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In this work we consider explicitly correlated complex Gaussian basis functions for expanding the
wave function of an N-particle system with the L=1 total orbital angular momentum. We derive
analytical expressions for various matrix elements with these basis functions including the overlap,
kinetic energy, and potential energy �Coulomb interaction� matrix elements, as well as matrix
elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals
with respect to the Gaussian exponential parameters are also derived and used to calculate the
energy gradient. All the derivations are performed using the formalism of the matrix differential
calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is
convenient for the theoretical analysis and the computer implementation. The new method is tested
in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the
positronium molecule �with the negative parity�. Both calculations yielded new, lowest-to-date,
variational upper bounds, while the number of basis functions used was significantly smaller than in
previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in
the minimization of the variational energy. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2894866�

I. INTRODUCTION

Variational calculations on small atoms, molecules, and
other bound quantum systems employing correlated basis
functions explicitly dependent on the interparticle distances
have proven to be a powerful tool for obtaining highly accu-
rate solutions of the Schrödinger equation. Perhaps the most
promising basis functions in such calculations are explicitly
correlated Gaussians �ECGs�. Functions of this type possess
a very attractive feature—all the necessary matrix elements
with them can be evaluated analytically for an arbitrary num-
ber of particles. In the case of other types of basis functions
it often becomes difficult, if not impossible, to extend the
number of particles beyond three or four. This unique prop-
erty of the Gaussians has stimulated an interest in using them
in very accurate atomic and molecular calculations.

In one of our previous works1 we considered spherically
symmetric ECGs with complex exponential parameters. As
we showed, these types of functions can be used to calculate
bound states with zero total orbital angular momentum of
both atoms and molecules using an approach that does not
assume the Born–Oppenheimer approximation regarding the
separability of the nucleus-electron motion. The use of the
complex exponential parameters in the Gaussians gives these
basis functions the necessary flexibility in expanding the
wave function that simultaneously depends on the coordi-
nates of the electrons and the nuclei �nucleus in the atomic
case�. In a subsequent work2 we showed that the complex
Gaussians can be also employed in calculating the leading

molecular relativistic corrections. In the variational optimi-
zation of the wave function in the applications presented in
Refs. 1 and 2 we used the analytic gradient of the energy
with respect to complex Gaussian exponential parameters.
The formulas for calculating derivatives of the integrals in-
volved in the energy expression and used to calculate the
gradient were also presented in those works.

In this work we extend the approach of very accurate
calculations of atomic and molecular systems with complex
Gaussians to states with the L=1 total orbital angular mo-
mentum. Although atomic calculations with ECGs for states
with nonzero total angular momentum have been done be-
fore by other authors �see, for example Refs. 3 and 4�, nei-
ther of those works involved complex Gaussians nor the ana-
lytical gradient of the energy with respect to the Gaussian
exponential parameters.

The presentation of this work includes the following.
First we introduce the Hamiltonian, the notation used in the
derivations, and the basis functions for representing the L
=1 states. Next we explain the action of the permutation
operators applied to the basis functions to achieve the correct
permutational symmetry of the wave function. Then we
present the derivation of the Hamiltonian and overlap matrix
elements, as well as matrix elements for calculating some
other quantities that are commonly computed in the calcula-
tions of small atoms and molecules. Next, we derive the
matrix elements needed for computing the analytic gradient
of the energy with respect to the Gaussian exponential pa-
rameters. In the last part of the work we show some test
numerical examples.a�Electronic mail: bubin@email.arizona.edu.
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II. HAMILTONIAN

We consider a nonrelativistic Coulombic system consist-
ing of N particles. Let Ri be the position vector of the ith
particle in the laboratory Cartesian coordinate frame, Mi be
its mass, and Qi be its charge. The nonrelativistic Hamil-
tonian of the system is

Ĥlab = − �
i=1

N
1

2Mi
�Ri

2 + �
i=1

N

�
j�i

N
QiQj

Rij
. �1�

Here �Ri
is the gradient with respect to Ri and Rij = �R j

−Ri� is the distance between the ith and jth particle.
As we are interested in the bound states of the system, in

the first step we need to separate out the motion of the center
of mass from the laboratory frame Hamiltonian �1�. In the
approach we use for this separation, we place one particle in
the origin of the new, internal, Cartesian coordinate system.
This particle is called the reference particle. Then we refer
the other particles to the reference particle using the relative
coordinates ri=Ri+1−R1. These coordinates, together with
the three coordinates describing the position of the center of
mass, r0, are our new coordinates. With the total mass of the
system denoted as Mtot=�i=1

N Mi, the coordinate transform
looks as follows:

r0 =
M1

Mtot
R1 +

M2

Mtot
R2 + ¯ +

MN

Mtot
RN,

r1 = − R1 + R2,

r2 = − R1 + R3,

]

rn = − R1 + RN, �2�

while the inverse coordinate transformation is

R1 = r0 −
M2

Mtot
r1 −

M3

Mtot
r2 − ¯ −

MN

Mtot
rn,

R2 = r0 + �1 −
M2

Mtot
�r1 −

M3

Mtot
r2 − ¯ −

MN

Mtot
rn,

R3 = r0 −
M2

Mtot
r1 + �1 −

M3

Mtot
�r2 − ¯ −

MN

Mtot
rn,

]

RN = r0 −
M2

Mtot
r1 −

M3

Mtot
r2 − ¯ + �1 −

MN

Mtot
�rn. �3�

Upon the transformation �2�, the laboratory frame
Hamiltonian �1� separates into a Hamiltonian describing the
motion of the center of mass of the system and the following
“internal” Hamiltonian:

Ĥ = −
1

2
��

i=1

n
1

mi
�ri

2 + �
i�j

n
1

m0
�ri

��rj� + �
i=1

n
q0qi

ri
+ �

i�j

n
qiqj

rij
,

�4�

where n=N−1, the prime symbol denotes the matrix/vector
transposition, rij = �r j −ri�, mi=Mi+1, qi=Qi+1, and �i

=m0mi / �m0+mi�. The Hamiltonian �4� describes the motion
of n pseudoparticles with masses mi and charges qi in the
central field of the reference particle. The motions of the
pseudoparticles are coupled through the mass polarization
term �i�j

n �1 /m0��ri
��rj

and through the Coulombic interac-
tions dependent on the distances between the pseudoparticles
and the origin of the internal coordinate system, ri, and on
the relative distances between the pseudoparticles, rij.

For convenience, the Hamiltonian �4� can be rewritten in
the matrix form. To do that we combine the coordinates of
the pseudoparticle positions and the corresponding gradients
into two 3n-component column vectors,

r =	
r1

r2

]

rn


, �r =	
�r1

�r2

]

�rn


 . �5�

With that we have

Ĥ = − �r�M�r + �
i=1

n
q0qi

ri
+ �

i�j

n
qiqj

rij
. �6�

Here M=M � I3 is the Kronecker product of the n�n matrix
M and the 3�3 identity matrix I3. The diagonal elements of
matrix M are 1 / �2m1� ,1 / �2m2� , . . . ,1 / �2mn�, while all off-
diagonal elements are equal to 1 /m0.

III. THE NOTATION

Throughout this work we express the formulas in the
matrix form that has the advantage in terms of simplicity and
convenience for the theoretical analysis and the computer
implementation. The derivations in the matrix form are based
on the formalism of the matrix differential calculus. A de-
tailed introduction to this subject can be found, for example,
in Ref. 5 The notation we use is similar to that used in our
previous works,1,6–8 although due to the peculiarities of the
complex Gaussian basis functions used in this work, the no-
tation had to be modified somewhat.

