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In this article we report accurate nonrelativistic variational calculations of the ground and two ex-
cited states of C+ ion. We employ extended and well optimized basis sets of all-electron explicitly
correlated Gaussians to represent the wave functions of the states. The optimization of the basis
functions is performed with a procedure employing the analytic gradient of the energy with respect
to the nonlinear parameters of the Gaussians. The calculations explicitly include the effects due to
the finite nuclear mass. The calculated transition energies between the three states are compared to
the experimentally derived values. Finally, we present expectation values of some small positive and
negative powers of the interparticle distances and contact densities. © 2011 American Institute of
Physics. [doi:10.1063/1.3664900]

I. INTRODUCTION

Very accurate ab initio calculations of ground and ex-
cited states of small atoms serve an important purpose be-
cause they allow for direct and meaningful comparison be-
tween high-accuracy theoretical results and high-resolution
experimental data. Through such comparison the theoretical
models and techniques used in the calculations can be tested.
Also, in some cases such calculations, particularly those per-
formed on small atomic systems, can yield results that are
more accurate than the available experimental data and thus
can guide future remeasurement of these quantities. For ex-
ample, we have recently investigated the Rydberg series of
2D states of the lithium atom in very accurate calculations
carried out with explicitly correlated Gaussian functions.1, 2

A total of nine states were computed. For the upper states
the results obtained in the calculations enabled some re-
finement of the experimentally determined energies of those
states.

The variational approach employing the explicitly corre-
lated Gaussians for describing ground and excited states of
small atoms is currently the only method that has been shown
to be capable of delivering energies of these types of states
with absolute accuracy of 10−7–10−8 hartree for systems with
more than three electrons. An important feature of the method
that enables achieving the high accuracy is the use of the ana-
lytic gradient of the energy in the variational optimizations of
the exponential parameters of the Gaussians. In this work we
assess what level of the energy convergence can be achieved
with the method in calculations of ground and some lowest
excited states of a five-electron system – the singly ionized
carbon atom. Our effort is aimed to extend the very accu-
rate atomic calculations beyond four-electron systems and to
show that even larger systems can be tackled with similar
accuracy as what is now possible for small atoms (i.e., sub
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0.01 cm−1 accuracy) provided sufficient computer power be-
comes available.

The present calculations concern the ground 1s22s22p
state of C+, as well as its 1s22s23p and 1s22s23s exited states.
This is the first time these states are calculated with high
accuracy.

The details of the algorithms for gradient-aided optimiza-
tion were described in our previous works.3, 4 All calculations
have been made using a non-relativistic Hamiltonian corre-
sponding to the internal motion, Ĥint, that explicitly depends
on the mass of the nucleus. This Hamiltonian is obtained by
rigorously separating the kinetic energy of the center-of-mass
motion from the laboratory frame Hamiltonian. It has the fol-
lowing form in atomic units:
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where n is the number of electrons, ri is the distance be-
tween the ith electron and the nucleus, m0 is the nucleus mass
(21 868.66382 me, 23 697.66779 me, and 25 520.35057 me

for the 12C+, 13C+, and 14C+ isotopes, respectively, where
me = 1 is the electron mass), q0 is its charge, qi are elec-
tron charges, and μi = m0mi/(m0 + mi) are electron reduced
masses (mi = me, i = 1, . . . , n). Prime indicates the ma-
trix/vector transpose.

As Ĥint is explicitly dependent on the mass of the nu-
cleus, it allows for direct calculation of energy levels of a
particular isotope. It also allows infinite-nuclear-mass (INM)
calculations by setting the mass of the nucleus in Eq. (1) to
infinity. The purpose of performing INM calculations is to
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generate results which can be directly compared with liter-
ature data, which is usually obtained for an infinite nuclear
mass.

