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Benchmark variational calculations are performed for the six lowest states of the 1Po 1s22snp state
series of the 9Be atom. The wave functions of the states are expanded in terms of all-particle, explic-
itly correlated Gaussian basis functions and the effect of the finite nuclear mass is directly included in
the calculations. The exponential parameters of the Gaussians are variationally optimized using the
analytical energy gradient determined with respect to those parameters. Besides providing reference
non-relativistic energies for the considered states, the calculations also allow to assess the accuracy
of the experimental energies of the 1Po 1s22s6p and 1s22s7p states and suggest their refinement.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4742764]

I. INTRODUCTION

The NIST Atomic Spectra Database1 lists twelve 1Po

states of the beryllium atom. These states correspond to the
Rydberg electron configurations 1s22snp, where n = 2, 3, . . . ,
13. An examination of the energies of these states relative to
the ground 1S 1s22s2 state reveals that higher states in this se-
ries have been measured much less precisely than the lower
lying states. For example, while for the lowest five states the
relative energies with respect to the ground 2S 1s22s1 state
are reported with the precision of two significant digits after
the decimal point (in wavenumbers), for the higher states they
are reported with only one significant digit after the point and
they are placed in parenthesis indicating that some additional
issues may be involved in the reported values. In our previous
work2 we performed calculations of the four lowest members
of the 1Po 1s22snp series using all-electron explicitly corre-
lated Gaussian (ECG) functions. Up to 5000 functions have
been used for each state. In the present work we increased
the number of basis functions and we have included in the
calculations two additional states in the series, the 1s22s6p
and 1s22s7p states. The calculations not only provided more
accurate energies of the studied states, but also allow for as-
sessing the accuracy of the experimental energies of the two
highest states in the series and for suggesting their refine-
ment. Thus the present work is an example of theoretical
calculations assuming a predictive role vis-a-vis the experi-
ment. This happens despite the experimental measurements
of the spectra of small atomic systems being usually very
accurate.

Improving the accuracy of quantum mechanical calcula-
tions of ground and excited states of small atoms has always
provided motivation for the development of new, more ac-
curate calculation techniques. As the experimental measure-
ments of the atomic energy levels keep getting better, it is
important to continue improving the calculations to match

the progress on the experimental side. Much of the modern
atomic and molecular spectroscopic data obtained in the mea-
surements has a resolution that exceeds 0.01–0.001 cm−1 or
even better. However, as the level of the electronic excitation
increases, the accuracy of the experiment decreases due to
the decreasing intensity of the spectral lines. Thus, for highly
excited atomic states the theoretical calculations can provide
valuable assistance to experiment. An example of that is pre-
sented in this work.

As the number of electrons in the studied atomic system
increases the level of difficulty involved in performing very
precise calculations on the system also increases. As these
types of calculations involve basis functions which depend on
the coordinates of all electrons of the system, as well as on the
distances between them, one needs to deal with multidimen-
sional integrals involved in calculating the Hamiltonian and
overlap matrix elements. The calculation of these matrix ele-
ments requires large amount of the computational work which
grows as n3 × n!, where n is the number of electrons in the
atom.

Very accurate atomic calculations require that the cou-
pled (correlated) motion of the electrons is very well de-
scribed by the wave function used in the calculations. Among
the methods which are capable to very effectively describe
the electron correlation effects, the so called explicitly corre-
lated approaches have been particularly successful. In those
approaches the wave function is expanded in terms of ba-
sis functions that explicitly depend on the distances between
the electrons, as well as on the nucleus–electron distances.
When these types of basis functions are used in conjunc-
tion with the Rayleigh-Ritz variational method and their lin-
ear and nonlinear parameters are extensively optimized, the
ground and excited states of atoms can be described with
very high accuracy. However, such an optimization usually re-
quires large computational effort. For two- and three-electron
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atomic systems, such as the helium and lithium atoms, the
explicitly correlated Hylleraas-type basis functions have pro-
vided the highest accuracy level in the calculations.3–6 The
wave functions constructed from Hylleraas-type functions can
satisfy the Kato cusp conditions,7 which is a desirable fea-
ture in very accurate calculations. Unfortunately, the appli-
cability of Hylleraas-type basis functions is limited to atoms
with no more than three electrons due to unresolved issues
in calculating the Hamiltonian matrix elements (at least for
the general form of the basis functions). Thus in the calcu-
lations of atoms with more than three electrons one needs
to use alternative explicitly correlated basis functions, which
are capable of effectively describing the electron correla-
tion effects and at the same time sufficiently simple to al-
low analytic evaluation and fast computing of the Hamil-
tonian matrix elements. The only known type of functions
which satisfy these criteria are all-electron ECG functions.
They have been applied in the recent high-accuracy cal-
culations of the Be atom and other four-electron atomic
systems.8–12 Very high accuracy was also recently achieved in
the ECG calculations of low-lying S and P states of the boron
atom.13

