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Very accurate variational calculations of all rotationless states �also called pure vibrational states� of
the HD molecule have been performed within the framework that does not assume the Born–
Oppenheimer �BO� approximation. The non-BO wave functions of the states describing the internal
motion of the proton, the deuteron, and the two electrons were expanded in terms of one-center
explicitly correlated Gaussian functions multiplied by even powers of the internuclear distance. Up
to 6000 functions were used for each state. Both linear and nonlinear parameters of the wave
functions of all 18 states were optimized with a procedure that employs the analytical gradient of the
energy with respect to the nonlinear parameters of the Gaussians. These wave functions were used
to calculate expectation values of the interparticle distances and some other related quantities. The
results allow elucidation of the charge asymmetry in HD as a function of the vibrational
excitation. © 2009 American Institute of Physics. �DOI: 10.1063/1.3094047�

I. INTRODUCTION

HD is an interesting model system for very accurate
quantum-mechanical calculations because it has slight asym-
metry of the electronic charge distribution that originates
from the unequal masses of the nuclei. This effect can only
be described in a quantum mechanical calculation of this
system if the Born–Oppenheimer �BO� approximation is not
used. Due to the larger mass of the deuteron than the mass of
the proton, the electrons in HD approach the former in aver-
age slightly closer than the latter. In a hydrogen atom the
average proton-electron distance is 1.000 545 6 bohr and in
the deuterium atom the deuteron-electron distance is
1.000 272 4 bohr. The asymmetry in the electron behavior
near the deuterium and hydrogen nuclei results in an appear-
ance of a small dipole moment in HD. Due to this dipole
moment, pure rotational transitions should be visible in the
HD experimental spectrum, although they are likely to be
very weak. We have studied the HD dipole moment in the
ground state in one of our previous works1 and the dipole-
moment value obtained there agreed very well with the ex-
perimental value of 0.000 345�0.1 a.u.2

Non-BO calculations of molecular systems are consider-
ably more difficult than electronic structure calculations
based on the BO approximation with the nuclei placed in
fixed positions. This is because in such non-BO calculations
not only the electronic correlation effects need to be very
accurately described but also the correlation effects due to
the coupled motions of the electrons and the nuclei as well as
the nucleus-nucleus correlated motion must be represented
with similar accuracy. The nucleus-nucleus correlation is
more difficult to describe than the electron-electron correla-

tion because the much heavier nuclei avoid each other much
more than the electrons. In the past decade we have devel-
oped methods for performing non-BO calculations of light
atomic and molecular systems.3–8 In the calculations we have
used several different explicitly correlated Gaussian basis
sets. In the calculations of pure vibrational states of diatomic
molecules, we used spherically symmetric, explicitly corre-
lated N-particle Gaussians multiplied by powers of the inter-
nuclear distance. We showed that this type of basis very ef-
fectively describes the correlation effects in molecular
systems consisting of two nuclei and a few � electrons such
as HD. The ground state of the HD molecule was a focus of
our earlier non-BO calculations where we used “only” 512
explicitly correlated Gaussian functions in expanding the
wave function.9 Recently we also reported calculations of the
ground and the first excited states of HD performed with
10 000 correlated Gaussians.10 In the present work we show
non-BO calculations for all 18 pure vibrational states of HD
performed with 6000 basis functions for each state. The fo-
cus of the work is to elucidate the charge asymmetry in HD
as a function of the vibrational excitation.

In the non-BO approach, we use a nonrelativistic inter-
nal Hamiltonian for the system obtained by rigorously sepa-
rating the center-of-mass motion from the internal motion.
Such a Hamiltonian is isotropic �i.e., rotationally invariant�
and its eigenfunctions describing the state of the system
transform according to the irreducible representations of the
fully symmetric group of rotations. In particular, the wave
function of the ground state or any rotationless state of HD is
a spherically symmetric s-type wave function. That is why in
our calculations we use spherically symmetric explicitly cor-
related functions �ECFs�. Multiplying the ECFs by powers ofa�Electronic mail: ludwik@u.arizona.edu.
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the internuclear distance does not change their symmetry, but
allows better description of the radial oscillations of the
wave function in excited vibrational states.

In the first part of this work we describe the method we
used �a more complete description of the method can be
found in our recent reviews3,4�. The discussion of the results
obtained in the calculations is presented in the second part.