II. METHOD

In this work we consider two types of states, the 2S and 2P
states. Appropriate explicitly correlated Gaussian basis sets
for calculations of such states are as follows:3, 4

φk = exp[−r′ (Ak ⊗ I3) r], (2)

φk = zik exp[−r′ (Ak ⊗ I3) r], (3)

for the S and P states, respectively. In (3) the electron index,
ik, can range from 1 to n, Ak is an n × n symmetric matrix, ⊗
is the Kronecker product, I3 is a 3 × 3 identity matrix, and r
is a 3n-component vector of the electron coordinates.

Gaussians (2) and (3) have to be square integrable. This
happens when the matrix Ak is positive definite. To assure
that we use the following Cholesky factored form of Ak:
Ak = LkL

′
k , where Lk is a lower triangular matrix with ma-

trix elements ranging from ∞ to −∞. Ak in such a form is
automatically positive definite. The advantage of using Lk and
not Ak as the matrix of the variational parameters is that the
minimization can then be carried out without any constraints
regarding their values. If the Ak elements were used as the
variational parameters, constrains would have to be imposed
to keep Ak positive definite. This would considerably ham-
pered the efficiency of the energy minimization.

To implement the correct permutational symmetry of the
wave function in the present calculations we used the spin-
free formalism. In this formalism, an appropriate symmetry
projector (the Young operator, which is a mixture of antisym-
metrizers and symmetrizers) is applied to the spatial part of
the wave function to impose certain symmetry properties. The
spin component of the wave function is not used explicitly.
The procedures for building such symmetry projectors are
well known and can be found in Ref. 5. For our case of a sys-
tem with five identical particles in a doublet state the Young
operator can be chosen as Ŷ = (1 − P̂13)(1 − P̂15 − P̂35)(1
− P̂24)(1 + P̂12)(1 + P̂34), where P̂ij denotes the permutation
of the spatial coordinates of the ith and jth electrons. As the
internal Hamiltonian (1) commutes with all electron permuta-
tions, in the calculation of the overlap and Hamiltonian matrix
elements it is convenient to apply Ŷ to the ket basis functions
only (as Ŷ †Ŷ , where Ŷ † is the adjoint of Ŷ ).

For the 2P states, where basis functions (3) are used, in
addition to the Lk parameters the optimization involves choos-
ing index ik (which can be considered as an integer variational
parameter) for each function. This is only done when the func-
tion is first added to the basis set.

The generation of the basis set for each state has been
performed separately and only for the 12C isotope. For other
isotopes, as well as for ∞C it is sufficient to adjust only the
linear coefficients of the basis functions to obtain an equally
accurate wave function (this is because the change of the
wave function is quite small when the mass of the nucleus
is changed). The generation of the basis is the most time con-

suming part of the calculations. The basis set for each state
has been grown from a small number of randomly chosen ba-
sis functions to the size of 5100 functions. This process in-
volved adding subsets of 10 functions one by one and mini-
mizing the total energy with respect to the parameters of the
basis functions using the analytic gradient. At this stage, the
ik indices of the Gaussians used for the 2P states were also
optimized. After the addition of each subset was completed,
the whole basis set was reoptimized by cycling over all func-
tions one by one and optimizing their parameters. After the
basis set size reached 5000, the number of optimization cy-
cles performed after each addition of 10 new basis functions
was increased from one to three.

Extensive optimization of the basis set may yield near lin-
early dependent basis functions. Most commonly these linear
dependencies occur between two basis functions. Linear de-
pendencies are undesirable because they may cause numerical
instabilities and lead to inaccuracies (or even to a complete
failure of the optimization procedure). The linear dependen-
cies in our calculations are automatically detected and elimi-
nated as necessary. This is done by checking the overlap of the
basis function, whose nonlinear variational parameters were
just optimized, with all other basis functions. If the overlap
exceeds a certain threshold (close to unity if the basis func-
tions are normalized) the parameters of the basis function are
reset to their original values.