The problem of N particles, or, as described by the in-
ternal Hamiltonian �4�, the problem of n pseudoparticles
moving in the three-dimensional �3D� space involves dealing
with two kinds of vectors and matrices. Vectors of the first
kind have n components �n2 for matrices� and each of them
represents a quantity associated with a certain particle. The
second kind of vectors and matrices represent quantities in
the 3D space. These two kinds of vectors and matrices need
to be clearly distinguished in our notation. Moreover, we
often have to deal with direct products of the n-dimensional
particle space and the 3D space, which result in the appear-
ance of Kronecker products of n�n and 3�3 matrices. In
addition, the derivations also involve matrices whose size is

114107-2 S. Bubin and L. Adamowicz J. Chem. Phys. 128, 114107 �2008�

Downloaded 27 Mar 2012 to 129.59.117.132. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



K�K, where K is the length of the the expansion of the
wave function in terms of the basis functions. For clarity we
adopt the following notation rules:

• �, �, �, etc.—lower-case Greek letters are used for sca-
lars.

• a, b, x, etc.—lower-case Latin letters are used for col-
umn vectors in the particle space. These vectors have n
components.

• �, �, �, etc.—bold font in the lower-case Greek letters
is used to denote vectors in the 3D space. These have
three components.

• a, b, x, etc.—bold font in the lower-case Latin letters is
used to denote vectors in the n�3 space. These have 3n
components. For example, r�= �r1x ,r1y ,r1z ,r2x , . . . ,rnz�.

• �, 	, 
, etc.—upper-case Greek letters are used for
matrices in the 3D space. These are 3�3 matrices.

• A, B, X, etc.—upper-case Latin letters are used for ma-
trices in the particle space. These are n�n matrices.

• A, B, X, etc.—bold font in upper-case Latin letters is
used to denote matrices in 3n-dimensional space. These
are 3n�3n matrices.

• A � �, x � �, etc.—� stands for the Kronecker product
of two matrices �this also applies to vectors, as they are
considered to be rectangular matrices�.

• A�, A�, a�, �� etc.—the prime stands for matrix or vec-
tor transpose.

• A*, A*, a*, �* etc.—the star stands for the complex
conjugate. If applied to a matrix �vector� then there is
no transposition involved; i.e., the result is a matrix
�vector� whose elements are complex conjugates of the
elements of the original matrix �vector�.

• A†, A†, a†, �† etc.—the dagger stands for matrix �vec-
tor� transpose followed by the complex conjugation.

• A−1, A−1, �−1—stands for the inverse of the matrix.

• diag A, diag A, diag �—the action of the diag operation
results in all off-diagonal elements of a matrix set to
zero, while the diagonal elements remain unchanged.

• �A�, �A�, ���—vertical bars stand for the determinant of
the matrix. However, if the object in between the verti-
cal bars is a vector or a scalar then the bars denote the
absolute value of the vector �scalar�.

• tr A, tr A,tr �—tr stands for the trace of the matrix.

• I3, In—letter I is only used for identity matrices, so that
I3 is the 3�3 identity matrix, In is the n�n identity
matrix, etc.

• A, B, X, etc.—upper-case Latin letters written with the
sans-serif font are used for matrices in the space of the
basis functions. These are K�K matrices, where K is
the length of the the variational expansion �basis size�.

For example, Skl denotes the overlap matrix element
between the kth and lth basis functions.

• a, b, x, etc.—lower-case Latin letters written with the
sans-serif font are used for vectors in the space of the
basis functions. These vectors have K components.

• The common rules of the matrix multiplication are as-
sumed. For example, the AB product of two matrices is
an n�n matrix, the a�b product of two vectors is a
scalar, the ab� product of two vectors is an n�n matrix,
etc.

The above notation convention applies to all formulas
presented in this work. There are, however, a few exceptions,
where we kept the traditionally used symbols for some quan-
tities. These few exceptions are obvious and should not cause
any confusion to the reader.

In the section of this work that deals with the energy
derivatives with respect to the exponential parameters of the
basis functions �the energy gradient� we use two operators,
vec and vech. They both transform a matrix into a vector.
The first operator, vec, stacks the columns of a matrix one
underneath the other. Thus, it transforms a n�n matrix into
an n2-component vector. For example, if X is a 2�2 matrix
with elements Xij, then vec X is the following four-
component vector:

vec X =	
X11

X12

X21

X22


 . �7�

The second operator, vech �its abbreviature comes from
“vector half”�, also stacks the columns of a matrix, one un-
derneath the other, but for each column only the diagonal
element of the matrix present in that column and all the
elements positioned below this diagonal element are used in
the stacking. Hence, vech transforms an n�n matrix into a
n�n+1� /2-component vector. For example, if X is a 3�3
matrix with elements Xij, then

vech X =	
X11

X12

X13

X22

X23

X33


 . �8�

The vech operator is used for symmetric matrices; in this
case vech X contains only independent elements of X.

Finally, let us list a few useful properties of the vec and
vech operators. If X and Y are arbitrary complex square ma-
trices, and L is a complex lower triangular matrix then

�vec X��vec Y = tr�X�Y� , �9�
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�vec X��vec L = �vech X��vech L . �10�

In the case when X is an arbitrary complex matrix and Y is a
symmetric complex matrix we have the following relation-
ship:

�vec X��vec Y = �vech�X + X� − diag X���vech Y . �11�

IV. BASIS FUNCTIONS

The general form of the basis functions for describing
the L=1 states used in this work is

�k = zmk
exp�− r�Ckr� � zmk

exp�− r���Ak + iBk� � I3�r� .

�12�

Here mk is an integer that depends on k with values from 1 to
n. Ak and Bk are n�n symmetric matrices that represent the
real and imaginary parts of Ck, respectively. The subscript k
in each of these matrices reflects the fact that they are unique
for each basis function. In general, neither Ak nor Bk has to
be symmetric, but one can always rearrange their elements in
such a way that they become symmetric without changing
the quadratic form r�Ckr. Since it is more convenient to deal
with symmetric matrices, we assume in this work that Ak and
Bk are symmetric.

Any basis function used in a bound state calculation
must be square integrable. This effectively imposes a restric-
tion on the elements of Ak �but not Bk�. Matrix Ak must be
positive definite. To assure positive definiteness, we repre-
sent Ak in the form of the Cholesky decomposition, Ak

=LkLk�, where Lk is a triangular matrix �the so-called
Cholesky factor�. As any positive definite matrix can be rep-
resented in the Cholesky-factored form, such a representation
automatically makes Ak positive definite. There is a signifi-
cant practical advantage of using the Cholesky-factored form
for Ak. That rests in the fact that there is no need to impose
any restrictions on the elements of Lk. Thus, in the varia-
tional optimization of the basis functions, the elements of Lk

can be varied with no restrictions in the range �−� , +��.
Thus, in the variational optimization of the Lk matrices we
can use very fast and efficient algorithms designed for the
unconstrained optimization. This would not be the case if the
variational parameters were the elements of matrix Ak.

In the derivations we will often use the following alter-
native representation of the basis functions �12�:

�k = � �

��k
exp�− r�Ckr + �kzmk

��
�k=0

= � �

��k
exp�− r�Ckr + �k�vk��r��

�k=0
, �13�

where �k is a parameter and vk is a vector whose all compo-
nents are zeros, except the 3mk component, which is set to
one. For example, in the case when n=2, and mk=1, the
six-component vector vk is

vk =	
0

0

1

0

0

0


 .

Furthermore, it is convenient to define the following
“generator” function for �k in Eq. �13�:


k = exp�− r�Ckr + �k�vk��r� . �14�

V. PERMUTATIONAL SYMMETRY

The trial wave function, and consequently the basis
functions used in the wave function expansion, should pos-
sess a certain symmetry with respect to the permutations of
identical particles involved in the system. This symmetry
depends on the nature of the particles �i.e., whether or not
they are bosons or fermions�. When the Hamiltonian of the
system is spin independent, it is possible to completely
eliminate the spin from the consideration and to only deal
with the spatial parts of the basis functions. The spin elimi-
nation often leads to nontrivial permutational properties of
the spatial parts. These properties and their implementation
can be handled by applying certain symmetry projectors,
which are linear combinations of permutational operators.
For a specific state of the system an appropriate symmetry
operator can be defined and its application to the basis func-
tions �such as Eq. �12�� generates functions that possess the
right symmetry for that state. A symmetry operator is a sum

of elemental operators, P̂�, which are products of some
transpositions �i.e., pair permutations�. We do not intend to
discuss here the ways of building the symmetry projectors.
Such methods have been developed and are well known �see,
for example, Ref. 9�. Here we only wish to discuss the action
of the permutational operators on the basis functions �12�
and �14�, as well as some details related to the implementa-
tion of the permutational symmetry.