II. THE METHOD

The subject of this work is the complete pure vibrational
spectrum of the HD molecule. The calculations are per-
formed with the variational method applied separately to
each state. In the variational minimization, the total internal
energy of the state is expressed as the expectation value of

the internal nonrelativistic Hamiltonian, Ĥnonrel, obtained
from the “laboratory frame” Hamiltonian by separating out
the center-of-mass motion. This separation is achieved by
switching from the Cartesian laboratory coordinate system to
a system where the first three coordinates are the laboratory-
frame coordinates of the center of mass and the remaining
3N−3 coordinates are internal coordinates that describe the
positions of particles 2, 3, and N with respect to particle 1
�usually the heaviest particle in the system�. For HD the
internal Hamiltonian has the following form:
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1

2
��

i=1

3
1

�i
�ri

2 + �
i=1

3

�
j�i

3
1

m0
�ri

· �rj�
+ �

i=1

3
q0qi

ri
+ �

i�j

3
qiqj

rij
. �1�

In Eq. �1�, q0=q1=1 are the charges of the nuclei �the proton
and the deuteron� and q2=q3=−1 are the electron charges, ri,
i=1,2 ,3, are the position vectors of the proton and the two
electrons with respect to the deuteron �placed at the center of

the internal coordinate system and called the “reference
particle”�, ri are their lengths, rij = �r j −ri�, m0

=3670.482 965 4me and m1=1836.152 672 61me are the
masses of the deuteron and the proton, respectively, m2

=m3=me=1 are the electron masses,11 and �i=m0mi / �m0

+mi� is the reduced mass of particle i. More information on
the center-of-mass separation and the form of the internal
Hamiltonian �1� can be found elsewhere.12,13

The spatial part of the HD non-BO wave functions of the
pure �rotationless� vibrational states is expanded in terms of
one-center spherically symmetric explicitly correlated Gaus-
sians �ECGs� multiplied by even powers �mk� of the internu-
clear distance, r1,5–8

�k = r1
mk exp�− r��Ak � I3�r� , �2�

where r= 	r1� ,r2� ,r3�
 and “ �” denotes the vector �matrix�
transposition. In our previous works, we have shown that
these functions very effectively describe nonadiabatic, zero-
angular-momentum states of diatomic systems with � elec-
trons. The r1

mk factors in function �2� generate radial nodes
which appear in the wave function when the molecule be-
comes vibrationally excited. As shown before,5,6 limiting the
powers of mk in basis function �2� to only even values has
very little effect on the energy, but significantly speeds up the
calculations, as the algorithms for calculating the Hamil-
tonian matrix elements are less complicated in this case.

Function �2� is able to describe bound pure vibrational
states of the internal Hamiltonian �1� very well for the fol-
lowing reasons. First, as the Hamiltonian �1� is spherically
symmetric, its eigenfunctions for pure vibrational states are
also fully spherically symmetric functions and can be ex-
pressed in terms of function �2�. Second, the particles de-
scribed by the Hamiltonian �1� have negative �the two elec-
trons� and positive �the proton� charges and are either
attracted to or repelled from the reference particle �the deu-

TABLE I. The convergence of the total nonrelativistic non-BO energies �Enrel� of the two lowest vibrational
states of the HD molecule with the number of basis functions �in hartrees�.

v

No. of basis function

2000 3000 4000 5000 6000

0 �1.165 471 895 4 �1.165 471 911 9 �1.165 471 916 6 �1.165 471 918 5 �1.165 471 919 7
1 �1.148 922 496 0 �1.148 922 561 1 �1.148 922 575 4 �1.148 922 581 0 �1.148 922 584 5
2 �1.133 181 525 0 �1.133 181 672 9 �1.133 181 705 5 �1.133 181 718 0 �1.133 181 724 1
3 �1.118 233 120 5 �1.118 233 404 9 �1.118 233 460 1 �1.118 233 480 6 �1.118 233 489 6
4 �1.104 065 987 6 �1.104 066 449 9 �1.104 066 543 4 �1.104 066 590 5 �1.104 066 623 7
5 �1.090 673 465 4 �1.090 674 284 5 �1.090 674 500 4 �1.090 674 791 2 �1.090 674 833 4
6 �1.078 055 800 2 �1.078 056 970 8 �1.078 057 181 4 �1.078 057 258 3 �1.078 057 286 8
7 �1.066 217 180 4 �1.066 218 800 5 �1.066 219 117 7 �1.066 219 234 9 �1.066 219 281 9
8 �1.055 170 256 4 �1.055 172 528 8 �1.055 172 928 7 �1.055 173 077 0 �1.055 173 134 2
9 �1.044 935 881 1 �1.044 938 705 6 �1.044 939 281 1 �1.044 939 471 4 �1.044 939 549 3