In this work we continue to study the spectrum of the
beryllium atom and consider higher excited Rydberg 1Po

states of this system. The wave functions of the states are
expanded in terms of ECGs. The ECG basis set for each
state is generated independently in a process involving in-
cremental addition of small groups of functions to the basis
and optimizing their nonlinear parameters. The key compo-
nent of this optimization is the use of the analytical energy
gradient determined with respect to the Gaussian nonlinear
parameters.

II. METHOD

The standard non-relativistic atomic quantum-
mechanical calculations are usually performed with infinite
nuclear mass (INM). However in calculations where very
high accuracy is desired, the energy needs to include the
effect of the finite mass of nucleus. Thus the Hamiltonian
used in the calculations needs to explicitly depend on the
nuclear mass. Such a Hamiltonian, called here the internal
Hamiltonian, is obtained from the laboratory-frame non-
relativistic Hamiltonian by rigorously separating out the the
center-of-mass motion. Such separation can be done by using
a coordinate transformation from the laboratory Cartesian
coordinated (LCC) system to a new coordinate system which
comprises three coordinates of the center of mass in the LCC
system and 3n internal Cartesian coordinates, where n is the
number of the electrons. The internal coordinates describe
the positions of the electrons with respect to the nucleus.
By transforming the laboratory-frame Hamiltonian of the
atom to the new coordinate system the separation of the
operator representing the kinetic energy of the center-of-mass
motion from the so-called internal Hamiltonian is achieved
(for details see Ref. 14): The internal Hamiltonian has the

following form:
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where ri is the distance between the ith electron and the nu-
cleus, m0 is the nucleus mass (m0(9Be) = 16 424.2037me,
where me the electron mass), q0 is its charge, qi are elec-
tron charges, and μi = m0mi/(m0 + mi) are electron re-
duced masses. The Hamiltonian (2) describes the motion of
n (pseudo)electrons, whose masses are the reduced masses, in
the central field of the nuclear charge. We use the term pseu-
doelectrons because their masses are not the electron masses
but the reduced masses. The motion of the pseudoelectrons is
coupled through the Coulombic interactions between them,∑n

i>j=1
qiqj

rij
, where rij = |rj − ri |, as well as through the

mass polarization term, − 1
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. By set-

ting the mass of the nucleus to infinity in (2) the energy of
the atom corresponding to the conventional calculations that
assume the INM approximation can be determined.

In this work we consider the Rydberg series of the seven
lowest 1Po states of the beryllium atom. In the orbital approx-
imation these states involve three electrons being in s states
and one in a p state resulting in the 1s22snp configuration. To
effectively describe such a configuration with ECGs the fol-
lowing functions need be included in the basis set:15

φk = zik exp[−r′(Ak ⊗ I3)r], (2)

where electron label ik can vary from 1 to n. Ak in (2) is an
n × n symmetric matrix, ⊗ is the Kronecker product, I3 is a
3 × 3 identity matrix, and r is a 3n vector that has the form:
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As the basis functions (2) are used in expanding wave
functions of bound states, they have to be square integrable.
This mandates that the Ak matrix is positive definite. This can
be easily achieved by using the following Cholesky factored
form of Ak:

Ak = LkL
′
k, (4)

where Lk is a lower triangular matrix. In practice, the elements
of the Lk matrices and not the elements of the Ak matrices are
the parameters which are optimized in our calculations. As Ak

is positive definite regardless what the values of the elements
of the Lk matrices are, the optimization of these elements can
be performed without any restrictions (i.e., by using an un-
constrained optimization). It should be noted that the LkL

′
k

representation of Ak matrix does not limit the flexibility of
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basis functions, because any symmetric positive definite ma-
trix can be represented in a Cholesky factored form.

