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We present very accurate quantum mechanical calculations of the three lowest S-states �1s22s2�1S0�,
1s22p2�1S0�, and 1s22s3s�1S0�� of the two stable isotopes of the boron ion, 10B+ and 11B+. At the
nonrelativistic level the calculations have been performed with the Hamiltonian that explicitly
includes the finite mass of the nucleus as it was obtained by a rigorous separation of the
center-of-mass motion from the laboratory frame Hamiltonian. The spatial part of the nonrelativistic
wave function for each state was expanded in terms of 10 000 all-electron explicitly correlated
Gaussian functions. The nonlinear parameters of the Gaussians were variationally optimized using
a procedure involving the analytical energy gradient determined with respect to the nonlinear
parameters. The nonrelativistic wave functions of the three states were subsequently used to
calculate the leading �2 relativistic corrections �� is the fine structure constant; �=1 /c, where c is
the speed of light� and the �3 quantum electrodynamics �QED� correction. We also estimated the �4

QED correction by calculating its dominant component. A comparison of the experimental transition
frequencies with the frequencies obtained based on the energies calculated in this work shows an
excellent agreement. The discrepancy is smaller than 0.4 cm−1. © 2010 American Institute of
Physics. �doi:10.1063/1.3358999�

I. INTRODUCTION

A number of experimental studies of the spectrum of
singly ionized boron, B II, has been recently undertaken.1,2

The initial motivation for the study was the search for the
“missing” 2s3s 1S term. It took a number of attempts during
nearly three decades to finally identify this level in the spec-
trum. Even though the energy of this term had been fairly
well predicted in 1973 by Weiss �see Ref. 2�, a large discrep-
ancy persisted for a long time between Weiss’ value and the
earlier known experimental value. This was despite the
theory and experiment agreeing within 100–200 cm−1 for
other B II levels. The disagreement between the theory and
experiment of the 2s3s 1S level stimulated several experi-
mental studies from beam-foil experiments to high-
resolution spark spectroscopy, as well as more refined theo-
retical calculations. In the course of these studies not only
the missing 2s3s 1S level of B II was finally discovered, but
also new spectral information on this ion has been collected
that included more than 80 newly classified �or revised�
spectral lines.1 In effect, B II has become one of the best
studied small singly charged atomic ions.

The purpose of this study is to describe the three lowest
1S states �including the 2s3s 1S state� of two stable B II
isotopes, 10B+ and 11B+, with the highest possible accuracy
of the quantum mechanical calculations. This involves varia-

tional nonrelativistic calculations performed with all-electron
explicitly correlated Gaussian �ECG� basis functions fol-
lowed by perturbation theory calculations of the leading rela-
tivistic and quantum electrodynamics �QED� corrections. Up
to 10 000 ECGs have been used for each state. In recent
works3–7 we have shown that the ECG basis functions are an
excellent tool for performing very accurate calculations for
ground and excited states of small atoms and that the calcu-
lations on atoms with four to five electrons can be nearly as
accurate as for three-electron atoms. These later systems
have been studied by several groups using Hylleraas basis
functions,8–12 which better represent the wave function in the
cusp region, but so far their use has not been extended be-
yond three electron atoms.

To reach high accuracy in the calculations we used an
approach that explicitly includes the coupling between the
motion of the electrons and the motion of the nucleus in the
nonrelativistic variational calculations. This finite-nuclear-
mass �FNM� approach, which treats the electrons and the
nucleus on equal footing, requires that the wave function of
the system used in the calculations depends on the coordi-
nates of the electrons and the nucleus. The FNM approach
enables direct determination of the shifts of the energy levels
of the B+ ion due to the difference in the nuclear masses of
the 10B+ and 11B+ isotopes.

To best represent the electron-electron and nucleus-
electron correlation effects in the wave function, it needs toa�Electronic mail: sergiy.bubin@vanderbilt.edu.
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be expanded in terms of basis functions that explicitly de-
pend on the interparticle distances �i.e., the distances be-
tween electrons and the distances between the electrons and
the nucleus�. All-particle ECGs are such functions. The ad-
vantage of using ECGs in atomic calculations is related to
the fact that the Hamiltonian matrix elements with these
functions, as well as the matrix elements involved in calcu-
lating the relativistic and QED corrections, are manageable
and can be expressed with relatively simple and compact
formulas for an arbitrary number of particles. However, the
Gaussians do not satisfy the electron-electron and electron-
nucleus cusp conditions and are somewhat inefficient in de-
scribing the long-range behavior of the wave function. These
drawbacks are usually largely overcome by the use of longer
expansions of the wave functions in terms of Gaussians.

