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We recently presented very accurate calculations of the fundamental vibrational frequency of the
"LiH* and *He*He™ ions [Stanke et al., Phys. Rev. A 79, 060501(R) (2009)] performed without
the Born—Oppenheimer approximation and included leading relativistic corrections. The accuracy
of those calculations was estimated to be of the order of 0.06 cm™'. In the present work we extend
the calculations to the remaining pure vibrational states of "LiH" and similarly accurate results are
generated. They may lead to the experimental search for still unidentified lines corresponding to
those transitions. © 2011 American Institute of Physics. [doi:10.1063/1.3525679]

Pure vibrational transitions of a three-electron "LiH™ ion
are still unknown experimentally even though it can be read-
ily produced in experimental conditions by a photoinduced
electron detachment. This makes the theoretical calculations
of pure vibrational transitions an important prerequisite to
any attempt to measure them. In a paper published four years
ago' we described calculations of six pure vibrational states
of "LiH* performed at the nonrelativistic level without as-
suming the Born—Oppenheimer (BO) approximation. In the
calculations we employed explicitly correlated Gaussian ba-
sis functions multipled by powers of the internuclear distance.
In more recent work” we applied the non-BO approach to cal-
culate the fundamental vibrational transitions of the *He*He*
and "LiH™ ions. In the calculations we also included the lead-
ing relativistic corrections determined with the use of first-
order perturbation theory with the non-BO wave function as
the zero-order approximation. For *He*He™ the calculations
reproduced within 0.06 cm™! the fundamental vibrational
transition, which is known with very high accuracy of about
0.001 cm~!.? In that work we also calculated the fundamental
transition of ’LiH*. As the approach used in the "LiH* calcu-
lations was the same as used for SHe*He™, a similar accuracy
was claimed for the "LiH™ transition. In the present work we
use the approach to refine the theoretical predictions of the
energies of higher pure vibrational transitions of "LiH*.

Nearly all quantum-mechanical molecular calculations
are performed assuming the BO approximation with the nu-
clei placed at fixed positions. Well established procedures
and functional basis sets have been developed for such cal-
culations. The BO electronic calculations generate a poten-
tial energy surface (potential energy curve for a diatomic
molecule) which is subsequently used to determine vibra-
tional states of the molecule. When the electrons and the
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nuclei of the molecular system are treated on equal footing,
as in the non-BO approach, unconventional basis functions
for expanding the wave function need to be used. There are
two major features which such basis functions need to de-
scribe. The first concerns the correlation effects of the cou-
pled motions of the nuclei and the electrons and not just elec-
trons as in the BO calculation. One way to effectively and
accurately describe those effects is the use of basis functions
that explicitly depend on the electron—electron, electron—
nucleus, and nucleus—nucleus distances. The second feature
concerns the symmetry of the non-BO state under consid-
eration. As the molecular Hamiltonian obtained after sepa-
ration of the system’s center of mass motion is spherically
symmetric (isotropic), the basis functions have to reflect this
symmetry. In particular, in the calculations of pure vibra-
tional states (more precisely, the states with zero total an-
gular momentum) the basis functions have to be rotationally
invariant.

The non-BO approach used here has been developed
in our group over the last decade to study spectra of light
molecular systems, particularly those with more than two
electrons.*® Our goal in that development has been to de-
scribe the rovibrational spectra of those systems with sim-
ilar accuracy as had been achieved before for two-electron
molecules’'? and as currently being achieved by the state-of-
the-art experiments. The advances in computer hardware and
software for numerical calculations make such calculations
possible.

In the first part of this work we briefly describe the
method used in the calculations (more details about the
method can be found in Refs. 4-6). The results and their dis-
cussion are presented in the second part.

The internal nonrelativistic all-particle Hamiltonian,
I:Inome], used in the present calculations is obtained from the
“laboratory frame” Hamiltonian by separating out the center-
of-mass motion. Hpoprel expressed using an internal Carte-
sian coordinate system with the center placed at the heaviest
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nucleus (the "Li nucleus). Hyonrer for ’LiH* has the following
form in atomic units:

4
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4 4
4y Z )
i i = i

where go =3 and ¢g; = 1 are the charges of the nuclei,
¢» = q3 = —1 are the electron charges, r; (i = 1,2, 3,4) are
the position vectors of the proton and the three electrons with
respect to the "Li nucleus (called the “reference particle”),
r; are their lengths, r;; = |r; — r;|, mo = 12786.3933m, and
my = 1836.15267261m, are the masses of the "Li and the
proton, m, = 1 is the electron mass, and wu; = mom;/(mg
+ m;) is the reduced mass of particle i. More information
on the center-of-mass separation and the form of the internal
Hamiltonian (1) can be found elsewhere.>°

The following spherically symmetric Gaussian basis
functions are used to expand the non-BO wave functions rep-
resenting the pure vibrational states of 'LiH" in the present
calculations:

o = r™ exp[—r'(Ax ® Iyr], )

where r = {r},r}, rj,r;})’ and ' symbol denotes the vec-
tor/matrix transposition, ® denotes the Kronecker product,
and I3 stands for the 3 x 3 unit matrix. Even values in the
range 0-250 are used for m; and they are partially optimized
for each basis function.

To make the basis function (2) square integrable the ma-
trix of the Gaussian parameters, Ay, is represented in the
Cholesky-factored form, Ay = Ly L}, where Ly is a lower tri-
angular matrix (all elements above the diagonal are zero).
With that, for any real values of the L; matrix elements, Ay is
positive definite as is required for ¢ to be square integrable.
The elements of matrices L, are the variational parameters
which we vary to lower the total energy. In this optimization
process, the elements of L; can vary in the range [—o0, o]
without any restrictions.

In the calculations we use the standard variational
method involving minimization of the Rayleigh quotient
subject to an orthogonality constraint (for excited states), E
= min(c¢'H({m}, {Li})e)/ (' S({mi}, {Li})e), where
H({my},{L:}) and S({m},{L;}) are the Hamiltonian
and overlap matrices, respectively. The minimization with
respect to the linear wave-function expansion coefficients,
{ck} (k=1,...K, where K is the basis size), leads to the
generalized eigenvalue problem,

Hc = ESc. 3

The analytical energy gradient with respect to {Lg}
can be constructed and used to accelerate the energy
minimization.*% The calculation of the gradient requires the
knowledge of the first derivatives of the Hamiltonian and
overlap matrix elements. The expressions for those derivatives
can be found in Refs. 4 and 6.

The Gaussian basis set has been generated independently
for each considered state in a process starting with a short
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randomly chosen set of basis functions and involves adding
small sets of functions and optimizing them first individually
and next together with the other functions already included
in the basis set. For the description of possible strategies see
Refs. 6,13, and 14. The process is continued until the basis
size reached 10 000. After 10 000 function basis was con-
structed for each state, several additional optimization cycles
of all basis functions were performed.

The leading relativistic corrections of the order of o?
[« is the fine structure parameter; o = 7.2973525376 x 103
(Ref. 15)] are determined using the first order perturbation
theory approach with the non-BO wave function being the
zero-order approximation. For ’LiH* the corrections account
for the mass—velocity (MV), Darwin (D), spin—spin (SS), and
orbit—orbit (OO) effects which in the internal coordinate sys-
tem for ’LiH* are represented by the following operators:'
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As the states considered in this work are represented by spher-
ically symmetric wave functions the spin—orbit interaction is
zero. We get the total relativistic correction by summing the
MV, D, SS, and OO corrections, (Hggr) = (Hwv) + (Hp)
+ (Hss> + (Hoo). Due to the indistinguishability of elec-
trons, (HD) and (Hss) for "LiH* simplify to

(Hss) = 6m8(r23).

®)

The results for the lowest two vibrational states of "LiH*
were presented in our previous work.? Here we only slightly
improve them for the largest basis set of 10 000 functions by
performing a few additional optimization cycles. The present
work focuses on the third, fourth, fifth, and sixth pure vibra-
tional states (v = 2-5) of ’LiH*. The total non-BO nonrela-
tivistic energies and total energies that include the MV, D, SS,
and OO relativistic corrections for those states are shown in
Table I for different numbers of basis functions. As one can
see, for all states the energies are converged within the rel-
ative accuracy of approximately 1078, For the energy values
obtained with the largest basis sets we also show in Table I

(Hp) = 5 [98(r2) + 38(r12) — 68(r3)]
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TABLE 1. The convergence of the total nonrelativistic non-BO energies
(Enr) and the total energies that include the leading MV, D, SS, and OO
relativistic corrections (Ergr.) for vibrational states of the "LiH* jon. All
values are in hartrees.