The required antisymmetry of the wave function is im-
plemented through appropriate symmetry projections applied
to each basis function. As the so-called spin-free formalism
is used in this work, the spatial symmetry projections need
to be constructed. This is done using the Young projection
operators, Ŷ , which are linear combinations of permutational
operators, P̂γ . Since the Hamiltonian is invariant with respect
to all permutations of the electrons, in calculating the over-
lap and Hamiltonian matrix elements the permutational oper-
ators are applied only to the ket (or the bra). More specifically,
the ket basis functions in those matrix elements are operated
on with the permutation operator Ŷ †Ŷ (the dagger stands for
conjugate), where the Ŷ operator is derived using the appro-
priate Young tableaux for the state under consideration (for
details of the formalism see, for example, Ref. 16). For the
single states of beryllium the Young operator can be chosen as
Ŷ = (1̂ − P̂24)(1̂ − P̂35)(1̂ + P̂23)(1̂ + P̂45), where the nucleus
is labeled as particle 1, and the electrons are labeled as par-
ticles 2, . . . 6, 1̂ is the identity operator, and P̂ij is the per-
mutation operator of the spatial coordinates of the ith and jth
electrons. As there is 24 possible different permutations of
four electrons, each Hamiltonian and overlap matrix element
is a sum of 24 different integrals.

III. RESULTS AND DISCUSSION
Each of the six states of the 1Po series of the beryllium

atom considered in this work has been calculated indepen-
dently. The generation and the optimization of the ECG basis
set for each state has been performed for the 9Be isotope and
then the basis was used to also calculate the energy levels of
∞Be, i.e., the beryllium atom with infinite nuclear mass. The
∞Be states have been calculated because they can be com-
pared with the results obtained in conventional calculations
that involve the INM approximation. As the calculations are
performed independently for each of the six states, an issue
may arise whether the wave functions of the states are strictly
orthogonal and whether the potential lack of the orthogonal-
ity affects the accuracy of the calculations. We dealt with this
issue before14 and determined that the approach introduces
no inaccuracy in the calculations. Besides, the energies re-
ported in this work are obtained from full diagonalization of
the Hamiltonian, and thus, at least within the basis obtained
for a particular state, the wave function of that state is or-
thogonal to the wave functions of other states obtained in the
calculations.

The present calculations have been performed using the
Rayleigh-Ritz variational scheme. In the variational energy
minimization, the matrix elements of the Lk matrices of the
basis functions have been optimized. Generating the basis set
for a particular state was initiated with a small, randomly cho-
sen set of functions and involved incremental addition of new
functions and variationally optimizing them with an approach
employing the analytic energy gradient. The new functions
were added to the basis set one by one with Lk parameters
chosen as a best guess out of several hundred candidates. The
parameters of the candidate functions were generated based

on the parameters of the functions already included in the set.
After a new function was selected, its ik electron number in-
dex and the Lk parameters were optimized. Next the function
was checked for any linear dependency with the functions al-
ready included in the basis set and, if such linear dependency
appeared, the function was rejected and replaced by a new
function. This new function was then subject to optimization.
After a certain number of new functions (usually a hundred)
were added to the basis set, the whole set was reoptimized by
cycling over all functions one by one and reoptimizing their
Lk parameters. After the parameters of a function were reop-
timized, the function was again checked for any linear depen-
dency with all other functions in the set and its parameters
were reset to their original values if the linear dependency
within a certain predefined threshold occurred. The cyclic op-
timization of all functions was repeated several times. The
process of basis set growing continued until satisfactory con-
vergence was reached for each state. The convergence thresh-
old was set to be about 0.01 cm−1 for the transition energy
determined with respect to the ground 1S (1s22s2) state.

The convergence of the total energies of the the six states
of 9Be considered in the calculations with the number of the
ECG basis functions is presented in Table I. The energy val-
ues are given for basis set sizes changing in increments of 300
starting from 5000. Upon examining the energies one notices
that the convergence slows down as the excitation level in-
creases. This is why the calculations for the lowest 1s22s2p
state were stopped after reaching the basis set size of 7400,
but continued to 10 400 for the highest 1s22s7p. The energies
obtained for ∞Be are also shown in the table.