As the aim of the present calculation was to reach the
spectroscopic accuracy for the transition energies, thousands
of ECGs in the wave function expansion were needed. This
puts high demands on the computer resources. When one
uses all-electron ECGs the computation time required for a
single point energy calculations �single point in the space of
nonlinear parameters� scales as c1�n ! �n4�K2+c2�K3,
where c1 and c2 are some constants, K is the number of basis
functions, and n is the number of electrons in the system.
The n! dependence results from the number of the permuta-
tions that need to be applied to the total wave function to
make it antisymmetric with respect to permutations of the
electron labels. The K3 term is due to solving the generalized
eigenvalue problem with dense overlap and Hamiltonian ma-
trices. While for very large basis sets this term will eventu-
ally dominate, in calculations on systems containing more
than two electrons with a few thousand basis functions it
usually accounts only for relatively small amount of the total
calculation time. A significantly larger amount of time is
spent on computing the matrix elements.

A key feature of very accurate variational calculations
with ECGs is the optimization of the exponential parameters
of the Gaussians. In our atomic calculations the optimization
is performed with the procedure that utilizes analytical de-
rivatives of the energy with respect to the Gaussian exponen-
tial parameters.13–15 The derivatives form the gradient vector.
Its elements depend on the derivatives of the Hamiltonian
and overlap matrix elements. During the variational optimi-
zation the energy and the gradient are calculated millions of
times and it is essential that this part of the calculation is
efficiently parallelized. The availability of the analytic gradi-
ent considerably accelerates the calculation and is the key to
achieving high accuracy.

As the state-of-the-art experiments on atomic spectra
now reach the relative accuracy of 10−8–10−9, matching this
accuracy with first-principles calculations represents a con-
siderable challenge. In this work we show that the calcula-
tions with ECGs can step up to this challenge.

Three steps have been involved in the present calcula-
tions. The first, the most time consuming one, was the varia-
tional calculation of the nonrelativistic wave function and the
corresponding energy for each considered state. The second
step involved the calculation of the leading �2 relativistic
corrections. In the third step, which was also time consum-

ing, the �3 and �4 QED corrections were calculated in the
framework of the nonrelativistic QED method and the per-
turbation theory16–18 with the zeroth-order level being the
nonrelativistic Schrödinger equation.

The questions this work attempts to answer are the fol-
lowing. �1� How accurately is the state-of-the-art theoretical
method which includes FNM effects, first order relativistic
corrections, and the leading QED corrections able to describe
the lowest 1S states �particularly the 1s22s3s 1S state� of the
B+ ion? This question is particularly relevant with regards to
the relativistic correction, which grows quite rapidly as the
nuclear charge increases and the model based on calculating
this correction at the first order level may start to fail. �2�
How big are the shifts of the transition energies for the low-
est 1S states due to the nuclear-mass effect and are those
shifts large enough to be measured experimentally?

II. THE METHOD

In the nonrelativistic variational calculations we use the
following Hamiltonian:
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where in atomic units q0=5 �the charge of the nucleus�, q1

=q2=q3=q4=−1 �the charges of the electrons�, m0

=20 063.737 52 for the 11B nucleus or m0=18 247.468 for
the 10B nucleus, �i are the reduced electron masses, �i

=m0mi / �m0+mi�, where m1=m2=m3=m4=1, ri, i=1,2 ,3 ,4,
are the position vectors of the electrons with respect to the
nucleus, ri are their lengths, and rij = �r j −ri� are the distances
between the electrons. The Hamiltonian �1� is obtained by
rigorously separating the center-of-mass motion from the
nonrelativistic laboratory frame Hamiltonian.14,19 This sepa-
ration reduces the five-particle problem of the B+ ion to a
four “pseudoparticle” problem. The calculations have been
carried out for finite masses of the B nucleus, as well as for
infinite nuclear mass. They yielded the nonrelativistic ener-
gies, Enonrel, and the corresponding wave functions. The in-
finite nuclear mass results were generated to serve as a ref-
erence for calculations performed by others in the framework
of the Born–Oppenheimer approximation.

