0.0009 − 0.0024 − 0.0050 − 0.0058 − 0.0086 − 0.0095 − 0.0117

10 000 21 − 1.008 486 620 94 22 − 1.005 434 576 25 23 − 1.002 982 251 94 24 − 1.001 188 531 68 25 − 0.100 012 241 45 26 − 0.999 817 450 16
11 000 − 1.008 486 680 27 − 1.005 434 660 20 − 1.002 982 299 89 − 1.001 188 586 33 − 1.000 122 438 70 − 0.999 818 234 70
12 000 − 1.008 486 728 09 − 1.005 434 708 05 − 1.002 982 353 21 − 1.001 188 624 78 − 1.000 122 455 00 − 0.999 818 360 88
13 000 − 1.008 486 762 00 − 1.005 434 762 02 − 1.002 982 384 61 − 1.001 188 654 52 − 1.000 122 467 64 − 0.999 818 392 62
14 000 − 1.008 486 783 12 − 1.005 434 788 03 − 1.002 982 405 05 − 1.001 188 671 93 − 1.000 122 476 92 − 0.999 818 399 96
15 000 − 1.008 486 791 66 − 1.005 434 807 53 − 1.002 982 415 44 − 1.001 188 683 93 − 1.000 122 483 23 − 0.999 818 402 17
16 000 − 1.001 188 692 49
Wolniewicz − 1.00848684329 − 1.00543486966 − 1.00298247658 − 1.00118873123 − 1.00012251629
� − 0.0113 − 0.0136 − 0.0134 − 0.0085 − 0.0073
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TABLE II. Dissociation energy for the pure vibrational states of T2 in cm−1.
The energies are obtained by subtracting the doubled total energy of two tri-
tium atoms of −0.999 818 113 08 hartree from the total energy of the partic-
ular state obtained with the largest ECG basis set generated for that state. All
values are in cm−1.

No. Dissociation No. Dissociation
ν ECGs energy ν ECGs energy

0 11 000 37 029.2249(0) 14 14 000 9570.7826(20)
1 12 000 34 564.7228(0) 15 14 000 8196.4831(20)
2 12 000 32 180.1980(0) 16 14 000 6908.0267(40)
3 12 000 29 874.4235(0) 17 15 000 5708.8447(50)
4 12 000 27 646.3641(1) 18 15 000 4603.1071(50)
5 12 000 25 495.1832(2) 19 15 000 3595.8703(50)
6 12 000 23 420.2513(2) 20 15 000 2693.2318(50)
7 12 000 21 421.1579(2) 21 15 000 1902.5550(50)
8 12 000 19 497.7246(4) 22 15 000 1232.7219(50)
9 12 000 17 650.0243(5) 23 15 000 694.4841(50)

10 12 000 15 878.4012(5) 24 16 000 300.8074(50)
11 12 000 14 183.5001(6) 25 15 000 66.8015(30)
12 13 000 12 566.2956(6) 26 15 000 0.0634(20)
13 14 000 11 028.1323(6)

reoptimized (mk powers are not reoptimized) by cycling over
all functions in the set multiple times and performing the op-
timization of only one function at a time. After that the basis
set is grown in the same way as it was done for the ν = 0

and ν = 1 states. The growing process stops when the energy
of the state does not change by more than about 0.5 × 10−8

hartree. As the number of vibrational nodes in terms of the
r1 coordinate increases with the vibrational excitation, more
ECGs are needed for the higher states than for the lower ones.
The largest number of basis functions equal to 16 000 is gen-
erated for the ν = 24 state. Reusing the first 10 000 ECGs
from the ν = k − 1 state to initiate the calculation for the ν

= k state is justified by the observation made in the analysis
of the H2 basis. This analysis showed that, while for the first
few pure vibrational states the mk powers in the preexponen-
tial ECG multipliers are mostly smaller numbers in the 0–250
range, the powers for higher states are approximately evenly
distributed in the whole range of the allowed powers. That ap-
proach was also employed in generating the initial basis sets
for the top states in the D2 calculations.8

After the basis sets and the corresponding non-BO wave
functions have been generated for all 27 states, which has in-
volved several months of continuous calculations, some ex-
pectation values involving inter-particle distances are gener-
ated. The results of the calculations are shown and discussed
in Sec. III.

III. THE RESULTS

In Table I we present the total nonrelativistic ener-
gies of all 27 pure vibrational states of T2 obtained in the

TABLE III. Some expectation values calculated for the pure vibrational states of the T2 molecule with the non-BO nonrelativistic wave functions expanded in
terms of explicitly correlated Gaussians. The basis set of the largest size for each state is used. 〈rt − t〉, 〈rt − e〉, and 〈re − e〉 denote the triton-triton, triton-electron,
and electron-electron distances, respectively. All values are in a.u.