Using the total energies of the states from Table I we
calculated the corresponding transition energies with respect
to the ground 1S (1s22s2) state. These transition energies ob-
tained for basis sets with different sizes and their comparison
with the experimental transition energies taken from Ref. 1
are shown in Table II. As one can see by examining the con-
vergence of the calculated energies in the table, the target con-
vergence of 0.01 cm−1 was reached for all states except per-
haps for the last one (the 1s22s7p state).

The difference between the experimental and the calcu-
lated relative energies shown in Table II is due to not in-
cluding in the calculation the relativistic (REL) and quantum
electrodynamics (QED) effects. Also one should also note
that the experimental energies reported in Ref. 1 for the 1Po

states of 9Be are more accurate for the first five states than
for the sixth state. Similar trend is also observed for other
atoms. For example, for the lithium atom only first few en-
ergies in the 2D Rydberg series are provided with the accu-
racy of 0.01 cm−1 and, as the excitation level increases, the
reported energies become increasingly more inaccurate. We
have performed very accurate non-relativistic finite-mass cal-
culations of the 2D series of lithium states and we showed that
the calculated energies can be used to refine the experimen-
tal values for some higher states. The refinement was based
on the realization that the REL+QED correction to the state
energy becomes constant as the excitation level increases.17

This makes it possible to very accurately estimate the ener-
gies of the states corresponding to those higher level excita-
tions by adding this constant, whose value can be very well
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TABLE I. The convergence of the total non-relativistic energies for the lowest 1P states of 9Be with the number of ECGs in the basis set. The energies of ∞Be
shown at the bottom of the table were calculated with the largest number of ECGs generated for the corresponding states of 9Be. All values are in hartrees.

Basis 1s22s2p 1s22s3p 1s22s4p 1s22s5p 1s22s6p 1s22s7p

9Be 5000 −14.472 543 663 −14.392 242 763 −14.361 037 654 −14.346 975 658 −14.339 569 447 −14.335 213 783
5300 −14.472 543 679 −14.392 242 782 −14.361 037 682 −14.346 975 689 −14.339 569 509 −14.335 213 960
5600 −14.472 543 691 −14.392 242 796 −14.361 037 700 −14.346 975 712 −14.339 569 560 −14.335 214 123
5900 −14.472 543 700 −14.392 242 809 −14.361 037 714 −14.346 975 731 −14.339 569 612 −14.335 214 251
6200 −14.472 543 708 −14.392 242 818 −14.361 037 725 −14.346 975 747 −14.339 569 651 −14.335 214 378
6500 −14.472 543 715 −14.392 242 828 −14.361 037 735 −14.346 975 760 −14.339 569 682 −14.335 214 496
6800 −14.472 543 722 −14.392 242 835 −14.361 037 740 −14.346 975 770 −14.339 569 706 −14.335 214 637
7100 −14.472 543 726 −14.392 242 840 −14.361 037 749 −14.346 975 780 −14.339 569 726 −14.335 214 745
7400 −14.472 543 730 −14.392 242 845 −14.361 037 754 −14.346 975 788 −14.339 569 743 −14.335 214 841
7700 . . . −14.392 242 850 −14.361 037 758 −14.346 975 795 −14.339 569 758 −14.335 214 923
8000 . . . . . . −14.361 037 758 −14.346 975 801 −14.339 569 771 −14.335 214 996
8300 . . . . . . −14.361 037 765 −14.346 975 807 −14.339 569 782 −14.335 215 058
8600 . . . . . . −14.361 037 768 −14.346 975 812 −14.339 569 793 −14.335 215 104
8900 . . . . . . −14.361 037 770 −14.346 975 816 −14.339 569 802 −14.335 215 152
9200 . . . . . . . . . . . . −14.339 569 809 −14.335 215 192
9500 . . . . . . . . . . . . −14.339 569 820 −14.335 215 230
9800 . . . . . . . . . . . . . . . −14.335 215 259

10100 . . . . . . . . . . . . . . . −14.335 215 290
10400 . . . . . . . . . . . . . . . −14.335 215 315

∞Be −14.473 451 358 −14.393 143 504 −14.361 938 370 −14.347 876 248 −14.340 470 090 −14.336 115 462

established if very accurate experimental energies are known
for a sufficient number of lower lying states in the series, to
the non-relativistic energy obtained from the calculations. Us-
ing this approach the experimental energies of several high-
lying states in the 2D Rydberg series of lithium were refined in
Ref. 17. In this work we apply the procedure to the 1Po states
of beryllium.