Denoting by r the 12�1 vector of the internal Cartesian
electron coordinates, r= �r1� ,r2� ,r3� ,r4��� �the prime symbol
denotes the vector/matrix transposition� and by � the spin
coordinates of the electrons and the nucleus we can write the
complete wave function of B+ as

��r,�� = Â���r��S,MS
���� . �2�

Â antisymmetrizes the electron labels and �S,MS
��� is a

product of the spin functions of the electrons and the
nucleus, �S,MS

=�e�N. For the states considered in this work
�e represents a four-electron singlet spin function. In practi-
cal calculations it is more convenient to use the spin-free
formalism.20,21 In that formalism only the spatial wave func-
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tion, ��r�, enters the calculation. However, before it is used,
��r� has to be transformed with the appropriate Young op-
erator that represents the permutational symmetry properties
of the state under consideration.

The following S-Gaussians were used to expand the spa-
tial wave functions, ��r�, for the three 1S0 states considered
in the present calculations:

	k = exp�− r��LkLk� � I3�r� , �3�

where � is the Kronecker product symbol, Lk is a 4�4
lower triangular matrix of nonlinear variational parameters,

and I3 is the 3�3 identity matrix. The Cholesky factored
form representation, LkLk�, of the matrix of the Gaussian ex-
ponential parameters ensures the square integrability of 	k

for any values of the Lk matrix elements. This is important in
the optimization of these parameters because it can be car-
ried out without any restrictions �i.e., the Lk matrix elements
can be varied in the range of �−
 ,+
��, which makes the
optimization much more efficient.

The variational optimization of trial wave functions per-
formed in the present calculations has been done indepen-
dently for each state. As it was already mentioned, in the

TABLE I. Variational nonrelativistic energies, leading relativistic corrections, and the total energies, Etot=Enonrel+�2�	HMV
+ 	HD
+ 	HSS
+ 	HOO
�. All
numbers are in a.u. Values in parentheses are estimates of the remaining uncertainty.

System State Basis size Enonrel 	HMV
 	HD
 	HSS
 	HOO
 Enonrel+�2Erel


B+ 2 1S0 7000 �24.348 884 425 �699.7921 558.1768 22.4857 �1.5126 �24.355 308 784
8000 �24.348 884 433 �699.7972 558.1813 22.4856 �1.5126 �24.355 308 837
9000 �24.348 884 439 �699.7972 558.1816 22.4855 �1.5126 �24.355 308 830

10 000 �24.348 884 444 �699.7972 558.1816 22.4855 �1.5126 �24.355 308 830
10 000a �24.348 884 446�35� �699.7972 558.1816 22.4855 �1.5126 �24.355 308 833�100�

3 1S0 7000 �23.767 561 721 �670.2321 537.0833 21.2197 �0.5977 �23.773 553 920
8000 �23.767 561 771 �670.2346 537.0889 21.2196 �0.5977 �23.773 553 809
9000 �23.767 561 802 �670.2341 537.0899 21.2196 �0.5977 �23.773 553 765

10 000 �23.767 561 826 �670.2460 537.1015 21.2194 �0.5977 �23.773 553 820
10 000a �23.767 561 866�60� �670.2457 537.1012 21.2194 �0.5977 �23.773 553 855�400�

4 1S0 7000 �23.722 007 222 �684.1310 547.4189 21.7720 �1.2747 �23.728 195 821
8000 �23.722 007 265 �684.1424 547.4320 21.7716 �1.2747 �23.728 195 792
9000 �23.722 007 294 �684.1699 547.4580 21.7714 �1.2747 �23.728 195 913

10 000 �23.722 007 316 �684.1738 547.4612 21.7713 �1.2747 �23.728 195 978
10 000a �23.722 007 330�100� �684.1738 547.4612 21.7713 �1.2747 �23.728 195 995�250�

11B+ 2 1S0 7000 �24.347 641 267 �699.6505 558.0921 22.4827 �1.5691 �24.354 065 761
8000 �24.347 641 275 �699.6556 558.0966 22.4826 �1.5691 �24.354 065 813
9000 �24.347 641 281 �699.6556 558.0969 22.4825 �1.5691 �24.354 065 807

10 000 �24.347 641 286 �699.6555 558.0969 22.4825 �1.5691 �24.354 065 806
10 000a �24.347 641 289�35� �699.6555 558.0969 22.4825 �1.5691 �24.354 065 809�100�

3 1S0 7000 �23.766 371 888 �670.0886 536.9957 21.2166 �0.6508 �23.772 364 107
8000 �23.766 371 938 �670.0911 537.0014 21.2165 �0.6508 �23.772 363 996
9000 �23.766 371 969 �670.0906 537.0024 21.2164 �0.6508 �23.772 363 952

