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Non-Born—Oppenheimer study of positronic molecular systems: etLiH
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Very accurate non-Born—Oppenheimer variational calculations of the ground stateé.iéf have

been performed using explicitly correlated Gaussian functions with preexponential factors
dependent on powers of the internuclear distance. In order to determine the positron detachment
energy ofe’ LiH and the dissociation energy corresponding to eéh&iH fragmentation into HPs

and Li* we also calculated non-BO energies of HPs, LiH, and.LFor all the systems the
calculations provided the lowest ever-reported variational upper-bounds to the ground state energies.
Annihilation rates of HPs and*LiH were also computed. The dissociation energyedf.iH into

HPs and LT was determined to be 0.036 548 hartree. 2@04 American Institute of Physics.
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I. INTRODUCTION demonstrated that even very highly excited states with a

complicated node structure in the wave functions can be very

During the last several years very accurate methods fOfe| gescribed using such basis functions. In the present

describing the coupled electron—nuclear motion in feW'Work we test whether the basis can be applied in calculations

electron molecules have been developed in our Iaboré\toryof diatomic molecules containing positron. Our model sys-

Use of the explicitly one- and multi-center correlated Gauss;[em in the calculations is* LiH. The key question we ad-
ian functions as the basis for the wave function expansion s . ) e
has been the centerpiece of the development. We have rg_ress in this study is whether the explicitly correlated Gauss-

b i . jan basis with preexponential factor in the form of powers of
éhe internuclear distance is capable of providing a proper
preexponential multiplier are capable of very precisely reprof€Presentation for the positron-nucleus and positron-—
ducing the vibrational excitations of small diatomic electron correlation effects in a diatomic system. The calcu-

system€~* The question that has arisen is whether one cargtions of the HP. system seem to.indicate that, due to a sma-ll
use such basis functions in non-Born—Oppenheitmen- ~ Mass of the positron and a considerable overlap of the posi-
BO) quantum mechanical calculations of molecular diatomictron wave function with the function representing the nuclear
systems containing, besides electrons and nuclei, other paiotion, preexponential powers of the positron—nucleus dis-
ticles. One example of such a particle is the positron. Theréance do not need to be included in the basis functions. In the
has been considerable interest in the literature in smapresent calculations we verify whether this is also the case
positronic systems such as HP%and e*LiH.%*% While  for e"LiH.
calculations of the former system have not presented much Apart from the above-presented fundamental gquestion
difficulty using both finite-mass and infinite-mass ap- concerning the basis set for non-BO calculations of positron
proaches concerning the hydrogen nucleus, the calculatiomsolecules, the purpose of the present study is the very accu-
of e"LiH have appeared to be much more challenging parrate determination of the positron detachment energy of
ticularly when methods going beyond the Born—e*LiH and the dissociation energy corresponding to the
Oppenheimer approximation were employ&dt the core of  e*LiH fragmentation into HPs and i Annihilation rates
the difficulty encountered in Ref. 11, there has been the inof HPs ande™LiH are also computed.
ability of simple spherical explicitly correlated Gaussians to
describe the vibrational component of the non-BO wave
function. Similar difficulties have appeared in non-BO cal-
culations of conventional molecules.

To remedy the problem, we have implemented an explicil, THE HAMILTONIAN
itly correlated Gaussian basis set that contains preexponen-
tial factors in the form of powers of the internuclear  We begin with the full nonrelativistic Hamiltonian for
distance$™* Such powers allowed us to very accurately rep-the molecular system with the total number of partidiée
resent the radial behavior of the non-BO wave function anclectrons, the nuclei, and the positreequal ton+1. We
describe the nuclear—nuclear correlation effects, which iiﬂace the system in the |ab0ratory Cartesian coordinate sys-
crucial to achieving high accuracy in non-BO molecular cal-tem and write its total Hamiltonian so that no distinction is
culations. Our calculations of the vibrational spectrum of H made between the electrons, the nuclei, and the positron by
referring ton+ 1 general particles with massbt , charges
3E|ectronic mail: bubin@email.arizona.edu Qi , and positionRR;, wherei=1,..n+1:

taining powers of the squared internuclear distance in th
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n+1 n+1n+1 oo} Ill. MASS VALUES
~ I~]
i=1 i =1 > R We used the following values for the nuclear masses in

the calculations:m ;=12 786.393 5, (’Li isotope, my
=1836.152 667 B, taken from Refs. 14 and 15, whene,

In Eq. (1), Rj=|R;—R;| are interparticle distances. This stands for the mass of the electron.