10 �1.035 544 034 4 �1.035 547 973 2 �1.035 548 702 2 �1.035 548 973 3 �1.035 549 075 5
11 �1.027 038 501 8 �1.027 043 129 1 �1.027 044 103 5 �1.027 044 433 9 �1.027 044 570 5
12 �1.019 475 400 6 �1.019 482 026 1 �1.019 483 443 4 �1.019 483 886 9 �1.019 484 063 0
13 �1.012 934 893 7 �1.012 942 499 0 �1.012 944 294 3 �1.012 944 837 8 �1.012 945 047 7
14 �1.007 518 530 2 �1.007 527 406 6 �1.007 529 397 6 �1.007 530 039 2 �1.007 530 298 0
15 �1.003 363 941 1 �1.003 373 339 6 �1.003 375 216 8 �1.003 375 827 4 �1.003 376 065 4
16 �1.000 653 320 4 �1.000 660 992 4 �1.000 662 500 7 �1.000 663 011 1 �1.000 663 217 0
17 �0.999 605 235 6 �0.999 607 496 5 �0.999 607 973 0 �0.999 608 152 9 �0.999 608 223 5
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teron� and from themselves. The repulsion between the two
electrons can be very well described by Gaussians depending
on the interelectron distance in the exponents. Also, while
the electron-proton and electron-deuteron attractions can be
very well represented by these types of Gaussians, the
proton-deuteron repulsion is more difficult to describe be-
cause these two particles are much heavier than electrons and
they avoid each other to a much higher degree in their rela-
tive motion in the molecule. This necessitates the addition of
the r1

mk factors to the Gaussians, which allows for a much
more effective representation of the proton-deuteron separa-
tion in the wave function. We refer the reader for more in-
formation on the selection of the basis functions for diatomic
non-BO calculations to our recent reviews.3,4

In the present work, the standard variational method is
used for calculating the energy and the wave function of a
particular state of the system. A separate variational calcula-
tion is performed for each state. It involves minimization of
the Rayleigh quotient with respect to the linear expansion
coefficients, 	ck
, the Gaussian exponential parameters, 	Ak
,
and the pre-exponential powers, 	mk
,

E = min
c�H�	mk
,	Ak
�c
c�S�	mk
,	Ak
�c

. �3�

In our approach we used the analytical energy gradient cal-
culated with respect to the Gaussian exponential parameters

in the minimization of functional �3�. This greatly accelerates
the process of the wave function optimization. Also, in order
to avoid imposing restrictions on the elements of each Ak

matrix to make it positive definite and to make the corre-
sponding �k basis function square integrable, we used the
Cholesky-factored form of Ak, Ak�LkLk�, where Lk is a lower
triangular matrix �all elements above the diagonal are zero�.
With the Cholesky-factored representation of Ak, this matrix
is automatically positive definite for any real values of the Lk

matrix elements. In the calculations, the Lk matrix elements
are the optimization variables, and the analytical energy gra-
dient is calculated with respect to these elements. The pre-
exponential powers, mk, in this work ranged from 0 to 250,
and all the powers were partially optimized for each state.

The calculations concern all 18 pure vibrational states of
HD. The maximum number of basis functions used for each
state was 6000. This number of functions was generated by
growing the basis set for each state from a small randomly
selected set of a few dozen functions using a procedure in-
volving successive additions of small groups of functions.
When the basis set was relatively small �less than 100 func-
tions� each step involved adding a group of ten functions,
one function at a time, optimizing their exponential param-
eters using the gradient-based minimization approach, and
reoptimizing the whole basis set using the gradient-based
approach after the addition of the subset was completed.