10 000 �23.766 371 993 �670.1026 537.0139 21.2163 �0.6508 �23.772 364 007
10 000a �23.766 372 033�60� �670.1023 537.0136 21.2163 �0.6508 �23.772 364 042�400�

4 1S0 7000 �23.720 807 259 �684.0006 547.3417 21.7694 �1.3302 �23.726 996 110
8000 �23.720 807 302 �684.0119 547.3548 21.7690 �1.3302 �23.726 996 081
9000 �23.720 807 332 �684.0395 547.3808 21.7688 �1.3302 �23.726 996 202

10 000 �23.720 807 353 �684.0433 547.3840 21.7687 �1.3302 �23.726 996 267
10 000a �23.720 807 367�100� �684.0434 547.3840 21.7687 �1.3302 �23.726 996 285�250�

10B+ 2 1S0 7000 �24.347 517 538 �699.6364 558.0837 22.4824 �1.5747 �24.353 942 045
8000 �24.347 517 546 �699.6415 558.0881 22.4823 �1.5747 �24.353 942 097
9000 �24.347 517 552 �699.6415 558.0884 22.4822 �1.5747 �24.353 942 091

10 000 �24.347 517 557 �699.6414 558.0885 22.4822 �1.5747 �24.353 942 090
10 000a �24.347 517 559�35� �699.6414 558.0885 22.4822 �1.5747 �24.353 942 093�100�

3 1S0 7000 �23.766 253 467 �670.0743 536.9870 21.2163 �0.6561 �23.772 245 688
8000 �23.766 253 517 �670.0768 536.9926 21.2162 �0.6561 �23.772 245 577
9000 �23.766 253 548 �670.0764 536.9936 21.2161 �0.6561 �23.772 245 533

10 000 �23.766 253 571 �670.0883 537.0052 21.2159 �0.6561 �23.772 245 587
10 000a �23.766 253 612�60� �670.0880 537.0049 21.2160 �0.6561 �23.772 245 623�400�

4 1S0 7000 �23.720 687 828 �683.9876 547.3340 21.7691 �1.3357 �23.726 876 705
8000 �23.720 687 871 �683.9989 547.3471 21.7688 �1.3357 �23.726 876 675
9000 �23.720 687 901 �684.0265 547.3731 21.7686 �1.3357 �23.726 876 796

10 000 �23.720 687 922 �684.0304 547.3763 21.7684 �1.3357 �23.726 876 861
10 000a �23.720 687 936�100� �684.0304 547.3763 21.7684 �1.3357 �23.726 876 879�250�

aResults obtained after several additional optimization cycles.
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energy minimization we employed the analytic gradient with
respect to the Lk matrix elements,13–15 which significantly
accelerates the optimization process and reduces its compu-
tational cost. Without the use of the analytic gradient the
present calculations could not be performed at the accuracy
level achieved in this work.

The calculations of the relativistic effects have been per-
formed as the expectation value of the Dirac–Breit Hamil-

tonian in the Pauli approximation �Ĥrel�
22,23 transformed to

the internal coordinate system. For the states with the S sym-

metry considered in this work Ĥrel includes the mass-velocity
�MV�, Darwin �D�, orbit-orbit �OO�, and spin-spin �SS�
terms:

Ĥrel = ĤMV + ĤD + ĤOO + ĤSS. �4�

In the internal coordinates these operators are
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In the present calculations we have not included the mag-
netic anomaly factors for the electrons and the nucleus in the

Darwin and spin-spin corrections. The relativistic correction
calculations have been performed for the finite and infinite
masses of the B nucleus. Thus the value of the correction
varies with the nuclear mass.

In calculating the leading QED corrections of the order
�3 and �4 �called here EQED and EHQED, respectively� in this
work we used the approach described by Pachucki et al.24–27

The approach is based on the perturbation theory employed
in the framework of the nonrelativistic QED method.16–18

The zeroth-order level in this approach is the nonrelativistic
Schrödiger equation. The algorithm used here was also em-
ployed in our recent work on the ground and excited states of
the Be atom.6 The �3 and �4 QED corrections represent the
two-photon exchange, the vacuum polarization, and the elec-
tron self-energy effects. The most difficult terms to calculate
in the �3 correction are the Araki–Sucher term
�	P�1 /rij

3 �
 / �4��� and the Bethe logarithm �ln k0�. It should
be emphasized that for the QED correction of the order �4

we only determined the dominant contribution, which is the
simplest to calculate. As the procedure used in this work for
calculating the �3 and �4 QED corrections was only devel-
oped for the infinite-mass case only this type of calculations
have been performed.