A permutation of the real particles �i.e., not the

pseudoparticles� involved in a permutational operator P̂ can
be represented as a linear transformation of the laboratory
frame coordinates R of the particles. Since the relation be-
tween the laboratory coordinates R and the internal coordi-
nates r is linear, the transformation of the internal coordi-
nates under the permutation of the particles is also linear.
Hence, it can be described by a permutation matrix, P= P

� I3. The application of P̂ to the basis functions �12� gives

P̂�l = P̂� �

��l
exp�− r�Clr + �l�vl��r��

�l=0

= � �

��l
exp�− �Pr��Cl�Pr� + �l�vl���Pr���

�l=0

= � �

��l
exp�− r��P�ClP�r + �l�P�vl��r��

�l=0
. �15�
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As one can see from Eq. �15�, the symmetry transforma-
tion of �l is equivalent to a similarity transformation of the
matrix of the nonlinear parameters for that basis function
�Al→P�AlP , Bl→P�BlP� and a linear transformation of the
corresponding vectors, vl→P�vl. Based on this, a procedure
for implementing the symmetry in calculating matrix ele-
ments with symmetry-projected basis functions can be devel-
oped. When evaluating these elements, one simply needs to
compute a sum of elemental matrix elements, each of which
being determined with kth and lth basis functions whose ma-
trices of the nonlinear parameters, Ak and Al, and the corre-
sponding vectors vl were transformed according to Eq. �15�.

Furthermore, the operators whose matrix elements are
needed in the variational calculation �such as the Hamil-
tonian, etc.� usually commute with all the permutation opera-
tors involved in the symmetry projector. Due to this, the
evaluation of the matrix elements of such an operator can be
further simplified because the number of terms to calculate
can be usually reduced from g2 to g �where g is the number
of terms in the symmetry projector, i.e., the elemental per-
mutational operators�. Moreover, due to the hermicity of the
operator, one can always restrict the calculation to only those
terms that result from applying the permutational operators
to the ket because


P̂��k�Ô�P̂��l� = 
�k�Ô�P̂�
† P̂��l� = 
�k�Ô�P̂��l� . �16�

It is often important �particularly when computing the
derivatives of the Hamiltonian and overlap matrix elements
with respect to nonlinear parameters� to keep track of
whether the matrices and the vectors of the nonlinear param-
eters �Al, Bl, and vl� in a particular component of the matrix
element were transformed or not transformed with a permu-
tation symmetry operator. For this purpose we use the tilde
symbol to denote the transformed objects. For example,
when a basis function in the ket is transformed by a permu-
tational operator we write

��̃l� � P̂��l� . �17�

The matrices and the vector of the nonlinear parameters of
the basis function �̃l are

Ãl � P�AlP, B̃l � P�BlP, L̃l � P�LlP, ṽl � P�vl.

�18�

Since we often need to add matrices of the bra basis function
�the kth basis function� and to the corresponding matrices of
the ket basis function �the lth basis function�, let us also
define the following:

Akl � Ak + Al, Ãkl � Ak + Ãl, �19�

Bkl � − Bk + Bl, B̃kl � − Bk + B̃l, �20�

C̃kl � C
k
* + C̃l = Ãkl + iB̃kl. �21�

VI. MATRIX ELEMENTS

Two short general comments regarding the evaluation of
matrix elements need to be made. First, the matrix elements

of some operator Ô with the basis functions �12� can, in most
cases, be evaluated as derivatives of the corresponding ma-
trix elements calculated with the generator functions �14�,
i.e.,


�k�Ô��̃l� = � �

��k

�

��l


k�Ô�
̃l��

�k,�l=0
. �22�

This simple relation is frequently used in this work. Second,
when evaluating matrix elements with Gaussian basis func-
tions one often encounters the following general
p-dimensional integral:

�
−�

+�

exp�− x�Cx + y�x�dx =
�p/2

�C�1/2 exp�1

4
y�C−1y� , �23�

where x is a p-component vector of variables, y is a
p-component vector of constant values, and C is a symmetric
p� p matrix with a positive definite real part.

A. Overlap integral

We first evaluate the overlap integral between two gen-
erator functions �14�. This can be easily done by directly
applying formula �23�,



k�
̃l� = 

k�P̂�
l�

=� exp�− r�Ck
*r + �kv

k�r�P̂

�exp�− r�Clr + �kv
l�r�dr

=� exp�− r�C̃klr + ��kv
k + �lṽ

l��r�dr

=
�3n/2

�C̃kl�1/2
exp�1

4
��kv

k + �lṽ
l��C̃kl

−1��kv
k + �lṽ

l�� .

�24�

It is convenient to introduce an n-component vector vk

that has only one nonzero element in the mkth position. This
nonzero element is equal to 1. vk is related to vk by

vk = vk
� �z, �25�

where

�z = 	0

0

1

 . �26�

With this we can reduce the size of the matrices and the
vectors in Eq. �24� from 3n to n,
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k�
̃l� =
�3n/2

�C̃kl�3/2
exp�1

4
��kv

k + �lṽ
l��C̃kl

−1��kv
k + �lṽ

l�� .

�27�

In the above equation we used the fact that C̃kl
−1��C̃kl

� I3�−1= C̃kl
−1

� I3 and �C̃kl � ��C̃kl � I3 � = �C̃kl�3. The overlap
integral between two basis functions, �k and �l, can now be
obtained by a simple differentiation,


�k��̃l� = � �

��k

�

��l


k�
̃l��

�k,�l=0
=

�3n/2

2

vk�C̃kl
−1ṽl

�C̃kl�3/2
. �28�

Since in most situations matrix elements with normalized
basis functions are preferable we will present our final results
with such functions. The normalized overlap matrix element
is

Skl �

�k��̃l�

�
�k��k�
�l��l��1/2

=
��Ckk�3/2�Cll�3/2�1/2

�C̃kl�3/2

vk�C̃kl
−1ṽl

�vk�Ckk
−1vkvl�Cll

−1vl�1/2

= 23n/2� ��Lk����Ll��
�C̃kl�

�3/2 vk�C̃kl
−1ṽl

�vk�Ckk
−1vkvl�Cll

−1vl�1/2 . �29�

B. Kinetic energy integral

Before we proceed to evaluating the kinetic energy ma-
trix element with the basis functions �12�, we need to evalu-
ate the following auxiliary integral: 
�k �r�Wr � �̃l�, where
W=W � I3 is a complex symmetric matrix. Notice that the
requirement of the symmetrical character of matrix W is not
necessary. We use it here to simplify the derivation. By ap-
plying the transformation W← �W+W�� /2 matrix W can
always be made symmetric without changing the quadratic
form r�Wr. The above integral can be calculated as follows:


�k�r�Wr��̃l� = � −
�

��

�k�exp�− �r�Wr���̃l��

�=0

= � −
�

��

�3n/2

2

vk��C̃kl + �W�−1ṽl

�C̃kl + �W�3/2
�

�=0

.

�30�

Here we need to recall two relations from the matrix differ-
ential calculus. If X is an arbitrary matrix then the differential
of its determinant and its inverse are given by

d�X� = �X�tr�X−1dX� , �31�

d�X−1� = − X−1�dX�X−1. �32�

By applying Eqs. �31� and �32� to �30� we get


�k�r�Wr��̃l� =
�3n/2

2

1

�C̃kl�3/2
�3

2
tr�C̃kl

−1W�vk�C̃kl
−1ṽl

+ vk�C̃kl
−1WC̃kl

−1ṽl�
= 
�k��̃l��3

2
tr�C̃kl

−1W� +
vk�C̃kl

−1WC̃kl
−1ṽl

vk�C̃kl
−1ṽl

� .