FIG. 1. Deuteron-proton correlation functions �CF�, gi���, for the v=0, 7, 8, and 17 pure vibrational states of the HD molecule. �a� is the v=0 CF, �b� is the
v=7 CF, �c� is the v=8 CF, and �d� is the v=17 CF. The densities are shown as two-dimensional functions of the �x and �y coordinates with the �z coordinate
set to zero. The v=0 plot is done using the �0, 0.14� range for the density values, the v=7 and v=8 plots are done with the �0, 0.07� range, and the v=17 plot
is done with the �0, 0.0015� range.
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When the number of basis functions exceeded 100, the num-
ber of functions added in each step was increased to 20 and
the reoptimization of the whole set at the end of each step
was done by adjusting the parameters of only one function at
a time and cycling over all functions in the basis set.

After the non-BO nonrelativistic wave functions, �i�r�,
were generated for all eighteen states, they were used to
calculate the following expectation values: �r1

−1
, �r12
−1
, �r2

−1
,
�r23

−1
, �r1
, �r12
, �r2
, �r23
, �r1
2
, �r12

2 
, �r2
2
, �r23

2 
, �	�r23�
,
�	�r2�
, and �	�r12�
. We also calculated the �	�r1�
 expecta-
tion value, but the numbers are very small �in the range of
10−10–10−12� and they are not converged enough to be
trusted. The non-BO wave functions were also used to cal-
culate the deuteron-proton correlation function �i.e., the one-
particle relative density of the proton with respect to the
deuteron associated with the coordinate r1� defined as14

gi��� = ��i�r��	�r1 − ����i�r�


= �
−





��i��,r2,r3��2dr2dr3, �4�

where 	�r1−�� is the three-dimensional Dirac delta function.
As in the non-BO calculations, both electrons and nuclei are
treated on equal footing, the only information one can get on
the molecular structure parameters and other related quanti-
ties for the particular state of the system is obtained in the
form of expectation values of the operators representing
these parameters. The nucleus-nucleus correlation functions
also provide some information on the structure of the system
in different states. This is why we calculate them in this
work.

TABLE II. Some expectation values calculated for the v=0,1 , . . . ,17 pure vibrational states of the HD mol-
ecule with the wave functions expanded in terms of 6000 Gaussian basis functions. r1 is the proton-deuteron
distance, r12 is the proton-electron distance, r2 is the deuteron-electron distance, and r23 is the electron-electron
distance. All values are in a.u.

v �r1
−1
 �r12

−1
 �r2
−1
 �r23

−1
 �r1
 �r12
 �r2


0 0.701 604 0.903 137 0.903 336 0.580 391 1.442 229 1.571 475 1.571 185
1 0.678 247 0.885 723 0.885 916 0.567 188 1.525 466 1.615 340 1.615 045
2 0.655 416 0.868 827 0.869 017 0.553 909 1.611 666 1.660 573 1.660 274
3 0.632 995 0.852 392 0.852 580 0.540 481 1.701 337 1.707 414 1.707 110
4 0.610 856 0.836 358 0.836 543 0.526 813 1.795 127 1.756 170 1.755 863
5 0.588 858 0.820 661 0.820 843 0.512 800 1.893 872 1.807 243 1.806 932
6 0.566 838 0.805 226 0.805 406 0.498 313 1.998 672 1.861 160 1.860 847
7 0.544 602 0.789 969 0.790 147 0.483 192 2.110 994 1.918 632 1.918 317
8 0.521 916 0.774 787 0.774 962 0.467 236 2.232 850 1.980 632 1.980 316
9 0.498 483 0.759 551 0.759 723 0.450 187 2.367 070 2.048 534 2.048 219
10 0.473 920 0.744 095 0.744 264 0.431 700 2.517 744 2.124 326 2.124 013
11 0.447 707 0.728 193 0.728 359 0.411 308 2.691 073 2.211 022 2.210 713
12 0.419 115 0.711 526 0.711 688 0.388 344 2.896 901 2.313 409 2.313 107
13 0.387 065 0.693 614 0.693 771 0.361 813 3.152 050 2.439 660 2.439 368
14 0.349 818 0.673 669 0.673 822 0.330 104 3.488 476 2.605 300 2.605 021
15 0.304 222 0.650 232 0.650 381 0.290 250 3.978 035 2.845 252 2.844 992
16 0.242 954 0.619 804 0.619 947 0.235 220 4.847 562 3.270 036 3.269 800
17 0.125 229 0.562 135 0.562 272 0.124 370 8.990 613 5.305 639 5.305 431