The numerical values of the fine structure constant and
the Hartree-wavenumber conversion factor used in this work
were taken from Ref. 28. They are �=7.297 352 537 6
�10−3, 1 hartree=2.194 746 313 705�105 cm−1.

III. RESULTS

First, the variational nonrelativistic FNM calculations
have been performed for each of the three considered states
�1s22s2 1S0, 1s22p2 1S0, and 1s22s3s 1S0� of the most domi-
nant 11B+ isotope. In the calculations the basis set for each
state has been grown to the size of 10 000 functions. The
growing of the basis set involved gradually adding subsets of
20 functions to the basis set and optimizing each function of
the subset with the gradient-based energy minimization pro-
cedure, one function at a time. After the addition of each

TABLE II. Convergence of nonrelativistic and relativistic transition energies for 
B+, 11B+, and 10B+. All values are in cm−1.

Transition Basis size 
B+, nonrel 
B+, rel 11B+, nonrel 11B+, rel 10B+, nonrel 10B+, rel

2 1S0→3 1S0 5000 127 585.626 127 680.513 127 573.922 127 668.834 127 572.757 127 667.671
6000 127 585.600 127 680.435 127 573.896 127 668.757 127 572.731 127 667.594
7000 127 585.586 127 680.434 127 573.883 127 668.756 127 572.718 127 667.593
8000 127 585.577 127 680.470 127 573.873 127 668.792 127 572.708 127 667.629
9000 127 585.571 127 680.478 127 573.868 127 668.800 127 572.703 127 667.638

10 000 127 585.567 127 680.466 127 573.864 127 668.788 127 572.699 127 667.626
10 000� 127 585.559�15� 127 680.459�60� 127 573.855�15� 127 668.781�60� 127 572.691�15� 127 667.618�60�

Experiment 127 661.19
2 1S0→4 1S0 5000 137 583.675 137 635.425 137 574.195 137 625.919 137 573.251 137 624.973

6000 137 583.655 137 635.431 137 574.174 137 625.925 137 573.231 137 624.979
7000 137 583.643 137 635.387 137 574.163 137 625.880 137 573.219 137 624.934
8000 137 583.635 137 635.404 137 574.155 137 625.898 137 573.212 137 624.952
9000 137 583.630 137 635.376 137 574.150 137 625.870 137 573.207 137 624.924

10 000 137 583.627 137 635.362 137 574.146 137 625.856 137 573.203 137 624.910
10 000� 137 583.624�20� 137 635.359�75� 137 574.144�20� 137 625.853�75� 137 573.201�20� 137 624.907�75�

Experiment 137 622.25
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20 functions the entire basis set was reoptimized in a cyclic
optimization where again the parameters of one function at a
time were reoptimized. In adding new functions to the basis
set a stochastic procedure was used.29,30 In this procedure
new basis functions are selected from a set of candidates,
which are generated stochastically based on the distributions
of nonlinear parameters of already included basis functions.
When the candidate that minimizes the energy the most is
added to the basis, its nonlinear parameters are further tuned
using the analytic gradient. When the basis size of 10 000
functions was reached for each state, several additional cy-
clic optimizations were performed of all the functions to gen-
erate the final basis set. Next, the basis sets generated for the
11B+ isotope were used to calculate the energies of the three
states of the 10B+ isotope, as well as of the boron ion with an
infinite nuclear mass 
B+. As the change in the wave func-
tion caused by the change of the nuclear mass is small
�which is true as long as the mass of the nucleus remains
much larger than the mass of the electron�, it is sufficient to
adjust only the linear coefficients of the basis functions with-
out reoptimizing the nonlinear parameters. The nonrelativis-
tic energies resulted from the calculations are shown in Table
I.

The next step involved the calculations of the �2 relativ-
istic corrections, i.e., the mass-velocity, Darwin, spin-spin
interaction, and orbit-orbit corrections. In Table I we show
how these corrections converge with the number of basis
functions for 10B+, 11B+, and 
B+. We also show the total
energies that include the relativistic corrections. The conver-
gence of the transition energies calculated as the differences
of the nonrelativistic and relativistic total energies taken
from Table I are presented in Table II.