III. RESULTS AND DISCUSSION

The calculations described in this work have involved
over one year of continuous computing on a multiproces-
sor system employing 16 to 24 cores. By far the most
time-consuming step has been the generation and variational
optimization of the basis sets. The energies of the three con-
sidered states obtained in the calculations are presented in
Table I. We show how they converge with the number of basis
functions. The estimated accuracies of our final energy values
determined using 5100 basis functions are shown in paren-
theses. These accuracy estimates are based on extrapolating
to the limit of an infinite basis size. It is interesting to note
that the estimated accuracy for the excited 2S state is roughly
twice lower than that for the ground 2P state, while in our
previous calculations on B atom we found that the energy of
the first excited 2S-state was approximately five times better
converged than the energy of the ground state. This order of
magnitude difference in the accuracy of the first excited 2S
states of C+ and B is not due to a lower quality of the C+

calculations. In fact, the basis set generation and optimization
for C+ and B were performed in an essentially identical man-
ner and required approximately the same amount of computer
time. The reason for a less tightly converged energy in the
case of C+ is the fact that the wave function of the lowest ex-
cited 2S state of this system is dominated by the (1s22s2p2)
configuration. This is different from the dominant configura-
tion of the lowest 2S state of B, which is (1s22s23s). Such
a configuration is easier to describe with the basis functions
(2) than the (1s22s2p2) configuration that results from a cou-
pling of two p-electrons to an S state. This explains the some-
what slower convergence of the calculations of the (1s22s2p2)
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TABLE I. Total nonrelativistic energies of the three states of singly ionized
carbon atom considered in this work. Values in parentheses in this and other
tables show the estimated remaining difference between our most accurate
results and the exact nonrelativistic limits.

Energy
State Isotope Basis size (a.u.)

2Po(1s22s22p) 12C 1000 −37.42904399
2000 −37.42914664
3000 −37.42916243
4000 −37.42916720
4500 −37.42916835
5100 −37.42916955(250)

13C 5100 −37.42930159
14C 5100 −37.42941435
∞C 5100 −37.43088049

2S(1s22s2p2) 12C 1000 −36.98992374
2000 −36.99014116
3000 −36.99017648
4000 −36.99018714
4500 −36.99018985
5100 −36.99019298(500)

13C 5100 −36.99032209
14C 5100 −36.99043234
∞C 5100 −36.99186591

2Po(1s22s23p) 12C 1000 −36.82884262
2000 −36.82898235
3000 −36.82900448
4000 −36.82901134
4500 −36.82901305
5100 −36.82901478(350)

13C 5100 −36.82914677
14C 5100 −36.82925949
∞C 5100 −36.83072508

state of 12C+ in terms of the number of basis functions.
The convergence could probably be improved if prefactors
in the form of dot-products r′

irj are included in some basis
functions.

The energies shown in Table I also include results for the
13C+ and 14C+ isotopes, as well as the ∞C+ results, obtained
with 5100 basis functions. Our variational upper bound for
the ground state energy of ∞C+, −37.43088049 hartree, can
be compared with the best literature value of −37.43073(4)
hartree obtained using the diffusion Monte Carlo method.6

The present work clearly achieves much higher accuracy.
The energy values taken from Table I have been used to

calculate the transition energies shown in Table II.
These energies are compared with the values derived

from the experimental data for 12C+.7 Let us first ex-
amine the lowest 2Po(1s22s22p) ← 2S(1s22s2p2) transi-
tion. Our best estimate for this transition is 96 344.64(50)
cm−1. From the experiment one obtains two values,
96 430.32 and 96 493.74 cm−1, which correspond to the
2P o

3/2(1s22s22p) ← 2S1/2(1s22s2p2) and 2P o
1/2(1s22s22p)

← 2S1/2(1s22s2p2) transitions, respectively. As our calcula-
tions do not include relativistic effects and, in particular, the
spin–orbit interaction, we do not distinguish between the two
transitions. The difference between our nonrelativistic transi-
tion energy, which, as can be seen, is a rather well converged

TABLE II. Nonrelativistic transition energies for C+ ion compared with the
corresponding experimental values.7 The experimental data is for the 12C iso-
tope. Due to substantial fine-structure splitting the transition energies derived
from experiment vary depending on the total angular momentum number J.
In this table we give the smallest and the largest possible transition energy.