The first step of the procedure is to examine the
convergence of the difference between the experimental
and calculated non-relativistic (exp-calc) energies for the
considered states. This can be done using the results in
Table III. These results show the differences and how they
converge with the number of ECGs used in the calculations.
The following observations can be made upon examining the

TABLE II. The convergence of the relative non-relativistic energies of the lowest six 1P (1s22snp) states of 9Be
determined with respect to the ground 1S (1s22s2) state (Eg.s. = −14.666 435 504 36 hartee 11). All values are
in cm−1.

Basis 1s22s2p 1s22s3p 1s22s4p 1s22s5p 1s22s6p 1s22s7p 1s22s∞p

5000 42 554.34 60 178.35 67 027.08 70 113.33 71 738.81 72 694.77
5300 42 554.34 60 178.35 67 027.07 70 113.33 71 738.79 72 694.73
5600 42 554.33 60 178.34 67 027.07 70 113.32 71 738.78 72 694.69
5900 42 554.33 60 178.34 67 027.07 70 113.32 71 738.77 72 694.66
6200 42 554.33 60 178.34 67 027.06 70 113.31 71 738.76 72 694.63
6500 42 554.33 60 178.34 67 027.06 70 113.31 71 738.76 72 694.61
6800 42 554.33 60 178.34 67 027.06 70 113.31 71 738.75 72 694.58
7100 42 554.33 60 178.33 67 027.06 70 113.31 71 738.75 72 694.55
7400 42 554.33 60 178.33 67 027.06 70 113.30 71 738.74 72 694.53
7700 60 178.33 67 027.06 70 113.30 71 738.74 72 694.52
8000 67 027.06 70 113.30 71 738.74 72 694.50
8300 67 027.06 70 113.30 71 738.73 72 694.49
8600 67 027.06 70 113.30 71 738.73 72 694.48
8900 67 027.06 70 113.30 71 738.73 72 694.46
9200 71 738.73 72 694.46
9500 71 738.73 72 694.45
9800 72 694.44
10100 72 694.43
10400 72 694.43

Experiment1 42 565.35 60 187.34 67 034.70 70 120.49 71 746.09 72 701.8 75 192.64
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TABLE III. The convergence of the difference between the experimental and calculated non-relativistic energies
of the lowest six 1P (1s22snp) states of 9Be determined with respect to the ground 1S (1s22s2) state. All values
are in cm−1.

Basis 1s22s2p 1s22s3p 1s22s4p 1s22s5p 1s22s6p 1s22s7p 1s22s∞p

5000 11.01 8.99 7.62 7.16 (7.28) (7.03)
5300 11.01 8.99 7.63 7.16 (7.30) (7.07)
5600 11.02 9.00 7.63 7.17 (7.31) (7.11)
5900 11.02 9.00 7.63 7.17 (7.32) (7.14)
6200 11.02 9.00 7.64 7.18 (7.33) (7.17)
6500 11.02 9.00 7.64 7.18 (7.33) (7.19)
6800 11.02 9.00 7.64 7.18 (7.34) (7.22)
7100 11.02 9.01 7.64 7.18 (7.34) (7.25)
7400 11.02 9.01 7.64 7.19 (7.35) (7.27)
7700 9.01 7.64 7.19 (7.35) (7.28)
8000 7.64 7.19 (7.35) (7.30)
8300 7.64 7.19 (7.36) (7.31)
8600 7.64 7.19 (7.36) (7.32)
8900 7.64 7.19 (7.36) (7.34)
9200 (7.36) (7.34)
9500 (7.36) (7.35)
9800 (7.36)
10100 (7.37)
10400 (7.37)
Refs. 11 and 18 6.77

data:

� The exp-calc difference is the highest for lowest
1s22s2p state in the series (11.02 cm−1) and it de-
creases to 9.00 cm−1 for the 1s22s3p state, 7.64 cm−1

for the 1s22s4p state, and 7.19 cm−1 for the 1s22s5p
state. The limit for this decreasing series can be very
accurately determined because it is equal to excit-
ing the atom to the 1s22s∞p state, which is equiv-
alent to removing the electron from the atom. Thus,
the exp-calc difference in this case can be determined
by subtracting the experimental and calculated en-
ergies obtained for 9Be+. This yields the value of
6.77 cm−1.11, 18

� In the calculations of the 7Li 2S, 2Po, and 2D Rydberg
series the exp-calc energy difference within each se-
ries monotonically converged to the exp-calc energy
difference for 7Li+.17, 19, 20 It is reasonable to assume
that a similar trend should also be observed for the 1Po

1s22snp Rydberg series of 9Be. If this is the case and if
we assume that the experimental energies of the four
lowest states in the series, i.e., the 1s22snp, n = 2,
. . . , 5, states, are accurate within the reported num-
ber of significant digits, the experimental energy of the
next state in the series, the 1s22s6p state, reported as
71 746.09 cm−1, is, in our view, likely to be some-
what off from the true value. This is because when
this energy value is used in calculating the exp-calc
energy difference for this state, one gets the value of
7.35 cm−1 while any reasonable interpolation (see be-
low) of the 11.02, 9.01, 7.64, 7.19, and 6.77 cm−1 exp-
calc energy differences corresponding to the 1s22snp,
n = 2, . . . , 5, and 1s22s∞p states gives a value below
7 cm−1.

� If f(n), the interpolant which gives an estimate of the
exp-calc energy difference (in cm−1) for a particular
value of the quantum number n (assuming notation
1s22snp) is chosen in the form of an exponent, then
the following expression can be obtained:

f (n) = 6.77 + 4.25 exp [−0.771(n − 1)] . (5)

Its values at n = 5 and 6 are 6.96 and 6.86 cm−1,
respectively. When added to the calculated state en-
ergies of 71 738.73 and 72 694.43 cm−1 they allow
one to estimate what the experimental energies of the
two states should be. The obtained values, 71 745.69
and 72 701.29 cm−1, respectively, are nearly 0.5 cm−1

smaller than the energies reported in Ref. 1. It should
be noted that this difference may vary somewhat de-
pending on the choice of the interpolant’s functional
form. The variation, however, rarely exceeds 0.01–
0.05 cm−1 (or 2–10% in relative terms).

IV. SUMMARY

The lowest six Rydberg 1Po states of the beryllium atom,
9Be, are investigated with non-relativistic finite-nuclear-mass
variational calculations which employ all-electron explicitly
correlated Gaussian functions. The ECG basis set for each
state is generated independently by incrementally increasing
the number of functions and by optimizing their exponential
parameters with the use of an approach utilizing the analytical
energy gradient determined with respect to these parameters.
While 7400 ECGs is more than sufficient to converge the en-
ergy of the lowest 1s22s2p state with the accuracy higher than
0.01 cm−1, 10 400 ECGs it is still not quite enough to reach
this accuracy level for the highest 1s22s7p state in the se-
ries. When the calculated non-relativistic energies of the four
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lowest states in the series are compared with the experimental
ones reported in Ref. 1, one notices that the differences be-
come smaller and tend to monotonically converge to the dif-
ference between the experimental and the non-relativistic cal-
culated energy of the ground state of 9Be+. By approximating
this converging series with an exponential function and by us-
ing this function to estimate the exp-calc energy difference for
the two highest considered states in the series, i.e., the 1s22s6p
and 1s22s7p states, one gets values 6.96 and 6.86 cm−1, re-
spectively. These values added to the best calculated energies
provide energy estimates which we claim are more accurate
than the experimental energies reported in Ref. 1.

Besides the very well converged non-relativistic ener-
gies of the six lowest 1P states of 9Be, which can provide
a benchmark for future high-accuracy calculations of other
four-electron atomic systems, the present work also intro-
duces a refinement procedure for estimating the transition en-
ergies of high excited Rydberg states, which are usually mea-
sured not as accurately as the energies of the lowest states. If
the predicted refined values of the 1s22s6p and 1s22s7p states
of 9Be are confirmed experimentally, the procedure will be
applied to other atomic systems in our future works.
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