In the next step of the calculations the leading �3 and �4

QED corrections were determined. The results are presented
in Table III. Apart from the values of the corrections we also
show in the table the values of the Araki–Sucher term and

the Bethe logarithm, which, as mentioned, are the most dif-
ficult to compute. For the discussion on the accuracy of the
procedure to calculate the QED corrections we refer the
reader to the work in Ref. 27.

The last step involved calculating the energies corre-
sponding to the transitions between the considered three
states for the two B+ isotopes and for 
B+. The transition
energies are presented in Table IV. For each value we show
the numerical uncertainty determined based on the level of
the convergence of the particular value with the number of
basis functions and on other factors contributing to the nu-
merical noise in the calculations. In the case of EQED

�4� the
uncertainty is mainly due to the approximate treatment of
that correction used in this work rather than the finite size of
the basis. In the table we also show the experimental transi-
tion energies taken from Refs. 1 and 2.

Upon an analysis of the results obtained for 11B+ shown
in Table IV, one can see that, after adding all the contribu-
tions, the calculated transition energies are within 0.4 cm−1

of the experimental transitions. The agreement is somewhat
better for the 2 1S0→4 1S0 transition �the calculated
137 622.204�175� cm−1 versus the experimental
137 622.25 cm−1� than for the 2 1S0→3 1S0 transition
�127 661.574�260� cm−1 versus 127 661.19 cm−1�. It is
likely that including the missing term of the EQED

�4� correction
will improve the agreement even further. The results for
10B+, which are also shown in Table IV, should have a simi-
lar accuracy as the 11B+ results. They allow to estimate the
isotope shifts of the two calculated transitions. The 11B+

→ 10B+ shift for the 2 1S0→3 1S0 transition is −1.163 cm−1

and for the 2 1S0→4 1S0 transition it is 0.946 cm−1. Both
shifts are large enough to be determined experimentally.

IV. SUMMARY

All-electron ECG functions have been employed to per-
form very accurate calculations of the three lowest S states
and the corresponding transition energies of the boron singly
charged cation assuming finite nuclear mass. The calcula-
tions also included the leading relativistic and QED correc-
tions. The calculated transition energies obtained for the 11B+

isotope agree with the experimental values within 0.4 cm−1.
The calculations also yielded shifts of the transition energies
due to the 11B+→ 10B+ isotope substitution, which are large
enough to be verified experimentally. The calculations pre-
sented in this work are by far the most accurate ever per-

TABLE III. The Araki–Sucher term and the Bethe logarithm as well as the
total �3 and �4 QED corrections ��3EQED and �4EHQED� obtained in the
infinite-mass calculations with 10 000-term ground state wave function. All
values are in a.u.

State 	P�1 /rij
3 �
 / �4�� ln k0 �3EQED �4EHQED

2 1S0 �2.344 317�1� 6.1944�9� 7.913 612 8�4��10−4 4.944 00�10−5

3 1S0 �2.103 286�3� 6.1991�8� 7.604 072�2��10−4 4.755 71�10−5

4 1S0 �2.277 398�6� 6.1969�8� 7.756 976�7��10−4 4.847 95�10−5

TABLE IV. Convergence of the 2 1S0→3 1S0 and 2 1S0→4 1S0 transition energies for 
B+, 11B+, and 10B+ with the inclusion of increasingly higher level
correction �finite-mass, relativistic, and QED� to the energies of the three states. All values are in cm−1.

Contribution included


B+ 11B+ 10B+

2 1S0→3 1S0 2 1S0→4 1S0 2 1S0→3 1S0 2 1S0→4 1S0 2 1S0→3 1S0 2 1S0→4 1S0

Enonrel �Mnucl=
� 127 585.559�15� 137 583.624�20� 127 585.559�15� 137 583.624�20� 127 585.559�15� 137 583.624�20�
Enonrel �finite nucl. mass� 127 585.559�15� 137 583.624�20� 127 573.855�15� 137 574.144�20� 127 572.691�15� 137 573.201�20�
Erel 127 680.459�60� 137 635.359�75� 127 668.781�60� 137 625.853�75� 127 667.618�60� 137 624.907�75�
EQED

�3� 127 673.666�60� 137 631.921�75� 127 661.987�60� 137 622.415�75� 127 660.825�60� 137 621.469�75�
EQED

�4� 127 673.252�260� 137 631.710�175� 127 661.574�260� 137 622.204�175� 127 660.411�260� 137 621.258�175�
Experiment 127 661.19 137 622.25
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formed for the three 1S states of the boron ion. They show
that the nonrelativistic QED method provides a very accurate
framework for atomic calculations even for systems with
heavier nuclei.
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