Hamiltonian describes a system in which the motions of all

particles are coupled. Next we make a transformation to

separate the Hamiltonian representing the motion of the cen-

Fer of mass |r? thg IabcA)rator}/ coordinate system from th%v_ BASIS SET AND MATRIX ELEMENTS
internal Hamiltonian, H;,,=H, thereby reducing the

(n+1)-particle problem to am-pseudoparticle problem. |f In our calculations we used a basis of explicitly corre-
we choose to place a heavy partictaucleus 1 with mass  |ataq spherical Gaussians multiplied by powers of the inter-
M;) at the center of the internal Cartesian coordinate system, | jear distance. If we use to denote the Kronecker prod-

and define the internal coordinates of pseudoparticles;as: |\t of two matrices. the general form for these basis
=R;,1— Ry, the resulting internal Hamiltonian defined in functions is given by ’

terms of the coordinates is

=11 exd —r' (LLg®I)r], €)
1/ 1 !
A=->|> —V?+E —V/V, wherer is a 3nX 1 vector of the internal Cartesian coordi-
2 T m; 3] Ml . . .
nates of the pseudoparticles L, is annXxn lower triangu-
n Qo " i lar matrix of nonlinear variation parametets,is the 3x 3
+> —t > —, (2)  identity matrix, andr, is the internuclear distance. Raising
=1 i Sy this distance to powersn, moves the maximum of the

Gaussian away from the center of the coordinate system.
Such an effect is desirable because the maximum probability

wherer; =|r.—r,| and the prime(’) denotes vector/matrix of finding the second nucleus relative to the first one is
ij ] i

transposition. This Hamiltonian describes a system contaird’oUnd the equilibrium internuclear distance, which for the
ing a nucleus at the origin of the coordinates with charge>YStem studied in this work ranges between 2 and 4 bohrs.
4o=Q1; also in the system there arepseudoparticles, or The Kronecker product with the identity matrix ensures that

internal particles, which are characterized by the reducque basis functions are rotationally invariant and, hence, are
massesn, =M M. ,/(M;+M,.,) and charges;=Q, . ;. eigenfunctions of the square of the angular momentum op-

The second term in the parentheses is the mass polarizaticﬁ“t'iator correspondmg to the ZEr0 eigenvalue. Writing the ma-
term, which arises from the coordinate transformation. In thd"X Of nonlinear parameters in the Cholesky factored form as
1 . o . . .
potential energy tern, andr;; are defined as;;=|r;| and LiL is a convenient way to ensure that the quadratic form in
ri=|Ri 1~ Riq|=|ri—1i %he eigenfunction of this the Gaussian exponential is positively definite and, conse-
I I+ e . e . . .
HJamiItc])nian will be la function of the positions of af quently, the square integrability of the basis functions is au-

pseudoparticles, meaning that all the particles forming théomatically ensured. The expressions for all basic matrix el-
ements with basis functiong), such as overlap, kinetic and

system, including the electron, the nuclei, and the positron; _ ) o ;
are described by the wave function. potential energy, and their derivatives with respect to the
For example, fore*LiH, the internal Hamiltonian de- nonlinear variational parameters, can be found in the previ-
scribes the motions of six pseudoparticles in the central fiel@!S Work of our groug.Here we only present the expression
tdor the normalized matrix element of the delta function that

of a lithium nucleus placed in the center of the coordina : i ,
depends on an interparticle distane¥y;—r;). It has the

system:
y following form:
1/8 1 6 4 5 4o (plo(ri—rple)y 1 (|Ak||)3/2((D|:|l)11)(mk+m')/2
~ , oMi - — ’
A=—Z| 2 —Vi+ 2 ViV |+ 2 —— (ddda(dldy ™ \Dull L (AHn
2\ 9 m 7] My i=1 T 5
ST
)]
+i§<:j rj 3 whereA =L, +L,, A’ is the inverse o\, and the ver-

