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Prediction of 2D Rydberg energy levels of 6Li and 7Li based on very
accurate quantum mechanical calculations performed with explicitly
correlated Gaussian functions
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Very accurate variational nonrelativistic finite-nuclear-mass calculations employing all-electron
explicitly correlated Gaussian basis functions are carried out for six Rydberg 2D states (1s2nd, n
= 6, . . . , 11) of the 7Li and 6Li isotopes. The exponential parameters of the Gaussian functions are
optimized using the variational method with the aid of the analytical energy gradient determined
with respect to these parameters. The experimental results for the lower states (n = 3, . . . , 6) and
the calculated results for the higher states (n = 7, . . . , 11) fitted with quantum-defect-like formulas
are used to predict the energies of 2D 1s2nd states for 7Li and 6Li with n up to 30. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4801855]

I. INTRODUCTION

Atoms in highly excited Rydberg states are formed in the
interstellar medium due to the interaction with ultraviolet and
X-rays radiations from various space objects.1, 2 They are also
formed due to interaction with high energy particles in shock
waves resulting from supernova explosions and interstellar
clouds collisions.3 Thus, astronomers have observed infrared
radiation originating from transitions between excited states
of Rydberg atoms (RA) (hydrogen, helium, lithium) with the
principal quantum numbers varying in a large range of values.
Based on the infrared radiation, one can estimate the popula-
tion of states of the Rydberg atoms in stellar atmospheres,
atmospheres of cooling stars (dwarfs), planetary nebulas, and
clouds of interstellar gas. In the laboratory methods for inves-
tigating RA became widely established in the 1980s.4 These
methods not only allowed increasing the effectiveness of clas-
sical single-photon light excitation but also made it possible
to use two-photon excitations in RA studies. There has also
been considerable interest in the processes of collisional ion-
ization of highly excited atoms due to its practical use in laser
atom cooling, Bose-Einstein condensation, controlling exci-
tation processes of single atoms, creating quantum computer
logical units, quantum teleportation, etc. Naturally occurring
lithium is composed of two stable isotopes, 6Li and 7Li, with
the latter being by far the more abundant one: about 92.5% of
the atoms. 6Li and 7Li are two of the primordial nuclides that
were produced in the Big Bang. A small percentage of 6Li is
also known to produced by nuclear reactions in certain stars.5

The NIST atomic spectra database6 lists four series of
Rydberg states of the 7Li isotope corresponding the follow-
ing electronic configurations: 1s2ns, 1s2np, 1s2nd, and 1s2nf.
Among them there are ten 2D 1s2nd states, with n = 3, 4, . . . ,
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12. In Table I, the experimental energies of these states deter-
mined with respect to the 2S 1s22s state taken from Refs. 6
and 7 are listed and it is important to notice that the precision
of the measurements decreases as n increases. For the low-
est four 2D states of 7Li and 6Li, namely, the 1s23d, 1s24d,
1s25d, and 1s26d states, the relative energies with respect
to the ground 2S 1s22s state are known from Ref. 7 with
the precision of 3–4 significant digits after the decimal point
(in wavenumbers). The energies of four higher states of 7Li,
1s27d, 1s28d, and 1s29d, are known from Ref. 6 with only one
significant digit after the point. The highest states measured,
the 1s210d1, 1s211d1, and 1s212d1 states, are reported with no
digits after the point.

Recently, we presented a set of high accuracy calcula-
tions performed for the lowest nine 2D of the 7Li atom where
the relative nonrelativistic energies of the lower states were
converged with the accuracy better than 0.01 cm−1.8, 9 In the
calculations we employed all-electron explicitly correlated
Gaussian functions and optimized their exponential param-
eters with a variational approach that employs the analytical
energy gradient determined with respect to those parameters.
In this work, we have significantly increased the accuracy of
the calculations of the upper six of the previously calculated
nine 2D states of 7Li by adding more basis functions to the ba-
sis set for each state. For example, the basis set for the ninth
state (1s211d) now consists of 11 000 Gaussians, up by 4000
from the previously used 7000.9 The accuracy achieved in the
calculation is now sufficient to extrapolate the energies of the
Rydberg 2D 1s2nd states of both 6Li and 7Li up to n = 30.
In generating the predictions, we use the quantum-defect and
other simple related formulas.

