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Abstract
This thesis focuses on the study of two important aspects of physical human-robot
interaction (pHRI): perceived safety – the subjective feeling of safety of a human
operator in the physical presence of a robot – and perceived robot intelligence.

The first part of the thesis focuses on reviewing published papers with the goal of
understanding what factors influence these two aspects. It was found that, in general,
factors influencing the perception of safety are human-robot distance, robot speed,
direction of approach, robot size and appearance, motion fluency and predictability,
communication and smooth contacts. On the other hand, factors influencing the
perceived intelligence of a robot are transparency, animacy, trust, human-like appearance
and gestures; other aspects such as adaptability are also influencing perceived
intelligence not only for robots, but for intelligent agents in general. Habituation
also seems to influence perceived intelligence in some cases, causing it to increase.

The second part of the thesis is related to experiments to study the influence of
the above-mentioned factors. Experiments were run in which a human subject shared
the workspace with a collaborative manipulator while carrying out independent tasks.
Different algorithms were used to plan the motion of the robot, all of which applied
the safety standard known as speed and separation monitoring (SSM), i.e., the robot
speed was decreased proportionally to the distance with the human to guarantee that
the robot could stop before a collision occurred. One algorithm generated a fixed path
(FP) of the robot with SSM-based modulated speed. A second algorithm (based on
model predictive control, or MPC in short), kept updating the robot motion based on the
current human location, aimed at increasing productivity compared to the FP case. Two
variants of these algorithms (namely, FP-HR and MPC-HR) were specifically developed
in this thesis, to further decrease the robot speed based on heart rate measurements.

The analysis of the experimental results obtained for 48 subjects showed that MPC
was perceived as less safe than FP, which in turn was perceived as safer than FP-HR. The
first result was expected, as the MPC-generated motion is in general less predictable,
while the second was unexpected, and probably due to frequent pauses of the robot in
the FP-HR case. In general, it was observed that further reducing robot speed based on
heart-rate measurements did not improve perceived safety; this can be explained by the
presence of a lightweight collaborative robot and by the application of SSM, factors
that made the non-HR variants of the algorithms already perceived as sufficiently safe,
so that no improvement was noticed when introducing the HR-based variants of the
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Abstract

same algorithms. Also, participants did not find the robot more intelligent when its
motion was governed by more complex algorithms; this can be explained by a relative
lack of transparency. In other words, participants had no actual insight in the motion
planning algorithms, and did not manage to fully understand their differences during
experiments; this caused all algorithms to be perceived as equally intelligent.

Apart from differences between single algorithms, it was found that habituation
improved both perceived safety and perceived intelligence – indeed, each participant
interacted with the robot in four subsequent sub-sessions – and that the previous
experience of the participants in interacting with robots played no role in their perception
of safety and robot intelligence.
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Chapter 1

Introduction

1.1 Background

1.1.1 Physical human-robot interaction

Physical Human-Robot Interaction (pHRI) has become an increasingly important area
in robotics research. It consists of scenarios in which a human shares his or her physical
space with a robot. pHRI can take many forms, ranging from workspace sharing
while carrying out separate tasks, to collaborative tasks where humans and robots work
together to accomplish a shared goal. pHRI often involves the use of sensors, actuators,
and control algorithms to ensure safe and effective interaction between humans and
robots. The goal of pHRI is to create a seamless interaction between the human and
the robot, where the robot can understand and respond to the human’s intentions and
physical movements, and the human can feel safe and confident in the presence of the
robot. A desirable characteristic of pHRI is the human-centered design of robot control
and mechanics to enable the implementation of human-friendly behavior and actions [4].
This type of interaction is different from cognitive human-robot interaction, as pHRI is
based on how a user can interact physically with a robotic device, whereas cognitive
human-robot interaction refers to perception, awareness, and mental conditions [5].

Examples of pHRI scenarios include industrial robotics with robots working in
collaboration with human operators in factories [6,7], performing tasks such as assembly
and material handling [8–10]; medical robotics in which robots are performing surgeries,
rehabilitation exercises, or assisting with physical therapy [11, 12]; service robotics
where robots are performing tasks such as cleaning, security, or customer service in
public spaces [13]; domestic robotics, i.e., robots performing tasks such as cleaning,
cooking [14, 15], or assisting with elderly care in homes [16].