�33�

Now, when the �r operator acts on function �14� we get

�r
k = �− 2Ckr + �kv
k�
k. �34�

Using this relation, the matrix element of the kinetic energy
operator with functions �14� can be written as



k�− �r�M�r�
̃l� = 
�− 2Ckr + �kv
k�
k�M��− 2C̃lr + �lṽ

l�
̃l�

= 4

k�r�Ck
†MC̃lr�
̃l�

− 2�l

k�r�Ck
†Mṽl�
̃l�

− 2�k

k�vk�MC̃lr�
̃l�

+ �k�lv
k�Mṽl

k�
̃l� . �35�

To get the kinetic energy matrix element with basis functions
�12� from the matrix element with the generator functions
�14� we differentiate the last expression with respect to the
parameters �k and �l and set both parameters to zero at the
end. The first term on the right-hand side of Eq. �35� for

functions �12� is equal to 4
�k �r�Ck
†MC̃lr � �̃l� or

2
�k �r��Ck
†MC̃l+ C̃lMCk

†�r � �̃l�. The latter expression con-
tains a symmetric matrix in parentheses and can be evaluated
using formula �33�. The second and third terms in Eq. �35�
are −2

k � �vk�r��r�Ck

†Mṽl� � 
̃l� and −2

k � �vk�MC̃lr�
��ṽl�r� � 
̃l� �in both �k and �l are set to zero�. These are

very similar to the overlap integral 
�k � �̃l�. The difference is
only the fact that in the second term we need to replace
vector vl with Ck

†Mṽl, and in the third term vector �vk�� with
vk�MCl. The fourth term on the right hand side of Eq. �35� is
vk�Mṽl

k � 
̃l� after setting �k=�l=0. Now, putting all the
terms together we get


�k�− �r�M�r��̃l� = 4
�k��̃l��3

4
tr�C̃kl

−1�Ck
†MC̃l + C̃lMCk

†��

+
1

2

vk�C̃kl
−1�Ck

†MC̃l + C̃lMCk
†�C̃kl

−1ṽl

vk�C̃kl
−1ṽl

�
− �3n/2vk�C̃kl

−1Ck
†Mṽl

�C̃kl�3/2

− �3n/2vk�MC̃lC̃kl
−1ṽl

�C̃kl�3/2
+ �3n/2vk�Mṽl

�C̃kl�3/2
.

�36�

After some rearrangement we obtain the following final for-
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mula for the matrix element of the kinetic energy operator
with the normalized basis functions

Tkl = Skl�6 tr�C̃kl
−1ClMC̃k

†� + 4
vk�C̃kl

−1C̃lMCk
†C̃kl

−1ṽl

vk�C̃kl
−1ṽl

� .

�37�

C. Potential energy integral

Let us begin with defining the matrix Jij =Jij � I3, which
will be useful in the further derivations. The matrix is

Jij = �Eii if i = j

Eii + Ejj − Eij − Eji if i � j ,
� �38�

where Eij is a matrix with 1 in the i , jth position and 0’s
elsewhere. Using Jij we can now write the squares of the
interparticle distances as the following quadratic forms:

ri
2 = r�Jiir ,

rij
2 = r�Jijr .

In order to evaluate the matrix elements of the potential en-
ergy operator, we need to determine the following Coulomb
integrals 
�k �1 /ri � �̃l� and 
�k �1 /rij � �̃l�. To do this we use
the following transformation:

��k� 1

rij
��̃l� =

2
��
�

0

�


�k�exp�− �2r�Jijr���̃l�d�

= ��3n−1�/2�
0

� vk��C̃kl + �2Jij�−1ṽl

�C̃kl + �2Jij�3/2
d� . �39�

Notice that the vector-matrix-vector product in the above ex-
pression can be written as the following trace:

vk��C̃kl + �2Jij�−1ṽl = tr��C̃kl + �2Jij�−1ṽlvk�� . �40�

Moreover, it is easy to show that the following equality holds
true:

tr��C̃kl + �2Jij�−1ṽlvk��

�C̃kl + �2Jij�3/2

= − � 2

3

�

��

1

�C̃kl + �ṽlvk� + �2Jij�3/2�
�=0

. �41�

The determinant on the right-hand side of Eq. �41� can be
expressed as

�C̃kl + �ṽlvk� + �2Jij� = �C̃kl + �ṽlvk���I + �2�C̃kl + �ṽlvk��−1Jij�

= �C̃kl + �ṽlvk���1 + �2tr��C̃kl

+ �ṽlvk��−1Jij�� , �42�

which is a consequence of the fact that matrix �C̃kl

+�ṽlvk��−1Jij has rank one and its only nonzero eigenvalue is
equal to its trace. After all the above-mentioned manipula-
tions, the expression for the Coulomb integral becomes

��k� 1

rij
��̃l� = −

2��3n−1�/2

3 � �

��

1

�C̃kl + �ṽlvk��3/2

��
0

� d�

�1 + �2tr��C̃kl + �ṽlvk��−1Jij��3/2�
�=0

=
��3n−1�/2

�C̃kl�3/2 � tr�C̃kl
−1ṽlvk��

�tr�C̃kl
−1Jij��1/2

−
1

3

tr�C̃kl
−1ṽlvk�C̃kl

−1Jij�

�tr�C̃kl
−1Jij��3/2 � . �43�

Using the normalized basis functions this matrix element be-
comes �we denote it as Rkl

ij�:

Rkl
ij =

2
��

Skl

�tr�C̃kl
−1Jij��1/2

��1 −
1

3 tr�C̃kl
−1Jij�

vk�C̃kl
−1JijC̃kl

−1ṽl

vk�C̃kl
−1ṽl

� . �44�

The matrix element Rkl
i corresponding to the Coulomb term

1 /ri can be obtained by simply replacing Jij→Jii in the ex-
pression �44�.

The Rkl
i ’s and Rkl

ij’s can now be used to determine the
complete potential energy matrix element as

Vkl = �
i=1

n

q0qiRkl
i + �

i�j

n

qiqjRkl
ij . �45�

D. Matrix elements with the Dirac delta function
and related quantities

Computing many important properties of a quantum me-
chanical system often involves the evaluation of matrix ele-
ments with the 3D Dirac delta function. In this section we
consider a few such quantities. In the three-dimensional delta
function the argument of the function is a vector in the 3D
space. If, for example, � is this argument, then by definition
��������x����y����z�.

We first derive a general expression for the matrix ele-
ment with the Dirac delta function in the following form:

��a1r1 + a2r2 + ¯ + anrn − �� = ���a � I3��r − �� , �46�

where a is a real n-component vector and � is a real 3D
parameter. Notice that matrix a � I3 on the right-hand side of
Eq. �46� is a n�3 rectangular matrix.

We use the following representation of the delta func-
tion:

���a � I3��r − �� = lim
�→�

��

�
�3/2

�exp�− ���a � I3��r − ��2� . �47�

The exponent in the above expression can be rewritten using
the mixed-product property. This property states that if X, Y,
Z, and W are matrices of such size that they can form prod-
ucts XZ and YW, then �X � Y��Z � W�=XZ � YW and
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exp�− �r��aa� � I3�r + 2���a � I3����r − ��2� . �48�

The matrix element of the delta function with functions �14�
is then



k����a � I3��r − ���
̃l�

= lim
�→�

��

�
�3/2

exp�− ��2�

k�exp�− �r��aa� � I3�r

+ 2���a � I3����r��
̃l� . �49�

The integral on the right-hand side of Eq. �49� is similar to
the overlap integral �Eq. �24�� and can be easily evaluated.
Thus we get



k����a � I3��r − ���
̃l�

= lim
�→�

��

�
�3/2

exp�− ��2�
�3n/2

�C̃kl + �aa��3/2

�exp�1

4
��kv

k + �lṽ
l + 2��a � I3����

���C̃kl + �aa��−1
� I3���kv

k + �lṽ
l + 2��a � I3���� .