ν 〈1/rt − t〉 〈1/rt − e〉 〈1/re − e〉 〈rt − t〉 〈rt − e〉 〈re − e〉 〈r2
t−t 〉 〈r2

t−e〉 〈r2
e−e〉 〈δ(rt−e)〉 〈δ(re−e)〉

0 0.705667 0.906353 0.582673 1.428359 1.563908 2.187730 2.056241 3.099443 5.732488 0.227455 0.016401
1 0.689942 0.894605 0.573867 1.483304 1.592899 2.224135 2.248689 3.222635 5.928941 0.223405 0.015776
2 0.674477 0.883101 0.565042 1.539472 1.622453 2.261744 2.452095 3.350946 6.134926 0.219507 0.015167
3 0.659238 0.871822 0.556179 1.596991 1.652631 2.300708 2.667360 3.484837 6.351567 0.215763 0.014571
4 0.644191 0.860754 0.547255 1.656013 1.683506 2.341202 2.895535 3.624849 6.580180 0.212159 0.013990
5 0.629299 0.849877 0.538245 1.716713 1.715159 2.383427 3.137854 3.771622 6.822316 0.208696 0.013419
6 0.614522 0.839175 0.529122 1.779301 1.747692 2.427623 3.395779 3.925918 7.079817 0.205357 0.012862
7 0.599819 0.828628 0.519853 1.844024 1.781221 2.474070 3.671055 4.088649 7.354878 0.202153 0.012306
8 0.585144 0.818215 0.510403 1.911176 1.815889 2.523102 3.965788 4.260916 7.650138 0.199058 0.011760
9 0.570446 0.807913 0.500732 1.981116 1.851869 2.575119 4.282537 4.444064 7.968792 0.196084 0.011222

10 0.555668 0.797697 0.490791 2.054278 1.889369 2.630602 4.624450 4.639747 8.314745 0.193220 0.010685
11 0.540744 0.787539 0.480526 2.131194 1.928648 2.690136 4.995443 4.850023 8.692817 0.190459 0.010153
12 0.525599 0.777405 0.469872 2.212528 1.970028 2.754441 5.400447 5.077486 9.109018 0.187803 0.009608
13 0.510147 0.767258 0.458753 2.299113 2.013912 2.824413 5.845769 5.325447 9.570953 0.185224 0.009076
14 0.494282 0.757052 0.447076 2.392011 2.060817 2.901179 6.339592 5.598200 10.088365 0.182759 0.008530
15 0.477881 0.746734 0.434728 2.492594 2.111411 2.986182 6.892729 5.901402 10.673959 0.180381 0.007974
16 0.460789 0.736237 0.421573 2.602683 2.166577 3.081306 7.519821 6.242694 11.344677 0.178084 0.007407
17 0.442816 0.725478 0.407435 2.724728 2.227508 3.189061 8.241138 6.632617 12.123612 0.175881 0.006823
18 0.423719 0.714348 0.392092 2.862129 2.295856 3.312884 9.085658 7.086180 13.043235 0.173743 0.006220
19 0.403180 0.702709 0.375252 3.019767 2.373993 3.457648 10.096381 7.625554 14.150907 0.171677 0.005592
20 0.380770 0.690367 0.356519 3.204950 2.465471 3.630567 11.340274 8.285102 15.519115 0.169678 0.004932
21 0.355886 0.677047 0.335330 3.429274 2.575920 3.842961 12.928414 9.121523 17.266028 0.167751 0.004233
22 0.327622 0.662332 0.310838 3.712672 2.715027 4.114108 15.062068 10.237025 19.602219 0.165859 0.003486
23 0.294507 0.645528 0.281640 4.093685 2.901534 4.481026 18.156344 11.841322 22.955263 0.164022 0.002681
24 0.253725 0.625283 0.245028 4.663328 3.179793 5.030826 23.276636 14.470149 28.407609 0.162220 0.001803
25 0.197954 0.597997 0.193792 5.747907 3.709466 6.076568 34.773143 20.302486 40.330774 0.160444 0.000846
26 0.062680 0.531232 0.062610 20.660465 11.111502 20.784901 556.355184 281.176733 562.347767 0.159069 0.000013
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calculations. The convergence of the energy with the num-
ber of ECGs in the basis set is shown for each state. As one
can see, the convergence is noticeably better for the lower
states than for the upper states despite using for larger ba-
sis sets for the latter states. The number of ECGs in the ba-
sis set varies from 11 000 for the ground state to 16 000 for
the ν = 24 state. The present results are compared in Table I
with the results of Wolniewicz9 obtained using the conven-
tional approach employing a potential energy curve, which
includes adiabatic corrections. The Wolniewicz’s results are
also corrected for the nonadiabatic effects. The comparison
shown that, in general, the two sets of results agree with each
other. However, as one notices, our energies are slightly lower
by about 0.01 cm−1 for the few lowest states than the Wol-
niewicz’s energies, then the difference decreases to eventually
become negative and equal to about −0.01 cm−1 for the top
states.