1.1.2 Safety in pHRI

When physically interacting with humans, robotic systems must meet certain constraints.
In particular, collisions between humans and robots at relatively high speeds can cause
severe human harm [17]. One of the most important criteria is to ensure safety for
both human operator and robot while they collaborate in the same space and interact
physically [5, 18].
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1. Introduction

Safety in pHRI was widely studied and observed in a number of survey papers,
such as [4, 5, 19–22]. Safety in pHRI is defined as the ability of the robot to avoid any
collision that can cause serious injuries to humans [4]. It involves the design of robots
and their behavior to minimize the possibility of physical injury, as well as ensuring that
the robots operate within their intended limitations. Additionally, safety protocols such
as emergency stop buttons or safety zones can be implemented for quick and effective
intervention in case of an unexpected interaction.

A number of standards were created in order to guarantee safety in pHRI and
ensure that any injuries suffered by human operators would be minor in the worst-case
situations [4]. ISO 10218 [23] and ISO/TS 15066 [24] are international standards for
safety in collaborative human-robot interaction. ISO 10218 specifies the requirements
for the design, integration, and use of industrial robots, with a focus on the safety of
human operators and other people in the vicinity of the robot. It covers topics such as
mechanical, electrical, and software safety, as well as safety-related control systems.
ISO/TS 15066 provides guidelines for the design and integration of collaborative robots
(cobots), which are designed to work alongside humans. These robots are typically built
using lightweight materials, do not present any sharp edges, have built-in limitations
of speed and force and/or sensor-based safety systems, for example to stop the robot
as quickly as possible after a contact is detected. ISO/TS 15066 covers the safety
requirements for cobots in terms of safety functions, performance, and risk assessment.
It also provides recommendations for the design of user interfaces, including tactile and
visual feedback. It takes into account cooperative operating methods and specifications,
including safety-rated monitored stops, speed and separation monitoring, and power
and force limiting [4]. In particular, speed and separation monitoring (SSM) requires
that the maximum allowed robot speed be proportional to the measured distance with
the human, so that the robot can come to a controlled stop before a collision occurs.

1.1.3 Perceived safety in pHRI

The ability of robots to guarantee the physical safety of users is not sufficient to make
the interaction stress-free and comfortable for humans [25], unless the robot is also
perceived as safe. From a psychological perspective, the theory of perceived safety
may be applied to a wide range of aspects of human life, including the present state of
health, background exposure to crime, financial circumstances, and socialization [26].
Perceived safety in pHRI is an important aspect to consider when developing robots
intended to interact closely with humans, such as in healthcare, industrial, or domestic
settings.

Factors that affect perceived safety include the robot’s physical design, its behavior,
and the level of transparency and control that the user has over its actions. The aim is to
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Motivation and research questions

design and deploy robots that are not only safe from a technical standpoint but also feel
safe for the people interacting with them.

The perceived safety of a robot in pHRI is assessed through various methods,
including user surveys, behavioral observations, physiological measurements, and
other methods of measuring attitudes and behaviors. These methods allow researchers
to gather data on how users perceive the robot behavior and movements and determine
whether they feel safe and comfortable in its presence. The results of these studies can
be used to inform the design of robots and their interactions with humans, ensuring
that they are perceived as safe and trustworthy. Both physical and perceived safety are
essential for creating the best possible engagement in a pHRI scenario [21].

1.1.4 Perceived intelligence in pHRI

In addition to perceived safety, perceived intelligence is important to guarantee a
seamless interaction between humans and robots during physical interaction. A robot
that is perceived as more intelligent is also trusted more, and this fact also contributes to
reducing stress [27]. The perceived intelligence of a robot in pHRI depends on various
factors, such as the robot design, behavior, and task in progress. In general, robots that
are able to perform complex tasks in an intuitive and human-like manner tend to be
perceived as more intelligent by humans. However, cultural and individual biases and
expectations also affect the perception of intelligence.

Perceived intelligence is typically assessed through various methods, such as
subjective ratings, behavioral observation, physiological measures, and surveys. The
employed methods depend on research questions and goals, but all of them aim to
gauge the human’s perception of the robot’s intelligence and abilities. Some common
metrics used to measure perceived intelligence include task performance, social skills,
and human-like qualities such as natural language processing, emotions, and empathy.
Ultimately, the assessment of perceived intelligence in human-robot interaction aims to
understand how humans perceive and interact with robots and to suggest the design of
more effective and socially acceptable robots.