�50�

Here, similarly to the transformations performed in Eq. �42�,
we can write the determinant in the last expression as

�C̃kl + �aa�� = �C̃kl��1 + �tr�C̃kl
−1aa���

= �C̃kl��1 + �a�C̃kl
−1a� . �51�

Also, we can evaluate the inverse matrix in the second ex-
ponent by using the Sherman–Morrison formula, which
states that for an arbitrary invertible matrix X and vectors y
and z, such that 1+z�X−1y�0, the following applies:

�X + yz��−1 = X−1 −
X−1yz�X−1

1 + z�X−1y
. �52�

Finally, we just need to take the limit of the entire expression
for �→�. This, though a bit lengthy, is quite straightfor-
ward. At the end, after some simplifications, we arrive with
the following expression for the matrix element:



k����a � I3��r − ���
̃l�

=
�3�n−1�/2

�C̃kl�3/2�a�C̃kl
−1a�3/2

�exp� 1

a�C̃kl
−1a

�1

4
��kv

k + �lṽ
l����a�C̃kl

−1a�C̃kl
−1

− C̃kl
−1aa�C̃kl

−1���kv
k + �lṽ

l�

+ ��kv
k + �lṽ

l��C̃kl
−1a��z��� − �2�� . �53�

In order to compute the matrix element with functions �12�,
we now need to differentiate the above matrix element with
respect to �k and �l and set both parameters to zero. This
yields the following:


�k����a � I3��r − ����̃l�

=

�k��l�

�3/2�a�C̃kl
−1a�3/2

��1 +
1

a�C̃kl
−1a

vk�C̃kl
−1aa�C̃kl

−1ṽl

vk�C̃kl
−1ṽl

��2
��z���2

a�C̃kl
−1a

− 1��exp�−
�2

a�C̃kl
−1a

� . �54�

The formula �54� represents a general case and, with an ap-
propriate choice of vector a, it can be used to calculate ma-
trix elements of operators representing the pair correlation
functions, the densities of pseudoparticles, etc.

The definition of the pair correlation function is

gi��� = 
����ri − �����, i = 1, . . . ,n , �55�

gij��� = 
����rij − �����, i, j = 1, . . . ,n, i � j , �56�

where � is the wave function of the system. The pair corre-
lation function represents the probability density of particles
1 and i+1 �formula �55�� or particles i+1 and j+1 �formula
�56�� to have relative separation �. Notice that the lower-case
Latin symbol g does not indicate here that the corresponding
quantity has n components but is used following the tradi-
tional notation to denote the correlation function. The matrix
elements gkl

i ��� and gkl
ij��� are obtained by setting a in Eq.

�54� to be equal to a= ji and a= j j − ji, respectively, where ji is
an n-component vector whose ith component is one, while
all others are zeros. It is worth noting that vectors ji and j j

− ji have the following direct relation to matrices Jii and Jij:

ji�ji�� = Jii, �j j − ji��j j − ji�� = Jij . �57�

Using this, we can write gkl
ij��� as

gkl
ij��� =

Skl

�3/2 tr�C̃kl
−1Jij�3/2

��1 +
1

tr�C̃kl
−1Jij�

vk�C̃kl
−1JijC̃kl

−1ṽl

vk�C̃kl
−1ṽl

��2
��z���2

tr�C̃kl
−1Jij�

− 1��exp�−
�2

tr�C̃kl
−1Jij�

� . �58�

The definition of the density of particle i in the center-
of-mass coordinate frame is the following:

�i��� = 
����Ri − r0 − �����, i = 1, . . . ,N . �59�

This quantity gives the density distribution of the ith particle
with respect to the center of mass of the system. Ri−r0 can
be expressed through the internal coordinates using formulas
�3�. In this case we get the delta function �46� with a being a
vector with the following components:

aj = � j,i−1�1 − �i,1� − mj/Mtot, �60�

where �i,j is the Kronecker symbol.
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When L=1, the pair correlation functions and the par-
ticle densities in the center-of-mass frame, as well as any
other quantity whose matrix elements are related to 
�����a
� I3��r−�����, have the axial symmetry. Notice that if the
mass of particle 1 is infinite then �i���=gi���, because in this
case the center of mass is located on this particle. Similarly,
when the mass of particle k is infinite we get �i���
=gi−1,k−1���.

Equation �54� is important because it can be used to
evaluate the matrix elements of any function of ri or of a
linear combination of ri’s. Suppose this function is ���a
� I3��r�. The matrix elements of � can be obtained as


�k����a � I3��r���̃l� =� 
�k����a � I3��r − ��

���̃l�����d� , �61�

which reduces the problem to a 3D integral. In the case when
� depends only on the absolute value of its argument, Eq.
�61� simplifies further to a one-dimensional integral that in
most cases can be easily evaluated analytically.

E. Interparticle distances

The expectation values of various powers of the inter-
particle distances are often the quantities of interest in atomic
and molecular calculations. The matrix elements of �ri�� and
�rij��, where � is a real number ���−3�, can be evaluated
using relation �61� with a= ji and a= j j − ji as


�k�rij
� ��̃l� =� 
�k���rij − ����̃l���d� . �62�

After the integration we obtain the following expression:


�k�rij
� ��̃l� = 
�k��̃l�

2
��

��� + 3

2
�tr�C̃kl

−1Jij��/2

��1 +
�

3

1

tr�C̃kl
−1Jij�

vk�C̃kl
−1JijC̃kl

−1ṽl

vk�C̃kl
−1ṽl

� , �63�

where ��. . .� is the Euler gamma function. Notice that, when
�=−1, this formula reproduces Eq. �44�. Also, for �=2, the
formula gives the same result as in Eq. �33� with W=Jij.

VII. ENERGY GRADIENT

Variational calculations with ECGs can provide very ac-
curate energies and wave functions. However, such calcula-
tions usually consume large quantities of computer time. The
main reason for this is that the energy depends strongly on
the choice of the exponential parameters of the Gaussians. In
order to achieve the high accuracy of the results, one needs
to perform a computationally very costly optimization of
these parameters. It should be said that finding an absolute
minimum of the energy with respect to the Gaussian param-
eters for a long expansion of the wave function in terms of
Gaussians �hundreds or thousands of basis functions� is al-
most a hopeless task. The number of parameters is simply
too large and the hypersurface of the energy function is too

complicated to find its absolute minimum. For long expan-
sions of the wave function, a single point energy calculation
usually takes a considerable amount of time �one has to
evaluate all necessary Hamiltonian matrix elements and
solve a general symmetric/Hermitian eigenvalue problem�
and, as the variational optimization involves multiple energy
evaluations, the calculation is never carried to a complete
convergence. However, it is never necessary to find the glo-
bal minimum of the energy. It is usually enough to find a
sufficiently low point. Instead of spending large amounts of
computational time searching for the global minimum for a
particular basis set with a smaller size, it is better to add
more basis functions to the set and lower the energy this way.
It does not mean, however, that the optimization of the
Gaussian exponential parameters can be avoided. Quite the
contrary, it still has to be performed quite thoroughly. In
general, finding the right balance between the amount of ef-
fort spent on the optimization and on increasing the basis
size �which also requires large amounts of computer time� is
not an easy task and involves guesses, trials, and, most of all,
experience.