Technical details of the algorithms for calculating the en-
ergy and the energy gradient used in Refs. 8, 9, and 12, as well
as in the present calculations, were presented in our previ-
ous works.10, 11 These algorithms were derived using the non-
relativistic Hamiltonian obtained by explicitly and rigorously

0021-9606/2013/138(16)/164308/6/$30.00 © 2013 AIP Publishing LLC138, 164308-1

Downloaded 30 Apr 2013 to 128.151.150.17. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4801855
http://dx.doi.org/10.1063/1.4801855
http://dx.doi.org/10.1063/1.4801855
http://dx.doi.org/10.1063/1.4801855
mailto: ludwik@u.arizona.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4801855&domain=pdf&date_stamp=2013-04-23


164308-2 Bubin, Sharkey, and Adamowicz J. Chem. Phys. 138, 164308 (2013)

TABLE I. Experimental energies (in cm−1) of the 1s2nd, n = 3, . . . , 12, 2D
states of 7Li determined with respect to the ground 2S (1s22s) state.

n J 7Li6 7Li7 6Li7

3 3/2 31 283.08 31 283.0505(10) 31 282.6062
5/2 31 283.12 31 283.0866(10) 31 282.6423

4 3/2 36 623.38 36 623.3360(10) 36 622.8217
5/2 36 623.40 36 623.3511(10) 36 622.8368

5 3/2 39 094.93 39 094.861 39 094.310
5/2 39 094.94 39 094.869 39 094.318

6 3/2 40 437.31 40 437.220 40 436.633
5/2 40 437.32 40 437.220 40 436.633

7 3/2, 5/2 41 246.5
8 3/2, 5/2 41 771.3
9 3/2, 5/2 42 131.3
10 3/2, 5/2 42 389.0
11 3/2, 5/2 42 578.0

separating out the kinetic energy of the center-of-mass motion
from the laboratory all-particle (nucleus+electrons) Hamilto-
nian. This Hamiltonian, called the internal Hamiltonian, Ĥint,
has the following form in atomic units:

Ĥint = −1
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where N is the number of electrons, ri is the distance be-
tween the ith electron and the nucleus, m0 is the nucleus mass
(12 786.3933me for 7Li and 10 961.898me for 6Li, where me =
1 is the electron mass), q0 is its charge, qi are electron charges,
μi = m0mi/(m0 + mi) are electron reduced masses, and prime
indicates the matrix/vector transpose.

As Ĥint is explicitly dependent on the mass of the nu-
cleus, it allows for direct calculation of energy levels of a
particular isotope without resorting to accounting for the ef-
fect due to the finite-mass of the nucleus using the perturba-
tion approach. Such perturbation approach is used in conven-
tional calculations after the initial nonrelativistic calculations
are done with the mass of the nucleus set to infinity. The finite-
nuclear-mass (FNM) calculation in this work are performed
for the 6Li and 7Li isotopes. Infinite-nuclear-mass (INM) cal-
culations are also done by setting the mass of the nucleus
in (1) to infinity.

II. BASIS SET AND ITS OPTIMIZATION

The following explicitly correlated Gaussians (ECG) are
used in this work to describe the 2D 1s2nd Rydberg states of
the Li atom,8, 9, 12

φk = (xik xjk
+ yjk

yik − 2zik zjk
) exp[−r′ (Ak ⊗ I3) r], (2)

where electron labels ik and jk are either equal or not equal to
each other and can vary from 1 to n. Ak in (2) is an n × n sym-
metric matrix, ⊗ is the Kronecker product, I3 is a 3 × 3 iden-
tity matrix, and r is a 3n vector of the electron coordinates.

The square-integrability of the Gaussians (2) is enforced by
representing the Ak matrix in the following Cholesky-factored
form: Ak = LkL

′
k , where Lk is a lower triangular matrix with

matrix elements ranging from ∞ to −∞. In such a form Ak is
automatically positive definite and the Gaussian is square in-
tegrable. The elements of the Lk matrices are the parameters
which are optimized in the variational energy minimization. It
is important that this minimization can be carried out without
any constraints.

The Pauli principle requires that the total wave function
of the system be antisymmetric with respect to permutations
of fermions. In our calculations, we have employed the spin-
free formalism that allows to simplify the treatment of the per-
mutational symmetry and deal with just the spatial part of the
wave function. In this formalism, one constructs an appropri-
ate symmetry projector acting on the spatial part of the wave
function. The construction of the projector can be done us-
ing the standard procedure involving Young operators as de-
scribed, for example, in Ref. 13. For doublet states of lithium,
the Young operator can be chosen as: Ŷ = (1̂ + P̂34)(1̂ − P̂23),
where the electrons are labeled as 2, 3, and 4 (the nucleus is
labeled as 1), 1̂ is the identity operator, and P̂ij is the per-
mutation of the ith and jth electron labels. As the internal
Hamiltonian (1) is fully symmetric with respect to all electron
permutations, in the calculation of the overlap and Hamilto-
nian matrix elements, Ŷ may be applied to the ket basis func-
tions only (as Ŷ †Ŷ ).