1.2 Motivation and research questions

Based on the above-mentioned background concepts, perceived safety and perceived
intelligence are key metrics in pHRI because they determine how people might interact
with robots and perceive them. Humans will be more likely to approach robots and
interact with them if they are perceived as safe. If a robot is perceived as intelligent,
people will be more likely to believe that it can execute tasks effectively and will trust it
during interactions. By evaluating and optimizing these metrics, researchers can create
robots that are more useful to humans.
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1. Introduction

As collaborative robots are being increasingly used in today’s industrial practice,
this thesis focuses on their use under the ISO/TS 15066 standard, specifically via SSM.
The following research questions are considered:

Q1. How do perceived safety and perceived intelligence change if the robot path is
either fixed or modified in real time based on the current human position?

Q2. How do perceived safety and perceived intelligence change if the robot speed is
decreased in real time when the human operator feels unsafe?

Q3. How do perceived safety and perceived intelligence change due to habituation?

Q4. How do perceived safety and perceived intelligence change based on the
participants’ previous experience with the robot?

1.3 Thesis outline

Chapters 2 and 3 of the thesis provide a comprehensive survey of perceived safety and
perceived intelligence in pHRI. Chapters 4-6 focus on the experimental investigation of
the research questions. More precisely, we ran different motion planning algorithms for
determining the trajectory of a collaborative robot sharing its workspace with a human
operator. All these algorithms guaranteed safety via SSM. Either a fixed robot path or
a variable path determined online via optimal control (specifically, model predictive
control, or MPC in short), was used. For each of these two cases, a further speed
reduction of the robot could be imposed based on the measurement of the heart rate of
the participants, as a higher heart rate is typically associated to lower perceived safety.
This resulted in four algorithms: fixed-path (FP), fixed-path with HR-based speed
modulation (FP-HR), MPC, and MPC with HR-based speed modulation (MPC-HR). A
total of 48 subjects took part in the trials reported in this research, in which an Optitrack
optical motion capture system was used to detect the positions of different parts of
the participants’ bodies and deliver them in real time to the cobot control algorithm.
Similarly to Pollak et al.’s study [28] on physiological stress, in the experimental work
of this thesis perceived safety was assessed by questionnaires and by physiological
stress appraisal via HR detected by an Empatica E4 wristband.

The remainder of this thesis is structured as follows:

• In Chapter 2, an overview of the state-of-the-art research on perceived safety
in pHRI is provided, starting from the psychological framework of the terms
and concepts related to perceived safety. The reviewed articles are categorised
by the robot type used in the experiments into industrial manipulators, indoor
mobile robots, mobile manipulators, and humanoid robots, highlighting the main
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research themes of each category. The assessment methods that were applied
to measure the level of perceived safety are also considered; specifically, they
consist of physiological signals (such as heart rate, Galvanic skin response, and
eye gaze), different types of questionnaires, direct input devices, and behavioral
assessment (through video, photo, or audio recordings). Finally, the main factors
influencing perceived safety are identified.

• Chapter 3 presents a survey on perceived intelligence in human-robot interaction.
Similarly to the perceived safety overview, the assessment methods and robot
types used in experiments are introduced. After listing the main factors that
influence perceived intelligence, the focus is mainly on how the perception of
robot intelligence can change as participants gather more experience interacting
with the robot during the experiments (habituation).

• Chapter 4 shifts the focus to the experimental research conducted in our laboratory.
The four above-mentioned motion planning algorithms are described. The
differences between the FP and MPC algorithms, how the boundaries on the
cobot speed are established using SSM, and how the cobot velocity is adjusted
for the FP-HR and MPC-HR algorithms are all covered in detail.

• Chapter 5 describes research hypotheses, experimental design, experimental
procedure, participants, methods and measures used to test the hypotheses.

• Chapter 6 presents and discusses the results of the statistical analysis performed
on the collected data, including evaluations of robot productivity, perception of
robot safety and intelligence, habituation effects, and the influence of subjects’
prior experience with robots.

• Finally, Chapter 7 draws conclusions by discussing the main results of the
described research, summarizing the answers to the given research questions, and
making suggestions for further research and experiments.

1.4 Contributions

The main contributions of this thesis are the following:

C1. From the point of view of the motion planning algorithms, FP-HR and MPC-HR
were defined and implemented for the first time, building on the already existing
FP and MPC algorithms.

C2. The variation of perceived safety and intelligence of a manipulator was never
studied before in the following cases: (a) if the robot path is either fixed or
modified in real time based on the current human position, and (b) if the robot
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1. Introduction

speed is decreased in real time when the human operator feels unsafe. This is
true not only for cobots, but for robot manipulators in general.