v Basis size ENR EREL
0 8000 —7.783246990 —7.783882722
9000 —7.783247003 —7.783882729
10 000 —7.783247012 —7.783882743
10 000* —7.783247013(40) —7.783882745(40)
1 8000 —7.781629259 —7.782264896
9000 —7.781629361 —7.782264989
10 000 —7.781629443 —7.782265073
10 000° —7.781629462(500) —7.782265092(500)
2 8000 —7.780436646 —7.781072167
9000 —7.780436710 —7.781072241
10 000 —7.780436751 —7.781072284
10 000° —7.780436775(200) —7.781072308(200)
3 8000 —7.779662109 —7.780297589
9000 —7.779662198 —7.780297665
10 000 —7.779662259 —7.780297716
10 000* —7.779662289(200) —7.780297744(200)
4 8000 —7.779252835 —7.779888262
9000 —7.779252943 —7.779888410
10 000 —7.779253010 —7.779888469
10 000* —7.779253045(150) —7.779888504(150)
5 8000 —7.779092179 —7.779727584
9000 —7.779092296 —7.779727704
10 000 —7.779092361 —7.779727814
10 000? —7.779092394(150) —7.779727846(150)

“Results obtained by performing several additional cyclic optimizations of the nonlinear
parameters.

an estimate of the remaining uncertainty. The convergence is
expected to be somewhat better for the lower states than for
the higher ones. The remaining uncertainty estimates, how-
ever, do not show monotonic growth with the excitation level,
which we attribute to artifacts of the extrapolation. For vari-
ational calculations of this kind the extrapolation often gives
a poor estimate of the infinite basis set limit (variations by a
factor of 2-3 or even more depending on the model and set of
points used are not uncommon).

The additional iterations performed for the basis sets of
10 000 functions produced a noticeable improvement of the
energy. That improvement, as expected, increases with the ex-
citation level and it is the largest for the v = 5 state and the
lowest for the v = 2 state.

The total energies with and without the relativistic correc-
tions have been used to calculate transition energies between
the adjacent states. These transition energies obtained for the
different basis set sizes are shown in Table II. As one can see,
the transition energy values are probably converged to about
0.01-0.05 cm ™. The expected contribution of missing higher
order relativistic and QEDeffects (in particular for upper vi-
brational level transitions where they naturally tend to cancel
out more) is likely not to exceed the value of 0.05 cm™~!. Thus,
we believe that the accuracy for our predicted frequencies is
not worse than 0.1 cm™! or even a smaller value. It is worth
mentioning that the best previous calculations performed with
the standard approach based on the BO potential energy curve
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TABLE II. The convergence of the pure vibrational transition energies
7LiH* ions determined with and without the leading relativistic corrections
(inecm™1).

P Basis size EKI,}; - EIKI,R Eﬁ;;L - E}‘i/EL
1—-0 8000 355.051 355.072
9000 355.031 355.053
10 000 355.015 355.037
10 000* 355.011(50) 355.034(50)
2—->1 8000 261.748 261.774
9000 261.757 261.778
10 000 261.766 261.787
10 000* 261.765(50) 261.786(50)
352 8000 169.991 170.000
9000 169.986 170.000
10 000 169.981 169.998
10 000* 169.980(20) 169.997(20)
4 -3 8000 89.825 89.837
9000 89.821 89.821
10 000 89.820 89.819
10 000* 89.819(20) 89.818(20)
5—>4 8000 35.260 35.265
9000 35.258 35.271
10 000 35.258 35.260
10 000* 35.259(15) 35.260(15)

#Results obtained by performing several additional cyclic optimizations of the nonlinear
parameters.

by Gadéa and Leininger!” predicted the fundamental "LiH*
transition to be at 353.9 cm~!, which differs from the present
very accurate result by more than a wavenumber.

In summary, the goal of this work is to continue very
accurate determination of the vibrational spectra of small
diatomic systems with more than two electrons with an ap-
proach that does not assume the Born—Oppenheimer approxi-
mation and which includes the leading relativistic corrections.
By using large sets of explicitly correlated Gaussian functions
in the calculations and by variationally optimizing their non-
linear parameters with a gradient-based method we are able
to generate pure vibrational transition energies of 'LiH* with
an accuracy of 0.1 cm™~! or better. As those transitions are not
yet measured, the predictions generated in this work can guide
and stimulate future experimental attempts.
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