The basis set for each of the states considered in this work
has been generated and optimized separately. The optimiza-
tion involves minimization of the variational energy func-
tional in terms of the Lk parameters and the ik and jk indices
of the Gaussians. The basis-set growing process starts with
a small number of ECGs and involves incremental additions
of more functions, optimizing their Lk parameters and the ik
and jk indices, and then reoptimizing the parameters of all
ECGs in the basis set. As mentioned, the analytical gradient
is employed in the minimization. A more detailed description
of the procedure can be found in our previous works.8, 9, 12

The basis set optimization has been only carried out for the
states of the main 7Li isotope. In the 6Li and ∞Li calcula-
tions, we only readjusted the linear coefficients of the ECG
wave-function expansion (through the diagonalization of the
Hamiltonian/overlap matrix).

Significant computational effort has been invested in
increasing and reoptimizing the basis sets for states with
n = 7, . . . , 11 in comparison with our previous works8, 9

where the maximal number of ECGs used was 7000. For ex-
ample, for the n = 11 state the basis set was increased to as
many as 11 000 functions. The new improved energies for the
n = 7, . . . , 11 states are shown in Table II. We only show
the results obtained with larger basis sets than those used in
our previous calculations.8, 9 As one can see, for all six states
the energies are noticeably lower that those calculated before.
Particularly improved is the energy of the highest n = 11 state.
The energies for 6Li and ∞Li computed with the largest basis
set generated for a particular state are also shown in Table II.

The results from Table II are used to generate the rela-
tive energies of the n = 7, . . . , 11 states of 7Li determined
with respect to the ground 2S 1s22s state. They are presented
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TABLE II. The convergence of the total nonrelativistic finite-nuclear-mass energies (in hartrees) of the 1s27d, 1s28d, 1s29d, 1s210d, and 1s211d 2D states of
7Li with the number of basis functions. The 6Li and ∞Li energies are also shown for the largest basis set used for each particular state.

Basis 1s26d 1s27d 1s28d 1s29d 1s210d 1s211d

7Li 4500 −7.293 217 739 34
5000 −7.293 217 741 43 −7.289 530 182 64
5500 −7.293 217 742 68 −7.289 530 186 73
6000 −7.293 217 743 45 −7.289 530 189 60
6500 −7.293 217 744 03 −7.289 530 191 78
7000 −7.289 530 193 38 −7.287 137 047 53
7500 −7.289 530 194 37 −7.287 137 050 77 −7.285 496 418 23 −7.284 322 856 22 −7.283 454 285 38
8000 −7.289 530 195 09 −7.287 137 053 11 −7.285 496 427 09 −7.284 322 897 99 −7.283 454 422 52
8500 −7.289 530 195 64 −7.287 137 053 47 −7.285 496 434 24 −7.284 322 924 09 −7.283 454 512 88
9000 −7.285 496 439 63 −7.284 322 944 12 −7.283 454 578 27
9500 −7.284 322 958 88 −7.283 454 630 82

10 000 −7.283 454 670 69
10 500 −7.283 454 704 15
11 000 −7.283 454 730 88

6Li 11 000 −7.293 119 059 64 −7.289 431 558 66 −7.287 038 447 80 −7.285 397 855 65 −7.284 224 390 23 −7.283 356 173 46
∞Li 11 000 −7.293 810 723 15 −7.290 122 886 01 −7.287 729 556 97 −7.286 088 815 23 −7.284 915 242 80 −7.284 046 946 85

in Table III. The convergence of these relative energies with
the number of the basis functions are shown. As one can see,
for all considered states, except for the last n = 11 one, the
energies are converged to better than 0.01 cm−1. The results
for 6Li and ∞Li are also shown in Table III.