C3. The variation of perceived safety and intelligence of a manipulator depending on
habituation or on previous experience were already studied in several contexts,
and this thesis provides further results, specifically for cobots and SSM-based
motion planning.

1.5 Related publications

Three publications are related to this thesis:

[1] M. Rubagotti, I. Tusseyeva, S. Baltabayeva, D. Summers, and A. Sandygulova,
“Perceived safety in physical human–robot interaction—A survey,” Robotics and
Autonomous Systems, vol. 151, pp. 1–22, 2022.

[2] I. Tusseyeva, A. Oleinikov, A. Sandygulova, and M. Rubagotti, “Perceived
safety in human–cobot interaction for fixed-path and real-time motion planning
algorithms,” Scientific Reports, vol. 12, no. 1, article no. 20438, 2022.

[3] I. Tusseyeva, A. Oleinikov, A. Sandygulova, and M. Rubagotti, “Evaluation of
perceived intelligence for a collaborative manipulator sharing its workspace with
a human operator,” in Proc. IEEE International Conference on Robot and Human
Interactive Communication, pp. 1–6, 2023

The survey paper [1] provides the background material for Chapter 2, while the research
papers [2, 3] contribute most of the results related to productivity, perceived safety [2]
and perceived intelligence [3] as explained in Chapters 4 to 7.
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Chapter 2

Perceived safety: literature
review

This chapter provides an overview on perceived safety in pHRI. We will start with
Sections 2.1 and 2.2, which will provide, respectively, a comparison of the content of
this chapter with previously published surveys covering perceived safety in pHRI, and a
summary of the contribution of this chapter. Then, in order to introduce the terminology
for understanding perceived safety, Section 2.3 will provide an explanation of terms
such as psychological/mental/subjective safety, stress, trust, fear, comfort, anxiety, and
surprise. In Section 2.4, we will review the evaluation tools used to measure people’s
reactions, attitudes, and feelings towards physical interaction with a robot. These
methods are based on the guidelines in [29, 30], but also include further considerations.
Sections 2.5-2.8 will analyze articles regarding the type of robot used in experiments
and precisely industrial manipulators [7, 28, 31–61], indoor mobile robots [62–74],
mobile manipulators [75–81], and humanoid robots [82–115]. As seen in Fig. 2.1, we
can observe the development of research over time on different types of robots. Robot
manipulators were the first to be researched, followed by humanoids. There seems to
have been a peak of interest in indoor mobile robots between 2005-2008, while the
number of papers on industrial manipulators and humanoid robots has drastically risen
in recent years.

2.1 Related survey papers

Perceived safety in pHRI was explored by researchers in various papers. Among
them is the paper by Bethel et al. [29] in which the authors describe how to measure
different psycho-physiological variables in pHRI. This type of assessment can be
applied to perceived safety appraisals. Task performance, behavioral, and self-report
measures were also described in combination with psycho-physiological measures. It
was concluded that, in order to gain a well-grounded estimate of the interaction between
robot and human, it would be more effective to use more than one of these evaluation
criteria.

The authors [30] analyzed the aspects of human perception of the robot in pHRI.
They formulated a standardized assessment method that contained the perceived safety
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evaluation through questionnaire items. The whole questionnaire was named Godspeed

questionnaire and, besides the safety perception, included anthropomorphism, animacy,
likeability, and perceived intelligence rates.

The focus of the survey [21] (specifically, of one of its chapters) was on safety
methods in pHRI. The authors stated that the assessment of perceived safety during
pHRI depended on robot characteristics such as robot appearance, distance to the human,
velocity, and acceleration. The second factor that affected the perceived safety rating
was the social considerations obtained from the observation of the communication of
humans and the social rules that were followed.

The main topic covered in the survey [116] was pHRI in industry, together with
its physical and psychological aspects. Collaborative robots, or cobots, should have
the capacity to move automatically using a combination of algorithms while at the
same time being able to react flexibly using cognitive capabilities (similarly to human
workers). The authors stated that these two factors would decrease the human cognitive
load by adjusting robot behavior during interaction.

The review paper [117] provided a comprehensive review of safety in pHRI,
including perceived safety. The authors focused on the basic robot functions, such as
perception, cognition, and action. The following safety measures used in pHRI systems
were described: physical, behavioral, and cognitive. In the section on psychological
and social factors, the authors referred to the categorization criteria described in [21].