�r23
 �r1
2
 �r12

2 
 �r2
2
 �r23

2 
 �	�r2�
 �	�r12�
 �	�r23�


0 2.196 970 2.104 322 3.131 202 3.130 094 5.781 954 0.226 358 0.225 817 1.623 741�10−2

1 2.252 414 2.400 880 3.319 670 3.318 524 6.083 447 0.220 403 0.219 909 1.532 194�10−2

2 2.310 815 2.723 569 3.520 409 3.519 224 6.408 235 0.214 785 0.214 031 1.443 487�10−2

3 2.372 761 3.075 939 3.735 250 3.734 027 6.760 769 0.209 490 0.208 819 1.357 086�10−2

4 2.438 994 3.462 531 3.966 554 3.965 293 7.146 758 0.204 483 0.204 060 1.273 480�10−2

5 2.510 465 3.889 253 4.217 405 4.216 107 7.573 627 0.199 749 0.199 062 1.191 085�10−2

6 2.588 407 4.363 964 4.491 923 4.490 592 8.051 202 0.195 312 0.194 663 1.110 056�10−2

7 2.674 447 4.897 328 4.795 712 4.794 350 8.592 702 0.191 097 0.190 494 1.030 321�10−2

8 2.770 780 5.504 243 5.136 602 5.135 215 9.216 355 0.187 081 0.186 217 9.488 991�10−3

9 2.880 444 6.206 153 5.525 852 5.524 447 9.947 977 0.183 329 0.182 699 8.681 950�10−3

10 3.007 754 7.035 020 5.980 201 5.978 787 10.825 33 0.179 746 0.178 873 7.861 124�10−3

11 3.159 130 8.040 927 6.525 771 6.524 361 11.906 26 0.176 380 0.175 645 6.990 626�10−3

12 3.344 576 9.306 869 7.205 610 7.204 219 13.284 36 0.173 161 0.172 319 6.091 455�10−3

13 3.580 871 10.982 07 8.096 601 8.095 249 15.123 60 0.170 086 0.169 266 5.130 368�10−3

14 3.899 335 13.368 41 9.353 099 9.351 815 17.747 00 0.167 168 0.166 455 4.083 583�10−3

15 4.369 402 17.203 22 11.349 10 11.347 92 21.923 45 0.164 377 0.163 381 2.920 116�10−3

16 5.208 489 25.115 61 15.407 83 15.406 80 30.331 32 0.161 721 0.160 921 1.604 434�10−3

17 9.227 924 88.796 61 47.382 17 47.381 33 94.702 91 0.159 219 0.158 686 1.688 639�10−4
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III. THE RESULTS

In Table I we show the total energies for all 18 pure
vibrational states obtained in the calculations. For each state,
the energy values obtained with basis sets ranging in size
from 1000 to 6000 in increments of 1000 are shown. As one
can see, the convergence, as expected, is much better for the
lowest states than for the highest states. This is related to the
increasingly higher oscillatory nature of the wave function as
the excitation level increases, which requires a larger number
of basis functions in the wave function expansion. The con-
vergence level achieved in the present calculations is quite
sufficient for the present results to be by far the most accu-
rate ever obtained for the pure vibrational states of the HD
molecule. However, as the energies of the higher states are
not converged tight enough yet, the transition frequencies
between the consecutive levels could not be calculated with
the accuracy equivalent to the experiment. We estimate that
it will take approximately 10 000 basis functions or more per
state to achieve such a sufficient accuracy level. Such calcu-
lations will be performed in the near future. In the mean
time, the present results are sufficiently accurate to study the
charge asymmetry in HD as a function of the vibrational
excitation and this is the focus of the present work.

Before we turn to the discussion of the asymmetry of the
electron charge distribution in HD, let us first use plots of the

proton-deuteron correlation functions for some lowest, inter-
mediate, and highest states to describe the states calculated
in this work. As mentioned, the states correspond to pure
vibrational excitations. However, as in non-BO molecular
calculations of such states the motion of the nuclei couples
with the motion of the electrons, the term “vibrational” can
only approximately be used to characterize these states be-
cause the vibrational and electronic states mix to some small
degree in the calculations. A more correct term is “rotation-
less” because these states correspond to the zero total angular
momentum of the system. Due to the mixing, the vibrational
quantum number, which is usually associated with the num-
ber of nodes in the vibrational part of the wave function, is
not, strictly speaking, a good quantum number because there
can be small components in the total wave functions where
the vibrational parts have different number of nodes than the
main component. However, one can still use the vibrational
quantum number for ordering the energy levels as we do in
this work.