In our previous work,9 it was shown that the differ-
ence between the calculated nonrelativistic energies of the
2D 1s2nd n = 3, . . . , 7 states of 7Li and the experimental
values6 converges to a constant equal to −2.58 cm−1. This
happens because the dominant (by far the largest) contribu-
tion to the calculated/experimental energy difference comes
from relativistic and quantum-electrodynamic (QED) effects

of the lithium core electrons, which become virtually con-
stant as the Rydberg d-electron gets increasingly more ex-
cited and diffuse. The difference of −2.58 cm−1, as one can
expect, is very close to the difference between the calcu-
lated ionization energy (IE) and the experimental IE of 7Li of
−2.55 cm−1. These two values can be viewed as correspond-
ing to the 2D 1s2nd state with n = ∞. Based on the constant
calculated/experimental energy difference we proposed a re-
finement procedure for the energies of the states which are
measured less precisely in experiment.9 The procedure, which
simply involves adding −2.58 cm−1 to the best nonrelativis-
tic energy value, was applied to refine the energies of the 2D

TABLE III. Calculated nonrelativistic energies (in cm−1) of the 1s2nd, for n = 6, . . . , 11 and n = ∞, 2D states of 7Li determined with respect to the ground
2S (1s22s)a state. Energies of 6Li and ∞Li, as well as the 6Li/7Li isotope shifts, are also shown.

Basis 1s26d 1s27d 1s28d 1s29d 1s210d 1s211d 1s2∞d

7Li 4500 40 434.73
5000 40 434.73 41 244.06
5500 40 434.73 41 244.06
6000 40 434.73 41 244.05
6500 41 244.05
7000 41 244.05 41 769.29
7500 41 244.05 41 769.29 42 129.37 42 386.93 42 577.56
8000 41 244.05 41 769.29 42 129.36 42 386.92 42 577.53
8500 41 244.05 41 769.29 42 129.36 42 386.92 42 577.51
9000 42 129.36 42 386.91 42 577.50
9500 42 386.91 42 577.49

10 000 42 577.48
10 500 42 577.47
11 000 42 577.46

43 484.60
6Li 40 434.17 41 243.48 41 768.71 42 128.78 42 386.32 42 576.87 43 484.00
Isotopic shift from 7Li − 0.56 − 0.57 − 0.58 − 0.59 − 0.59 − 0.59 − 0.60
∞Li 40 438.11 41 247.50 41 772.77 42 132.88 42 390.45 42 581.01

aEnergies of the ground (1s22s) state of Li (in hartrees):15 E(7Li) = −7.477 451 930 7, E(6Li) = −7.477 350 681 2, and E(∞Li) = −7.478 060 323 8.
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1s2nd7Li states with n = 7, . . . , 11. The more accurately cal-
culated energies of these states in the present work allow for
even more precise refinement. The new, more refined energies
for the n = 7, . . . , 11 states and the experimental energies for
the n = 3, . . . , 6 states are now used to predict the energies
of states with n = 12, . . . , 30. In the extrapolation procedure
we use the quantum-defect expression for the energy, as well
as two other simple functional forms of the extrapolant. The
procedure is described in Sec. III.

III. THE QUANTUM-DEFECT EXTRAPOLATION
PROCEDURE

The quantum-defect effect on the energies of Rydberg
states of an atom refers to a correction applied to the equa-
tion expressing the energies in terms of the principle quantum
number to take into account the fact that the inner (core) elec-
trons do not entirely screen the charge of the nucleus in the
interaction of the nucleus with the Rydberg electron.14 The
quantum-defect effect is a particularly useful concept in con-
junction with highly excited states of the alkalis that contain
a single electron in their outer shell. For multi-electron atoms
in Rydberg states with a low value of the orbital angular mo-
mentum, there is a high probability of finding the excited elec-
tron near the nucleus where it can polarize or even penetrate
the ion core, modifying the potential. The resulting shift of
the energy levels expressed in the atomic units is represented
mathematically as an angular-momentum dependent quantum
defect, δl,

E(l)
n = − 1

(n − δl)2
. (3)

The largest shift occurs when the orbital angular momentum
is equal to zero and decreases when l increases.

In the present work, we employ three quantum-defect-
like extrapolation formulas (called Models 1–3). They express
relative energies of 2D 1s2nd states of 7Li with respect of
the ground 1s22s state as a function of n. The use of three
different functional forms allows to assess (at least roughly)
the accuracy of the extrapolation. The energy is determined
as a difference of the excitation limit, which is equal to the
ground state energy of 7Li+, minus the quantum-defect-like
term. The three models differ in the form of this last term
with Model 1 being equivalent to (3), and Models 2 and 3 in-
cluding some additional n-dependent higher order correction
terms. The general formulas for the three models are:

Model 1 : E(n) = a1 − b1

(n − c1)2
, (4)