�E

Transition Isotope Basis (cm−1)

2Po(1s22s22p) ← 2S(1s22s2p2) 12C 1000 96 375.75
2000 96 350.56
3000 96 346.28
4000 96 344.99
4500 96 344.64
5100 96 344.22(50)

13C 5100 96 344.87(50)
14C 5100 96 345.41(50)
∞C 5100 96 352.56(50)

2P o
3/2(1s22s22p) ← 2S1/2(1s22s2p2) expt. 96 430.32

2P o
1/2(1s22s22p) ← 2S1/2(1s22s2p2) expt. 96 493.74

2Po(1s22s22p) ← 2Po(1s22s23p) 12C 1000 13 1728.98
2000 13 1720.83
3000 13 1719.45
4000 13 1718.99
4500 13 1718.86
5100 13 1718.75(20)

13C 5100 13 1718.76(20)
14C 5100 13 1718.77(20)
∞C 5100 13 1718.89(20)

2P o
3/2(1s22s22p) ← 2P

o

1/2(1s22s23p) expt. 13 1660.95
2P o

1/2(1s22s22p) ← 2P
o

3/2(1s22s23p) expt. 13 1735.52

2S(1s22s2p2) ← 2Po(1s22s23p) 12C 1000 35 353.22
2000 35 370.27
3000 35 373.17
4000 35 374.00
4500 35 374.22
5100 35 374.53(50)

13C 5100 35 373.89(50)
14C 5100 35 373.35(50)
∞C 5100 35 366.33(50)

2S1/2(1s22s2p2) ← 2P
o

1/2(1s22s23p) expt. 35 230.63
2S1/2(1s22s2p2) ← 2P

o

3/2(1s22s23p) expt. 35 241.78

quantity, and the experimental energies clearly shows the im-
portance of the relativistic effects whose magnitude exceeds
100 cm−1. For the other two transitions shown in Table II the
importance of the relativistic effects is similar.

Finally, in Table III we show expectation values of some
low positive and negative powers of the nucleus–electron
and electron–electron distances, as well as nucleus–electron
and electron–electron contact densities. As one can see,
with the increasing level of the electron excitation the aver-
age nucleus–electron and electron–electron distances become
larger. Also, as expected, upon increasing the number of p
electrons in the dominant configuration in the wave function,
the 〈δ(rne)〉 average value decreases, as those electrons have
nodes at the nucleus. The higher value of 〈δ(rne)〉 for the ex-
cited 2Po(1s22s23p) state than for the ground 2Po(1s22s22p)
state likely results from a contraction of the core electrons
(1s22s2) as the valence p electron becomes more excited and
diffuse.
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TABLE III. Expectation values of various powers of interparticle distances and Dirac δ-functions. All values are in a.u.

State Isotope Basis 〈1/r2
ne〉 〈1/r2

ee〉 〈1/rne〉 〈1/ree〉 〈rne〉 〈ree〉 〈r2
ne〉 〈r2

ee〉 〈δ(rne)〉 〈δ(ree)〉
2Po(1s22s22p) 12C 1000 27.803431 2.7590853 2.83130611 1.00811079 0.98450347 1.62068501 1.5854653 3.4244656 25.5973 0.67165

2000 27.803730 2.7589262 2.83130741 1.00809257 0.98453538 1.62076834 1.5856989 3.4249711 25.6317 0.67032
3000 27.803781 2.7588990 2.83130727 1.00808915 0.98454123 1.62078324 1.5857398 3.4250598 25.6471 0.67010
4000 27.803794 2.7588883 2.83130716 1.00808807 0.98454306 1.62078799 1.5857531 3.4250887 25.6485 0.66982
4500 27.803798 2.7588855 2.83130714 1.00808778 0.98454354 1.62078921 1.5857565 3.4250961 25.6487 0.66978
5100 27.803801 2.7588833 2.83130715 1.00808756 0.98454381 1.62079004 1.5857586 3.4251006 25.6490 0.66972