One of the approaches that aims to simplify the choice of
the Gaussian parameters is the so-called stochastic varia-
tional method �SVM�.3,10 The idea of the method is simple:
one increases the basis by one �or several� function�s� at a
time, choosing from a certain number of randomly generated
candidates. The chosen function�s� are those that lower the
energy the most. Upon including a new basis function to the
basis, one can also optimize its parameters using conven-
tional optimization algorithms. The procedure is repeated un-
til the desired basis size or the desired accuracy is reached.
The generation of the random candidates may be based on a
distribution of the exponential parameters of the basis func-
tions already included in the set. After a certain number of
new functions are added to the basis set, one may also apply
a procedure which we call the “cyclic optimization.” This
procedure optimizes the entire basis set by tuning the param-
eters of only one function at a time, one after another. This
cycle may be performed once or repeated several times. Op-
timizing the parameters of only one function at a time, as
well as the random selection of the parameters of only one
function at a time, has a certain advantage. In this case, when
the parameters of the optimized function change during the
optimization, one has to recalculate only one row and one
column of the Hamiltonian and overlap matrices. Whether
one uses the SVM and optimizes just one function at a time
or one optimizes all basis functions simultaneously, the en-
ergy has to be evaluated a large number of times. The opti-
mization can be accelerated by utilizing the energy gradient
with respect to the exponential parameters of the basis func-
tions. Unfortunately, the calculation of the finite-difference
gradient is very costly. To reduce the cost of the optimiza-
tion, in our previous works1,6–8 we used the analytic gradient
of the energy with respect to the Gaussian exponential pa-
rameters. Even though the implementation of the analytic
gradient requires additional work, it dramatically speeds up
the calculation. The use of the analytic gradient is especially
important when a simultaneous optimization of all basis

114107-9 Explicitly correlated complex Gaussian basis functions with L=1 J. Chem. Phys. 128, 114107 �2008�

Downloaded 27 Mar 2012 to 129.59.117.132. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



functions is performed. Such optimization is necessary for
quantum systems where basis functions are very strongly
“coupled” and the strategy based on the optimization of one
function at a time is inefficient �the coupling means that
when the parameters of one basis function change, the pa-
rameters of some other function�s� have to also change in
order to lower the energy�.

In this section we first explain the procedure for the con-
struction of the analytic gradient and then we derive all the
necessary matrix elements for the gradient calculation.

A. Construction of the energy gradient

In the Rayleigh–Ritz variational scheme the wave func-
tion of the system, �, after the elimination of the spin vari-
ables �which can always be done when the interparticle in-
teractions do not depend on the spin�, is approximated as a
linear combination of K basis functions �k,

��r� = �
k=1

K

ckŶ�k�r� . �64�

Here Ŷ is some permutational symmetry projector �a linear

combination of permutational operators, P̂�� and ck are the
linear variational parameters.

The minimization of the energy functional with respect
to the parameters ck leads to the secular equation

�H − �S�c = 0, �65�

where H and S are K�K Hermitian matrices of the Hamil-
tonian and overlap integrals, with the elements Hkl

= 
�k�ĤŶ†Ŷ��l� and Skl= 
�k�Ŷ†Ŷ��l�, respectively. c is a
K-component vector of the linear parameters ck.

The solutions of Eq. �65� give upper bounds � to the
exact ground and excited state energies of the system. The
corresponding sets of the linear parameters c define the wave
functions. There exist K solutions of Eq. �65�, but, for the
sake of avoiding using an additional index, we will assume
that we are interested in a particular solution.

By taking the differential of Eq. �65�,

d�H − �S�c = �dH�c − �d��Sc − ��dS�c + �H − �S�dc

�66�

and multiplying by c† from the left we obtain

d� = c†�dH − �dS�c . �67�

In the above equation we assumed that the wave function is
normalized so that c†Sc=1. The relation �67� is essentially
the same as the well known Hellmann–Feynman theorem.

Now let us assume that �t is some nonlinear parameter,
on which the basis function �t depends. It is obvious that
only the elements in the tth row and tth column of the ma-
trices H and S depend on �t. Thus, the derivative of an
arbitrary element of H �as well as S� can be written as

�Hkl

��t
=

�Hkl

��t
��kt + �lt − �kt�lt�, k,l,t = 1, . . . ,K . �68�

From Eqs. �67� and �68� it is easy to find that the derivative

of the total energy, �, with respect to the parameter �t, is

��

��t
= c

t
*�

l=1

K

cl� �Htl

��t
− �

�Stl

��t
� + ct�

l=1

K

c
l
*� �Hlt

��t
− �

�Slt

��t
�

− ctct
*� �Htt

��t
− �

�Stt

��t
�

= 2 Re�c
t
*�

l=1

K

cl� �Htl

��t
− �

�Stl

��t
��

− ctct
*� �Htt

��t
− �

�Stt

��t
� . �69�

By calculating such a derivative for each �k �k=1, . . . ,K� we
can get the entire energy gradient. In practice, it is advanta-
geous to evaluate the derivatives of � with respect to the
entire vech Lk and vech Bk vectors rather than doing this
separately for individual parameters �Lk�11, �Lk�21, . . . , �Lk�nn

and �Bk�11, �Bk�21, . . . , �Bk�nn. This is because the calculation
of the derivatives with respect to the elements of matrices Lk

and Bk involves many identical operations and repeating
them separately for each element is much less efficient than
calculating all of them in a single step.

As it can be seen from Eq. �69�, the calculation of the
gradient of � with respect to vech Lk and vech Bk involves
the following derivatives of the H and S matrix elements:

�Hkl

��vech Lk�
,

�Hkl

��vech Ll�
,

�Hkl

��vech Bk�
,

�Hkl

��vech Bl�
,

�Skl

��vech Lk�
,

�Skl

��vech Ll�
,

�Skl

��vech Bk�
,

�Skl

��vech Bl�
.

�70�

Next, we derive the expressions for these derivatives.

B. Overlap derivative

Let us first write out some useful auxiliary relations. The

differentials of Ck
† and C̃l are

dCk
† = �dLk�Lk� + LkdLk� − idBk, �71�

dC̃l = �dL̃l�L̃l� + L̃ldL̃l� + idB̃l. �72�

The differential of C̃kl is a sum of the two above differentials,

dC̃kl = �dLk�Lk� + LkdLk� − idBk + P��dLl�Ll�P

+ P�Ll�dLl��P + iP��dBl�P . �73�

Hence, the differential of the unnormalized overlap integral
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is

d
�k��̃l� = d
�3n/2

2

tr�ṽlvk�Ckl
−1�

�C̃kl�3/2

= − 
�k��̃l��3

2
tr�C̃kl

−1dC̃kl�

+
1

tr�ṽlvk�C̃kl
−1�

tr�K̃kldC̃kl�� , �74�

where K̃kl is the following matrix:

K̃kl = C̃kl
−1ṽlvk�C̃kl

−1. �75�

To simplify the further derivation we define the following
matrices:

F̃kl =
3

2
C̃kl

−1 +
1

vk�C̃kl
−1ṽl

K̃kl �76�

and

G̃kl = PF̃klP�. �77�

With that we have

d
�k��̃l� = − 
�k��̃l�tr�F̃kldC̃kl�

= − 
�k��̃l�tr�Lk��F̃kl + F̃kl� �dLk − iF̃kldBk

+ Ll��G̃kl + G̃kl� �dLl + iG̃kldBl� . �78�

Using the properties �9�–�11� we can now rewrite the last
expression as

d
�k��̃l� = − 
�k��̃l��vech��F̃kl + F̃kl� �Lk��d vech Lk

− i vech�F̃kl + F̃kl� − diag F̃kl��d vech Bk

+ vech��G̃kl + G̃kl� �Ll��d vech Ll + i vech�G̃kl

+ G̃kl� − diag G̃kl��d vech Bl� . �79�

It can now be seen that

�
�k��̃l�
�� vech Lk�

= − 
�k��̃l�vech��F̃kl + F̃kl� �Lk� , �80�

�
�k��̃l�
��vech Bk�

= i
�k��̃l�vech�F̃kl + F̃kl� − diag F̃kl� , �81�

�
�k��̃l�
��vech Ll�

= − 
�k��̃l�vech��G̃kl + G̃kl� �Ll� , �82�

and

�
�k��̃l�
��vech Bl�

= − i
�k��̃l�vech�G̃kl + G̃kl� − diag G̃kl� . �83�

It should be noted that in the case where k= l and P̂=1 we
get

�
�k��k�
��vech Lk�

= − 4
�k��k�vech�FkkLk� �84�

and

�
�k��k�
��vech Bk�

= 0, �85�

with

Fkk =
3

2
Ckk

−1 +
1

vk�Ckk
−1vkCkk

−1vkvk�Ckk
−1. �86�

Now we can determine the derivative of the normalized
overlap integral

�Skl

��vech Lk�
=

�

��vech Lk�

�k��̃l�

�
�k��k�
�l��l��1/2

=
1

�
�k��k�
�l��l��1/2
�
�k��̃l�

��vech Lk�

−
1

2


�k��̃l�
�
�k��k��3/2�
�l��l��1/2

�
�k��k�
��vech Lk�

= Skl vech��2Fkk − F̃kl − F̃kl� �Lk� , �87�

and similarly,

�Skl

��vech Bk�
= iSkl vech�F̃kl + F̃kl� − diag F̃kl� , �88�

�Skl

��vech Ll�
= Skl vech��2Fll − G̃kl − G̃kl� �Ll� , �89�

and

�Skl

��vech Bl�
= − iSkl vech�G̃kl + G̃kl� − diag G̃kl� . �90�

C. Kinetic energy derivatives

To simplify the expression we are to derive, let us intro-
duce the following abbreviations:

�1 = tr�C̃kl
−1ClMC̃k

†� , �91�

�2 = tr�ṽlvk�C̃kl
−1C̃lMCk

†C̃kl
−1� , �92�

�3 = tr�ṽlvk�C̃kl
−1� . �93�

With these abbreviations, the matrix element of the kinetic
energy operator �37� is

Tkl = Skl�6�1 + 4
�2

�3
� , �94�

and the differential of the kinetic energy matrix element is

dTkl =
Tkl

Skl
dSkl + Skl�6d�1 +

4

�3
d�2 − 4

�2

�3
2d�3� . �95�

The expressions for d�1, d�2, and d�3 in terms of dCk
† and

dC̃l can be easily obtained and they are
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d�1 = tr�C̃kl
−1C̃lMC̃lC̃kl

−1dCk
† + C̃kl

−1Ck
†MCk

†C̃kl
−1dC̃l� , �96�

d�2 = tr��K̃klC̃lMC̃lC̃kl
−1 − C̃kl

−1C̃lMCk
†K̃kl�dCk

†

+ �C̃kl
−1Ck

†MCk
†K̃kl − K̃klC̃lMCk

†C̃kl
−1�dC̃l� , �97�

d�3 = − tr�K̃kldCk
† + K̃kldC̃l� . �98�

Plugging Eqs. �96�–�98� into �95� and denoting

Ũkl = 6C̃kl
−1C̃lMC̃lC̃kl

−1 +
4

�3
�K̃klC̃lMC̃lC̃kl

−1

− C̃kl
−1C̃lMCk

†K̃kl� + 4
�2

�3
2 K̃kl, �99�

and

W̃kl = P�6C̃kl
−1Ck

†MCk
†C̃kl

−1 +
4

�3
�C̃kl

−1Ck
†MCk

†K̃kl

− K̃klC̃lMCk
†C̃kl

−1� + 4
�2

�3
2 K̃kl�P�, �100�

we get

dTkl =
Tkl

Skl
dSkl + Skl tr�ŨkldCk

† + W̃kldC̃l�

=
Tkl

Skl
dSkl + Skl tr�vech��Ũkl + Ũkl� �Lk��d vech Lk

− i vech�Ũkl + Ũkl� − diag Ũkl��d vech Bk

+ vech��W̃kl + W̃kl� �Ll��d vech Ll + i vech�W̃kl

+ W̃kl� − diag W̃kl��d vech Bl� . �101�

Hence, the derivatives of the normalized kinetic energy ma-
trix element are

�Tkl

��vech Lk�
=

Tkl

Skl

�Skl

��vech Lk�
+ Skl vech��Ũkl + Ũkl� �Lk� ,

�102�

�Tkl

��vech Bk�
=

Tkl

Skl

�Skl

��vech Bk�
− iSkl vech�Ũkl + Ũkl�

− diag Ũkl� , �103�

�Tkl

��vech Ll�
=

Tkl

Skl

�Skl

��vech Ll�
+ Skl vech��W̃kl + W̃kl� �Ll� ,

�104�

�Tkl

��vech Bl�
=

Tkl

Skl

�Skl

��vech Bl�
+ iSkl vech�W̃kl + W̃kl�

− diag W̃kl� . �105�

D. Potential energy derivatives

Here, again, to simplify the notation we introduce the
following abbreviations:

�1 = tr�JijC̃kl
−1� , �106�

�2 = tr�ṽlvk�C̃kl
−1JijC̃kl

−1� , �107�

and

�3 = tr�ṽlvk�C̃kl
−1� . �108�

The differential of the Coulomb integrals,

Rkl
ij =

2
��

Skl
1

�1
1/2�1 −

1

3

�2

�1�3
� ,

which make up the potential energy, is

dRkl
ij =

Rkl
ij

Skl
dSkl +

2
��

Skl
1

�1
3/2�1

2
� �2

�1�3
− 1�d�1

−
1

3

1

�3
d�2 +

1

3

�2

�3
2d�3� . �109�

Here

d�1 = − tr�C̃kl
−1JijC̃kl

−1�dCk
† + dC̃l�� , �110�

d�2 = − tr��C̃kl
−1JijC̃kl

−1ṽlvk�C̃kl
−1 + C̃kl

−1ṽlvk�C̃kl
−1JijC̃kl

−1��dCk
†

+ dC̃l�� , �111�

d�3 = − tr�C̃kl
−1ṽlvk�C̃kl

−1�dCk
† + dC̃l�� . �112�

If we denote

Q̃kl =
2

��

1

�1
3/2�1

2
�1 −

�2

�1�3
�C̃kl

−1JijC̃kl
−1

+
1

3�3
�C̃kl

−1JijC̃kl
−1ṽlvk�C̃kl

−1 + C̃kl
−1ṽlvk�C̃kl

−1JijC̃kl
−1�

−
�2

3�3
2 C̃kl

−1ṽlvk�C̃kl
−1� �113�

and

D̃kl = PQ̃klP�, �114�

then

dRkl
ij =

Rkl
ij

Skl
dSkl + Skl tr�Q̃kl�dCk

† + dC̃l�� =
Rkl

ij

Skl
dSkl

+ Skl�vech��Q̃kl + Q̃kl� �Lk��d vech Lk − i vech�Q̃kl

+ Q̃kl� − diag Q̃kl��d vech Bk + vech��D̃kl

+ D̃kl� �Ll��d vech Ll + i vech�D̃kl + D̃kl�

− diag D̃kl��d vech Bl� . �115�

From this expression we can get the derivatives of the po-
tential energy matrix element,
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�Rkl
ij

��vech Lk�
=

Rkl
ij

Skl

�Skl

��vech Lk�
+ Skl vech��Q̃kl + Q̃kl� �Lk� ,

�116�

�Rkl
ij

��vech Bk�
=

Rkl
ij

Skl

�Skl

��vech Bk�
− iSkl vech�Q̃kl + Q̃kl�

− diag Q̃kl� , �117�

�Rkl
ij

��vech Ll�
=

Rkl
ij

Skl

�Skl

��vech Ll�
+ Skl vech��D̃kl + D̃kl� �Ll� ,

�118�

�Rkl
ij

��vech Bl�
=

Rkl
ij

Skl

�Skl

��vech Bl�
+ iSkl vech�D̃kl + D̃kl�

− diag D̃kl� . �119�

Since the potential energy matrix element is a sum of the
Coulomb integrals, its derivative is a sum of the derivatives
of Rkl

ij and Rkl
i .