tical bars denote a determinant. Matiix, is formed from

matrix A,; by adding thejth row to theith row and thejth

column to the column and then crossing out tién column
whereM is the mass of the lithium nucleugg=3, q;=1, and row. Thus, matriD,, is the following (h—1)X(n—1)
0,=03=04s=0Qs=—1, andqg=1. matrix:
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A Ao Agit A Agja Agji Ain
Az Az Azt Ay Agj1 Agji1 Aon
Ai,l+Aj,l Ai,2+Aj,2 Ai,i+Ai,j+Aj,i+Aj,j Ai,j*l+A]—,j*1 Ai,j+l+Aj,j+1 Ai,n+Aj,n
Dk|_ . . . . . .
A1 Ai1p A1t A - Aji-1j-1 Aj-1j+1 ot Ajoin
Ajr11 Ajr12 Ajr1itAjra Ajr1j-1 Aj+1j+1 o Ajsan
An,l An,2 tt An,i +An,j tt An,jfl An,j+l tt An,n

(6)

Here we dropped indicdd denoting basis function numbers was being reoptimized by means of the gradient approach
for the sake of clarity. Thush; ; should be read as®() ;. applied consecutively to each basis function, one function at
By selecting the particularandj in Eq. (5) one can obtain a time. This continued until the number of basis functions
the average value of the delta function for a particular pair ofeached 3200 for each of the considered systems. 3200 was
the particles. just a practical limit of the number of functions that provided
In accordance with the Pauli principle, the basis func-an acceptable level of convergence of the energy for each of
tions (4) must have proper permutational symmetry so thathe considered systems and was feasible from the point of
the product of the spatial and spin part is antisymmetric withview of the computational power available for the calcula-
respect to interchanging the electron labels. In this work theions. Although this procedure has been proven to be quite
antisymmetrization was implemented using the standard apefficient in optimizations of large basis sets of correlated
proach based on Young operat¢sse, for example, Ref. 16  Gaussians, it still requires a lot of computational resources,
especially for systems with a larger number of particles and a
V. RESULTS large number of particle permutations in the Young symme-
] o try operators. To overcome this problem, the code we used
It is well known that the convergence of variational ex-,aq extensively parallelized for use on a multinode compu-
pansions in terms of correlated Gaussians strongly depengsiional system. For this purpose we used the Message Pass-
on how one selects the nonlinear parameters in the GaUSSi% Interface(MPI) and we were able to achieve sufficient
exponentials. In order to get high-accuracy results in the calparajielization level of the code for runs with 8—12 proces-
culations, one needs to perform optimizations of those pagqrs per task. This development enabled us to optimize rela-
rameters at some level. Due to a usually large number ofye|y |arge basis sets. The calculations were carried out on a
basis functions in non-BO calculations and, consequently, gjnyx Beowulf cluster at the University of Arizona Center of
large number of the exponential parameters, this task répresomputing and Information Technology.
sents a serious computational problem. The two most com-  The convergence of the energy values for HPs, LiH, and
monly applied approaches to the parameter optimization arg;+| iy in terms of the number of the basis functions is
a full optimization, which is very effective when the analyti- shown in Table 1. In the case of LiH arel LiH the powers
cal gradient of the variational energy functional with respectmk in Eq. (4) were selected from the interval of 0-200 and
to the parameters is available; and the method based on @y even values were used. The obtained distribution of
stochastic selection of the parameters. _ my’s had a mean value of 67.5 and the standard deviation of
In the present calculations we applied a hybrid methodyg 3 for LiH. The corresponding numbers fef LiH were
that combines the gradient-driven optimizations with the stogg g and 52.8. The higher mean value of the powers for
chastic selection method. In this approach we first generategh| i than for LiH can be explained by the longer equilib-

a relatively small basis set for each of the studied systemg,m distance of the former, which requires that the maxi-
using the full gradient optimization. This generated a good