Model 2 : E(n) = a2 − b2

(n − c2)2
+ d2

(n + e2)3
, (5)

and

Model 3 : E(n) = a3 − b3

(n − c3 + d3n2)2
, (6)

where a1, b1, c1, a2, b2, etc., are adjustable parameters. The
parameters are determined by fitting the energies of n = 3,
. . . , 11 states of 7Li. The first four (n = 3, . . . , 6) energies

were the experimental values taken from Ref. 6 (as each line
is a doublet, an average of the two line frequencies is used),
while the next five (n = 7, . . . , 11) are obtained from the re-
finement procedure described above. The n = ∞ limit is the
experimental energy of 7Li+ (n = ∞; IE = 43487.15 cm−1.
The fitting resulted in the following E(n) expressions for the
three models (in cm−1),

Model 1 : E(n) = 43 487.15 − 109 752

(n − 0.001 155 3)2
, (7)

Model 2 : E(n) = 43 487.15 − 109 800

(n − 0.000 652 355)2

+ 9133.91

(n + 16.5388)3
, (8)

and

Model 3 :

E(n) = 43 487.15

− 109 801

(n − 0.000 695 785 + 2.405 66 × 10−5n2)2
.

(9)

Next, expressions (7)–(9) have been used to determine the en-
ergies of the 2D 1s2nd Rydberg series for n = 1, . . . , 30. The
results are shown in Table IV.

Next, the approach used for 7Li is applied to predict
Rydberg energies for the 2D 1s2nd states of 6Li. Even though
the experimental energy levels of 6Li were measured for the
lowest four 2D states (see Table I), we do not use them in
the extrapolation. As the calculations performed in this work
render nonrelativistic energies of the 6Li isotope (shown in
Table III), these energies can be used to determine the iso-
tope shifts of these energies with respect to the energies of
7Li. These shifts are also shown in Table III. The shift val-
ues should provide very good estimates for the experimen-
tal shifts because the missing contributions from the differ-
ences in the relativistic corrections (the so-called recoil cor-
rections) and QED corrections between 6Li and 7Li can be
expected to be very small. Thus, by adding the nonrelativis-
tic isotope shifts to the best energy values of the 7Li (i.e., the
first four experimental, and the next five plus the 6Li+ en-
ergy of 43 486.55 cm−1 obtained from the refinement pro-
cedure) one can obtain very good estimates of the energy
levels for 6Li. These estimates are used in conjunction with
Eqs. (4)–(6) to obtain parameters for Models 1–3, which, in
turn, are used to predict the energy levels of the 6Li 2D1s2nd
Rydberg series for n = 12, . . . , 30. This has been done and
the following extrapolants have been generated:

Model 1 : E(n) = 43 486.55 − 109 751

(n − 0.001 153 02)2
,

(10)

Model 2 : E(n) = 43 486.55 − 109 677

(n − 0.001 033 06)2

− 1080.17

(n + 1.908 09)3
, (11)
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TABLE IV. The energies (in cm−1) of the Rydberg 1s2nd, n = 3, . . . , 30, states for 6Li and 7Li obtained from the three quantum-defect-like formulas (Models
1–3) discussed in the text. The energies are relative to the 2S 1s22s ground states of the respective isotopes. The “fitted data” are the points used to obtained the
quantum-defect extrapolation formulas (see text). For 7Li the first four (n = 3, . . . , 6) energies of the fitted data are the experimental energies and the next five
(n = 7, . . . , 11) are energies obtained by adding 2.58 cm−1 to the nonrelativistic energies from in Table III. For 6Li the fitted data are obtained by adding the
calculated isotope shifts to the 7Li data.