The wave function of each rotationless state of HD is
spherically symmetric with respect to the center of the inter-
nal coordinate system. Thus, spherically symmetric are also
the corresponding deuteron-proton correlation functions. To
show this, we present in Fig. 1 the densities for the v=0, 7,
8, and 17 states plotted as two-dimensional functions. We
could have plotted the correlation functions as one-
dimensional graphs, but we have chosen two-dimensional
representations to better demonstrate the fact that, if the BO
approximations is not assumed, the HD wave functions in
the internal coordinate systems are atomlike. The concentric
rings on the correlation function plots correspond to the ra-
dial maxima of the density function. As one can see, the
higher excited states are represented by fast oscillating and
more spatially extended functions than the lower states. A
wave function with a larger number of oscillations requires
more Gaussian functions in the basis set than a less oscillat-
ing wave function of a lower state. Also, the r1

mk factors in the
Gaussians for higher excited states usually have broader
power distributions than for the lower states.

The nonrelativistic wave functions obtained for the v
=0,1 , . . . ,17 states were used to determine the expectation
values mentioned before. The values are shown in Table II.
Among them there are expectation values of operators de-
pendent on the proton-deuteron distance �r1�, the electron-

TABLE III. Convergence of the difference between the �r12
 and �r2
 expectation values for the v=0, 1, 7, 8, 16,
and 17 pure vibrational states of the HD molecule with the number of basis functions. All values are in a.u.

v

No. of basis function

2000 3000 4000 5000 6000

0 0.000 290 0.000 290 0.000 290 0.000 290 0.000 290
1 0.000 295 0.000 295 0.000 295 0.000 295 0.000 295

. . .
7 0.000 315 0.000 313 0.000 313 0.000 313 0.000 313
8 0.000 320 0.000 316 0.000 316 0.000 316 0.000 316

. . .
16 0.000 259 0.000 243 0.000 238 0.000 237 0.000 236
17 0.000 215 0.000 209 0.000 208 0.000 208 0.000 208

FIG. 2. The difference between the average proton-electron and deuteron-
electron distances, �r12
− �r2
, calculated with 6000 term wave functions for
all eighteen pure vibrational states of the HD molecule.
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deuteron distance �r2�, the electron-proton distance �r12�, and
the electron-electron distance �r23�. Some of these quantities
allow characterization of the asymmetry of the HD electron
charge distribution. For example, the difference between the
�r12
 and �r2
 expectation values describes how much closer,
on average, an electron approaches the deuteron than the
proton in the HD molecule. The difference in the two expec-
tation values are plotted in Fig. 2. Also, in Table III we show
how the difference converges with the number of functions
in the basis set for some selected lower, intermediate, and
higher states. The convergence is quite satisfactory. The
��r12
− �r2
� difference shows that the charge asymmetry
changes with the vibrational excitation and it is the highest
for the v=8 state and the lowest for the v=17 state. The
asymmetry change with the vibrational excitation should re-
sult in the HD dipole moment also changing. Even though
the dipole moment is very small, in relative terms, it may
change by as much as 50% as the molecule de-excites from
v=17 to v=8.

IV. SUMMARY

In this work we performed very accurate nonrelativistic
non-BO calculations of the complete vibrational pure �rota-
tionless� spectrum of the HD molecule. For each of the 18
bound vibrational states the wave function was expanded in
terms of up to 6000 explicitly correlated Gaussians. A full
optimization of the Gaussian exponential parameters was
performed for each expansion. The non-BO wave functions
were used to evaluate some expectation values of operators
dependent on the deuteron-electron and proton-electron dis-

tances and on two-particle contact terms. These expectation
values revealed an asymmetry of the electron charge distri-
bution. They also showed that the asymmetry changes with
the vibrational excitation. It is the smallest for the lowest and
the highest vibrational states and the largest for the interme-
diate states.
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