starting point for each system for the next step of the proce-

dure. In this next step we applied the following strategy. VveTABLE |. Total non-BO energy in hartrees as a function of basis size.
incrementally increased the size of the basis set by including
additional basis functions one by one with randomly selected N HPs LiH e’LiH
values of the nonlinear parameters and values of the preex- g59 77888705040 —8.066278419  —8.103 075 429
ponential powers. After including a function into the basis 1200 -0.7888706398 —8.066344535  —8.103 905 788
set, we first optimized the power of its preexponential factor 1600 —0.7888706790  —8.066382950  —8.104 256 550
using the finite-difference approach and then the nonlinear 2000  —0.7888706940  —8.066404077  —8.104 478249
parameters in its exponent using the analytical-gradient ap- gggg :g;gg g;g ;gé‘; :g'ggg fég gg; :g'igj ‘Zgg gg;
proach. After adding several new basis functions using this 3500 07888707066  —8.066 427866  —8.104 739 913
approacHhthis number was 25 in most cagéise whole basis
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mum of the non-BO wave function in terms of the coor- TABLE Il. Expectation values of the Li—H internuclear distance, its square,
dinate is shifted to higher values. This shifting for Gaussianf”d electron—positron contact densities evaluatéd=a8200 function basis

. . . . . size. All quantities in atomic units.
is achieved by increasing the, values in therrlnk factors. i

Although a positronium hydride wave function can be ob-  system (rum) (rém) (8(re-e+))

tained with very high precision even without using powers of —
X ) . . s 2.448 55¢ 10

the hydrogen—positron distance in the preexponential factors |, 3.061 05 941977

in the basis functions, we did include some functions with e+ jH 3.444 70 11.9397 7.088 39103

small preexponential poweffrom 0 to 10 to ensure better
numerical stability in the calculations. The calculation of
HPs requires much fewer computational resources in com-