In Table II, T2 dissociation energies corresponding to all
bound 27 pure vibrational states are shown. For each energy
value we provide an estimate of the error, which is due to
the basis-set incompleteness. This incompleteness rises with
the excitation level. As one can see the present non-BO cal-
culations have been converged to a very high accuracy at the
nonrelativistic level. As the non-BO approach directly and ex-
plicitly includes accounting for the finite-nuclear-mass effects
in the calculations, these effects (both adiabatic and nonadia-
batic) are included to very high accuracy in the energy and in
the wave function. They are also accounted for in the expecta-
tion value calculations, as those values are determined using
the nonrelativistic non-BO wave functions.

The calculated expectation values include the following
average quantities: the inverse of the triton-triton distance,
〈1/rt − t〉, the inverse of the triton-electron distance, 〈1/rt − e〉,
the inverse of the electron-electron distance, 〈1/re − e〉, the
triton-triton distance, 〈rt − t〉, the triton-electron distance,
〈rt − e〉, the electron-electron distance, 〈re − e〉, the square of
the triton-triton distance, 〈r2

t−t 〉, the square of the triton-
electron distance, 〈r2

t−e〉, the square of the electron-electron
distance, 〈r2

e−e〉, the contact triton-electron density, 〈δ(rt−e)〉,
and the contact electron-electron density, 〈δ(re−e)〉. The re-
sults are shown in Table III. The expectation values show
the expected trends. The average t–t distance increases with
the vibrational excitation. For the highest ν = 26 state,
which is predicted to be marginally bound by only about
0.06 cm−1, the average t–t distance is over 20 a.u. This is three
times larger than for the next lower state. Same is true for
the deuteron-electron and electron-electron average distances.

These results indicate that, as this state is very close to the dis-
sociation threshold, it may involve a higher level of coupling
of the motions of the electrons and the nuclei. This coupling
is automatically included in our non-BO calculations.

IV. SUMMARY

In this work we present very accurate non-BO calcu-
lations of the whole pure vibrational spectrum of the T2

molecule performed with all-particle explicitly correlated
Gaussian functions. Depending on the state the basis set size
varies from 11 000 to 16 000. The exponential parameters of
the Gaussians are extensively optimized using the standard
variational method aided with the analytically calculated en-
ergy gradient determined with respect to these parameters.
The high accuracy of the calculations is achieved mainly due
to the use of the gradient which significantly expedites the
optimization process. As the expected accuracy of the results
is very high, they may provide useful benchmark values for
conventional calculations performed using the conventional
BO approach based on the potential energy curve.

ACKNOWLEDGMENTS

We are grateful to the University of Arizona Research
Computing Services for providing computer resources for this
work. We thank Professor Wolniewicz for sending to us his
unpublished T2 results. This work has been supported in part
by a grant from the National Science Center (NCN) of Poland
awarded to Monika Stanke.

1M. Cafiero, S. Bubin, and L. Adamowicz, Phys. Chem. Chem. Phys. 5,
1491 (2003).

2S. Bubin, M. Cafiero, and L. Adamowicz, Adv. Chem. Phys. 131, 377
(2005).

3D. B. Kinghorn and L. Adamowicz, J. Chem. Phys. 110, 7166 (1999).
4S. Bubin, M. Stanke, and L. Adamowicz, J. Chem. Phys. 131, 044128
(2009).

5M. Stanke, S. Bubin, and L. Adamowicz, Phys. Rev. A 79, 060501(R)
(2009).

6S. Bubin, M. Stanke, M. Molski, and L. Adamowicz, Chem. Phys. Lett.
494, 21 (2010).

7See CODATA 2002 recommended values and NIST Physical.
8S. Bubin, M. Stanke, and L. Adamowicz, J. Chem. Phys. 135, 074110
(2011).

9L. Wolniewicz, the adiabatic potential energy curve for T2 was pro-
vided to us in a private communication; the non-adiabatic corrections
for T2 are taken from www.fizyka.umk.pl/∼luwo/data/xnon_cor.95 (1995);
L. Wolniewicz, J. Chem. Phys. 99, 1851 (1993); 103, 1792 (1995); W.
Kolos and L. Wolniewicz, ibid. 49, 404 (1968).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.151.150.17 On: Fri, 18 Apr 2014 17:07:22

http://dx.doi.org/10.1039/b211193d
http://dx.doi.org/10.1002/0471739464.ch6
http://dx.doi.org/10.1063/1.478620
http://dx.doi.org/10.1063/1.3195061
http://dx.doi.org/10.1103/PhysRevA.79.060501
http://dx.doi.org/10.1016/j.cplett.2010.05.081
http://dx.doi.org/10.1063/1.3625955
http://www.fizyka.umk.pl/~luwo/data/xnon_cor.95
http://dx.doi.org/10.1063/1.465303
http://dx.doi.org/10.1063/1.469753
http://dx.doi.org/10.1063/1.1669836