13C 5100 27.804000 2.7588994 2.83131689 1.00809035 0.98454096 1.62078568 1.5857495 3.4250824 25.6492 0.66973
14C 5100 27.804170 2.7589132 2.83132520 1.00809274 0.98453852 1.62078196 1.5857418 3.4250669 25.6495 0.66973
∞C 5100 27.806383 2.7590919 2.83143328 1.00812376 0.98450683 1.62073352 1.5856406 3.4248652 25.6526 0.66980

2S(1s22s2p2) 12C 1000 27.318659 2.7285426 2.79772109 0.99518010 1.05450457 1.72402476 1.9657591 4.0722536 25.0209 0.65318
2000 27.319470 2.7282534 2.79772232 0.99514206 1.05465158 1.72432533 1.9670784 4.0749356 25.0736 0.65160
3000 27.319606 2.7282110 2.79772477 0.99513968 1.05466302 1.72435102 1.9672076 4.0751972 25.0877 0.65112
4000 27.319650 2.7281938 2.79772483 0.99513784 1.05466964 1.72436497 1.9672730 4.0753305 25.0988 0.65093
4500 27.319661 2.7281894 2.79772492 0.99513743 1.05467136 1.72436866 1.9672897 4.0753650 25.0999 0.65089
5100 27.319671 2.7281856 2.79772525 0.99513751 1.05467127 1.72436891 1.9672933 4.0753729 25.1004 0.65081

13C 5100 27.319873 2.7281993 2.79773429 0.99513881 1.05467171 1.72437067 1.9673027 4.0753908 25.1007 0.65082
14C 5100 27.320044 2.7282111 2.79774200 0.99513992 1.05467209 1.72437218 1.9673107 4.0754062 25.1010 0.65082
∞C 5100 27.322277 2.7283639 2.79784232 0.99515434 1.05467700 1.72439178 1.9674148 4.0756059 25.1040 0.65089

2Po(1s22s23p) 12C 1000 27.839634 2.5849030 2.74157451 0.85896296 1.58534303 2.74236759 5.9141472 12.0760081 25.7814 0.67597
2000 27.839972 2.5847379 2.74158646 0.85896422 1.58523384 2.74223459 5.9140310 12.0760896 25.8236 0.67493
3000 27.840034 2.5846965 2.74158795 0.85896352 1.58521739 2.74221611 5.9140278 12.0761316 25.8310 0.67418
4000 27.840058 2.5846854 2.74158831 0.85896312 1.58521434 2.74221465 5.9140578 12.0762076 25.8438 0.67410
4500 27.840062 2.5846831 2.74158850 0.85896318 1.58521216 2.74221152 5.9140462 12.0761875 25.8443 0.67409
5100 27.840066 2.5846805 2.74158869 0.85896323 1.58520963 2.74220782 5.9140298 12.0761596 25.8448 0.67404

13C 5100 27.840266 2.5846962 2.74159834 0.85896578 1.58520596 2.74220193 5.9140073 12.0761142 25.8451 0.67405
14C 5100 27.840437 2.5847096 2.74160658 0.85896796 1.58520281 2.74219690 5.9139881 12.0760755 25.8453 0.67406
∞C 5100 27.842659 2.5848836 2.74171372 0.85899628 1.58516196 2.74213148 5.9137386 12.0755720 25.8484 0.67413

IV. SUMMARY

Very accurate nonrelativistic variational calculations us-
ing a finite-nuclear-mass Hamiltonian have been performed
for the ground and two excited states of the singly ionized
carbon atom using all-electron explicitly correlated Gaus-
sian functions. The total and transition energies have been
determined; the latter ones with the absolute precision of
0.2–0.5 cm−1. These are by far the most accurate calcula-
tions of this system and thus the present results are of bench-
mark quality. The comparison with the experiment shows that
it is indispensable to account for the relativistic effects includ-
ing the spin-orbit interaction to obtain quantitative agreement
of the calculated transition energies with the results of high-
resolution spectroscopic measurements. The development of
capabilities to calculate the relativistic corrections with all-
electron Gaussians used in the present calculations will be
pursuit in the future.
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