parison with those of LiH oe"LiH and including preexpo-  from the sum of the finite-mass energies of Li and H atoms
nential factors does not represent any problem. and by adding to the result the zero-point LiH energy. Using
The only previous attempt to calculate non-BO groundthe finite-mass energy of Li of-7.477 4519 hartree which
state energy oé"LiH was made in Ref. 11. In that work the one can calculate by using the expansion from the paper of
authors used a 580-term set of explicitly correlated Gaussyan and Draké? the corresponding value for the H atom of
ians without preexponential factors. Although the basis con--0,499 7278 hartree, and the zero-point LiH energy of
sisting of such functions is, in principle, complete, it revealsg.003 198 1 Hartreésee Ref. 19we obtain the LiH ground
a very slow convergence rate in the case when there is morgate energy corrected for the finite nuclear masses equal to
than one heavy particle in the system under consideration. As 8.066 459 hartree. The use of experimentally determined
a result, the energy 0f8.089 001 0 hartree obtained in Ref. zero-point energy of—0.003179&° shifts this value to
11 was far from being converged. For comparison, for the—8.066 478 hartree. The difference between this value and
same basis size, 580 functions, in our calculations we obeur non-BO result of-8.066 427 866 hartree is larger than
tained a significantly lower energy value equal tothe estimated sum of their inaccuracies. Although, perhaps,
—8.102 073 4 hartree. this may partially be attributed to relatively low accuracy of
From the lowest energy values shown in Table | one canhe zero-point energy, it is clear that the nonadiabatic effect
determine that the positron detachment energyeOEiH, of the coupled electron—nuclear motion must play a role in
PDE=E(e"LiH) —E(LiH), is 0.038312 hartree. The the difference.
lowest-energy fragmentation ef LiH corresponds to disso- In Table Il we present expectation values of the internu-
ciation of the system into HRsLi *. To calculate the disso- clear distance and its square for LiH aedLiH as well as
ciation energy, DEE(e"LiH) —E(Li")—E(HPs), one the electron—positron contact densities for HPs ahtiH
needs to determine the total energy of thé ion. Since the evaluated with the largest basis set of 3200 basis functions
non-BO calculation of this quantity is very simple, rather obtained in the calculations. It should be noted that the mean
than taking it from the literature, we recalculated it using ourinternuclear distance of LiH calculated here is slightly higher
method. A 400-term expansion was sufficient to obtain ahan the known value, 3.015 bohr, of the equilibrium nuclear
highly accurate result of-7.279 321518 hartree, where, we distance, i.e., the distance where the potential energy curve
believe, all the significant figures shown are exact. In theeaches its minimum. This is, obviously, an expected result
work of Mitroy and Ryzhikh'! we found the value of the ['i  since larger distances contribute more to the mean distance
ground state energy of7.279 325 hartree. We think that the when one averages the internuclear distance over the “vibra-
difference in the last digit of the result quoted by Mitroy andtional” part of the wave function. Foe™*LiH our r
Ryzhikh and the energy obtained in our calculation result{=r;) mean distance of 3.445 bohr agrees well with the
from the difference in the mass of the Li nuclei of equilibrium internuclear separation of 3.348 bohr obtained
12863.M, used by them and the value ofn; by Strasburgéf in the Born—Oppenheimer calculations.
=12786.393 5¢, used in our calculations. However, the Quantum Monte Carlo calculations of Mella
Given the values of the HPs and'Lenergies calculated et al? gave an unexpectedly large internuclear distance of
in this work in addition to that ok*LiH, our dissociation ~3.458 bohr. Itis possible, that, perhaps, this was due to rather
energy is 0.036 548 hartree. This value qualitatively agreetng distance between the points where the potential energy
with the value of 0.0382) hartree obtained in the Born— curve was computed and a relatively high “numerical noise”
Oppenheimer calculations by Mella and co-workérssing  in energies.
the Quantum Monte Carlo method. It also agrees with the ~An important characteristic of positronic systems rel-
Born—Oppenheimer result of 0.036936 obtained byevant to the experiment is their lifetimes. The expectation
Strasburgéf with the use of explicitly correlated Gaussians value of the electron—positron contact density allows one to
and the variational method. evaluate the two-photon annihilation rate for a positronic
The lowest variational energy upper-bound for theSystem using
Born—Oppenheimer LiH ground state energy to date is
—8.070538 hartre¥. Assuming that the energies of Li and I'y,=n
H with infinitely heavy nuclei are-7.478 060 3 and —0.5
hartree respectively, one obtains the infinite-mass dissociavhere« is the fine structure constargy is the Bohr radius,
tion energy of LiH of —0.092 477 7 hartree. The finite-mass c is the velocity of light, andn denotes the number of
energy of LiH can be estimated by subtracting this numbeelectron—positron pairs in the systéthand 4 in the case of

ma'c
ao <5(re’e+)>'
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HPs ande*LiH, respectively. The two-photon annihilation e*LiH without assuming the Born—Oppenheimer approxi-
rates we obtained in the present calculations are: 2.471@ation. The key point that allowed us to obtain high preci-
x10° s71 for HPs, 1.431k10° s™! for e*LiH. This indi-  sion results was the combination of stochastic selection of
cates that a positron attached to LiH survives much longethe basis functions with the use of the analytical gradient for
than in the HP system. The HP annihilation rate can be comeptimization of nonlinear parameters. We calculated the two-
pared with the result of Yan and Ho obtained in a finite-massgphoton annihilation rates for HPs aed LiH in the ground
calculation using Hylleraas coordinaté$HPs and with the  state. In future studies af"LiH it would be interesting to
explicitly correlated Gaussian calculatioperformed for  consider vibrationally excited states. The states that lie close
“HPs (HPs with infinitely heavy protonwhich both yielded to the dissociation limit may have annihilation rates that dif-
the value of 2.4722 10° s . In the case o' LiH we can fer significantly from the ground state. The nonadiabatic ef-
again make a comparison with the Born—Oppenheimefects in such states may play a more significant role than in
Quantum Monte Carlo result of Mella and co-workéithat  the ground state. However, the non-BO consideration of
yielded 1.4% 10° s~ (the vibrationally averaged respind ~ highly vibrationally excited states oé"LiH represents a
with the Born—Oppenheimer explicitly correlated Gaussiarievel of difficulty that exceeds the computational power
result of Strasburgé? where the value of 1.32510° s**  available to us at present time.
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