At the end of this section we would like to make a com-
ment concerning numerical implementation of the formulas
for the gradient of the kinetic and potential energies. These
contain many matrix products in the form XYṽlvk�Z and
XJijX, where X, Y, and Z are some arbitrary matrices. Such
products can be evaluated very efficiently if we take into
account the structure of the matrices ṽlvk� and Jij. As com-
monly applied, the XYṽlvk�Z product is evaluated as
�X�Yṽl���vk�Z�, which only requires matrix-vector and
vector-vector multiplications. The elements of the XJijX ma-
trix are given by the following simple relation:

�XJiiX�pq = �X�pi�X�iq,

�XJijX�pq = �X�pi�X�iq + �X�pj�X� jq − �X�pi�X� jq

− �X�pj�X�iq, i � j . �120�

VIII. NUMERICAL TESTS

In order to test the formulas derived in this work and to
illustrate the performance of the method, we have performed
calculations of two systems. The first system is the positro-
nium molecule �Ps2� in the L=1 state with the negative par-
ity. The second system is the beryllium atom in its lowest P
state. We chose these two systems because they provide non-
trivial cases for very accurate variational calculations. Also,
very accurate reference energies for these two systems have
been published in the literature. It was our goal to test our
new method for systems with at least four particles, as such
systems are likely to be the main target of the calculations
with ECGs we intend to perform in the future. For smaller
systems �three to four particles� it is possible to use other
types of explicitly correlated basis functions that often per-
form better than Gaussians.

Even though the positronium molecule consists of only
four particles, it is an important model because it represents
a case of a fully nonadiabatic system. While the correction to

the total energy due to the finite nuclear mass for an adia-
batic system �e.g., a molecule� is usually quite small, this
correction is much more significant for a nonadiabatic sys-
tem such as the positronium molecule. Thus, if there were an
error in the calculation of the kinetic energy and its gradient,
it might be difficult to detect and correct when the test is
performed for an adiabatic system. In the positronium mol-
ecule the masses of all particles are the same. To the best of
our knowledge, this is the only nonadiabatic system consist-
ing of more than three particles whose P-state energy is
known with very high accuracy. There are many other four-
particle systems �for instance, the Li atom� whose energies of
L=1 states have been determined very accurately, but all of
them are adiabatic or nearly adiabatic.

One more reason for using the Be atom and the Ps2

molecule in our tests is the fact that prior accurate calcula-
tions on these systems were carried out using ECGs. How-
ever, the optimizations of the exponential parameters in those
calculations were done without the analytic gradient. Thus,
the comparison of our results with those obtained in the prior
calculations gives us the opportunity to illustrate the advan-
tage of using the analytic gradient in the calculations.

Since the use of complex exponential parameters in the
Gaussians in the calculations of the Be atom and the Ps2

molecule is not strictly required �the use of complex param-
eters is unavoidable only in non-Born-Oppenheimer calcula-
tions on “true” molecules�, at this stage of the development
we decided to limit the implementation of the algorithms
presented in this work to Gaussians with real exponential
parameters. This is because the calculations with real param-
eters are substantially faster as all the required arithmetic
operations only involve the real arithmetic, which is signifi-
cantly less time consuming than the complex arithmetic. In
addition, the number of actual parameters that need to be
optimized in a calculation with real Gaussians is twice
smaller than in the case of complex Gaussians.

A. Positronium molecule „L=1, negative parity…

The stability of the positronium molecule in its ground
state was predicted by Hylleraas and Ore back in 1947.13

While numerous high accuracy calculations on Ps2 have been
performed since then, no calculation on an excited state was
reported until 1998. In the works of Varga and
co-workers11,12 it was shown that at least one excited state of
the positronium molecule should exist. This state has L=1,
S=0, and the negative parity. The reason for its existence is
that its decay into the ground states of two separate Ps atoms
is forbidden by symmetry. The nonrelativistic dissociation
threshold for the Ps2 state with L=1 and negative parity is
Ps�L=0�+Ps�L=1�=−0.3125 a.u.

After elimination of the spin variables, the properly sym-
metrized basis functions for the calculations of the Ps2 mol-
ecule in the negative-parity state with L=1 can be chosen as

�1 − P̂13P̂24��1 + P̂12��1 + P̂34��k, �121�

where �k is a nonsymmetrized basis function, which in our
case is a Gaussian �12� with Bk set to zero. In Eq. �121� we
assumed that particles 1 and 2 are positrons and particles 3

114107-13 Explicitly correlated complex Gaussian basis functions with L=1 J. Chem. Phys. 128, 114107 �2008�

Downloaded 27 Mar 2012 to 129.59.117.132. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



and 4 are electrons. P̂ij’s, as before, represent permutation
operators of particles i and j.

The Ps2 calculations have been carried out on a parallel
computer system. In the calculations we extended the basis
set gradually from 0 up to 500 basis functions using the
strategy similar to the SVM described above. Both the
Gaussian parameters and the indexes mk of the exponent pre-
multiplies zmk

were subject to the stochastic selection. When
optimizing the exponential parameters of a randomly se-
lected basis function, we used the analytic gradient. When
the basis size reached 100, 200, 300, 400, and 500 we also
performed a gradient-based optimization of the exponential
parameters of all basis functions simultaneously. The results
of the calculations are shown in Table I. For comparison, in
the same table we also present the total energies taken from
two other most recent works.11,12 As one can notice, for the
small basis set of 100 functions our energy is only margin-
ally better than that of Varga et al.11 This suggests that the
100 term wave function in that work11 was very thoroughly
optimized using the cyclic optimization described in the
book by Suzuki and Varga.3 However, with the increase of
the number of basis functions, the difference between the
energies reported in Refs. 11 and 12 and our values becomes
quite noticeable. In fact, our 300 term energy is significantly
lower then the 400 term value from work of Varga et al.11

and is not much higher than the 800 term energy from the
work of Usukura et al.12 With only 400 basis functions in the
calculation we were able to get a lower energy than the best
result reported by Usukura et al.12 and obtained with 1600
basis functions. Such a large difference in the basis set size
�by a factor of 4� between our calculations and the calcula-
tions by Usukura et al. clearly illustrates the importance of
the optimization of the exponential nonlinear parameters in
the variational calculation and the benefits of using the ana-
lytic gradient in this optimization.

The largest basis set we used in the calculations of Ps2

was 500 Gaussians. With this basis we obtained a new varia-
tional lower bound of −0.324 408 265 8 a.u. for the L=1
state of this system which we estimate to be converged to the
relative accuracy of 5�10−8.

B. 2 1P state of Be atom

The second system in our tests, the beryllium atom, has
four electrons and one heavy particle—the Be nucleus. In the

present work we decided to only consider the �Be atom,
where the nucleus mass is set to infinity, because such a
system was studied before with very high accuracy by Ko-
masa and Rychlewski using up to 1200 ECGs.4 But we
should note that we could have easily set the Be nucleus
mass to a finite value as our formalism allows us to do that.
From the purely technical point of view the actual value of
the mass of the nucleus does not have any significant effect
on the calculations and the amount of computational work
remains essentially the same regardless whether the mass is
finite or infinite.

The results of our calculations on the �Be atom versus
the corresponding values taken from the work of Komasa
and Rychlewski4 are presented in Table II. As one can see
from the table, for larger basis sizes, the ratio of the number
of basis functions that was necessary to reach a similar ac-
curacy in the case of the cyclic optimization �performed in
the work of Komasa and Rychlewski4� and in the case of the
simultaneous optimization of all basis functions using the
analytic gradient �performed in our calculations� is approxi-
mately 1.5, with our number of basis functions being lower.
With the basis set of 800 Gaussians, we already managed to
improve the best energy obtained by Komasa and
Rychlewski4 with 1200 basis functions. Our new variational
upper bound for the 2 1P state of Be is −14.473 442 537 a.u.
while their energy was −14.473 442 016 a.u. Though this is
only a marginal improvement it is significant that it has been
obtained with much fewer functions �800 versus 1200�. One
notices that in the case of the Be atom the difference in the
number of basis functions needed to reach a certain accuracy
is not as striking as it was in the case of the Ps2 calculations.
It indicates that Komasa and Rychlewski4 put a lot of effort
in the cyclic optimization of their basis sets.
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