7Li 6Li

n Model 1 Model 2 Model 3 Data Model 1 Model 2 Model 3 Data

3 31 283.09 31 283.07 31 283.14 31 283.10 31 282.62 31 282.68 31 282.70 31 282.66
4 36 623.69 36 623.47 36 623.52 36 623.38 36 623.16 36 622.96 36 623.00 36 622.88
5 39 095.04 39 094.92 39 094.94 39 094.94 39 094.48 39 094.38 39 094.39 39 094.38
6 40 437.31 40 437.28 40 437.30 40 437.32 40 436.74 40 436.73 40 436.73 40 436.75
7 41 246.57 41 246.62 41 246.62 41 246.63 41 246.00 41 246.06 41 246.05 41 246.06
8 41 771.78 41 771.86 41 771.87 41 771.87 41 771.20 41 771.29 41 771.29 41 771.29
9 42 131.84 42 131.95 42 131.96 42 131.94 42 131.25 42 131.37 42 131.38 42 131.35
10 42 389.38 42 389.50 42 389.52 42 389.49 42 388.79 42 388.91 42 388.93 42 388.90
11 42 579.92 42 580.04 42 580.07 42 580.04 42 579.33 42 579.46 42 579.48 42 579.45
12 42 724.84 42 724.96 42 724.99 42 724.24 42 724.37 42 724.41
13 42 837.61 42 837.74 42 837.78 42 837.02 42 837.14 42 837.19
14 42 927.10 42 927.21 42 927.26 42 926.50 42 926.62 42 926.67
15 42 999.29 42 999.40 42 999.45 42 998.69 42 998.81 42 998.86
16 43 058.37 43 058.47 43 058.53 43 057.77 43 057.88 43 057.94
17 43 107.33 43 107.43 43 107.50 43 106.74 43 106.84 43 106.90
18 43 148.37 43 148.46 43 148.53 43 147.77 43 147.86 43 147.93
19 43 183.09 43 183.18 43 183.25 43 182.49 43 182.58 43 182.65
20 43 212.74 43 212.82 43 212.89 43 212.14 43 212.23 43 212.30
21 43 238.25 43 238.33 43 238.40 43 237.65 43 237.73 43 237.81
22 43 260.37 43 260.44 43 260.51 43 259.77 43 259.84 43259.92
23 43 279.66 43 279.72 43 279.80 43279.06 43 279.13 43 279.21
24 43 296.59 43 296.65 43 296.73 43 295.99 43 296.06 43 296.14
25 43 311.53 43 311.59 43 311.67 43 310.93 43 311.00 43 311.07
26 43 324.78 43 324.83 43 324.92 43 324.18 43 324.24 43 324.32
27 43 336.59 43 336.64 43 336.72 43 335.99 43 336.05 43 336.12
28 43 347.15 43 347.20 43 347.28 43 346.55 43 346.61 43 346.68
29 43 356.64 43 356.68 43 356.77 43 356.04 43 356.09 43 356.17
30 43 365.19 43 365.24 43 365.32 43 364.60 43 364.65 43 364.72
∞ 43 487.15 43 487.15 43 487.15 43 487.15 43 486.55 43 486.55 43 486.55 43 486.55

Max. error 0.2959 0.0753 0.1307 0.2763 0.0776 0.1214
RMS error 0.1288 0.0296 0.0483 0.1247 0.0289 0.0469
Mean abs. error 0.1006 0.0200 0.0313 0.1032 0.0185 0.0332

and

Model 3 :

E(n) = 43 486.55

− 109 801

(n − 0.000 681 077 + 2.460 71 × 10−5n2)2
.

(12)

The energies of the 6Li energy levels obtained using (10)–(12)
are given in Table IV.

Naturally, the model with the largest number of free pa-
rameters (Model 2) provides the best fit to the original data
(energies of the n = 3, . . . , 11 states) in Table IV. The dis-
crepancy between the energies of n = 12, . . . , 30 states pre-
dicted with the different models does not exceed 0.1–0.2
cm−1. The accuracy of the present predictions can also be
evaluated by comparing the experimental values of the low-
est four 2D1s2nd states of 6Li with the measured quantities
from Ref. 7. For example, for the lowest state, the values pre-

dicted by Models 1, 2, and 3 are 31 282.62, 31 282.68, and
31 282.70 cm−1, respectively, while the measured value is
31 282.6243 cm−1 (this value is an average of two doublet
lines). For the fourth state the corresponding predicted val-
ues are 40 436.74, 40 436.73, and 40 436.73 cm−1 from Mod-
els 1, 2, and 3, respectively, while the experimental value is
40 436.633 cm−1. This seems to indicate that the accuracy of
the present prediction is of the order of 0.1–0.2 cm−1. We
believe that such accuracy is sufficient for the present predic-
tions to be useful in guiding the experimental measurements
of yet unmeasured 2D energy levels of 6Li and 7Li.

IV. SUMMARY

An approach which combines high-accuracy quantum
mechanical calculations, the experimental data, and the
quantum-defect extrapolation formulas has been employed to
predict the energies of 2D 1s2nd Rydberg states of the 6Li
and 7Li isotops. The calculations have been performed with
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all-electron explicitly correlated Gaussian functions, whose
nonlinear parameters have been extensively optimized using a
method involving analytically calculated energy gradient. The
predictions concern the states with n = 12, . . . , 30. The pre-
dicted energy values can guide experimental measurements of
these quantities.
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