Figure 2.1: Time evolution of the quantity of published articles for each robot type
(adapted from [1]).

8



Contribution of the present review

2.2 Contribution of the present review

We examined journal articles, conference proceedings, and book chapters published in
English in international venues up until the year 2020 to obtain the list of works to be
reviewed. These works all shared the following characteristics:

1. The paper describes real-world experiments where a moving robot and one or
more human participants share a workspace with the possibility of physical
contact (either using a real robot or a virtual reality setup);

2. The robot’s movement is either autonomously determined by a motion planning
algorithm or controlled via the Wizard-of-Oz method [118];

3. Either the measurement of physiological variables, questionnaires, direct input
devices, or observation of participant behavior are used to determine perceived
safety;

4. Considerations are made regarding the relationship between participant perception
of safety and robot behavior.

The review provided in this chapter presents a new overview of the topic as compared
to the above-mentioned survey papers. In particular, it reviews more than 80 papers,
whereas the previous surveys only focused on specific aspects (for example, [29, 30]
only analyzed assessment methods, and [21, 116, 117] focused on safety in pHRI in
general) and never analyzed the terminology related to perceived safety in pHRI.

2.3 Defining perceived safety

Different works describe the concept of perceived safety using various terms, which
can be synonyms, represent the same concept from different perspectives, or relate to a
lack of safety from various points of view. In this section, we provide definitions for
these terms from a broad psychological viewpoint and then narrow them down further
in the context of pHRI.

The terms listed in Section 2.3.1 express very similar ideas. The terms from Sections
2.3.2 and 2.3.3, however, refer to distinct aspects of perceived safety. For that reason,
Table 2.1 presents which of these terms are used in studies relating to each robot type.
In particular, in each row, the table lists the considered focus of the paper, which can be
trust, comfort, stress, fear, anxiety, and/or surprise. In each column, a different robot
type is considered. Almost all terms appear frequently for each kind of robot, with
“comfort” being the most popular one.
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Industrial
manipulators

Indoor
mobile robots

Mobile
manipulators

Humanoid
robots

Trust [48] [49] [50]
[52] [53] [54]
[56] [57] [59]
[61]

- [79] [81] [102] [103]
[106] [108]
[111] [112]
[113] [114]

Comfort [41] [43] [44]
[45] [46] [47]
[48] [49] [53]
[54] [55] [56]
[57] [59] [61]

[62] [63] [66]
[67] [68] [69]
[70] [71] [72]
[74]

[75] [76] [77]
[78] [79] [80]

[82] [84] [87]
[88] [89] [92]
[93] [94] [97]
[99] [102]
[103] [104]
[107] [108]
[110] [111]
[112] [113]
[114] [115]

Stress [33] [43] [46]
[48] [58] [28]

[67] [76] [86] [100]
[106] [115]

Fear [32] [37] [43]
[54] [56]

[69] [70] [71] [77] [81] [84] [85] [95]
[100] [105]
[104] [111]
[112] [114]

Anxiety [34] [35] [37]
[51] [59] [60]

[71] [75] [84] [85] [86]

Surprise [35] [43] [74] [75] [77] [79] [84] [100]
[104]

Table 2.1: Focus on different aspects of perceived safety by robot type (adapted
from [1]).

2.3.1 Synonyms of perceived safety

The terms that have the same meaning as "perceived safety" are listed and described
below.

Psychological safety. In general, psychological safety was described by Edmondson
et al. as “people’s perceptions of the consequences of taking interpersonal risks in
a particular context, such as a workplace” [119]. Specifically, when interacting with
robots, Lasota et al. stated that “maintaining psychological safety involves ensuring that
the human perceives interaction with the robot as safe and that interaction does not lead
to any psychological discomfort or stress as a result of the robot’s motion, appearance,
embodiment, gaze, speech, posture, social conduct, or any other attribute” [21].

Mental safety. In psychology, psychological safety is typically used as a synonym
for mental safety. Villani et al. viewed this concept from the perspective of mental stress
and anxiety caused by close cooperation with robots [116]. Alternatively, Sakata et al.
defined mental safety as the feeling of not being afraid or surprised when interacting
with robots [84].
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Subjective safety. From a psychological perspective, Patwardhan et al. [120]
suggested that this term reflects someone’s feeling of safety in a certain place. However,
there is no exact definition of it in pHRI papers. Sorensen and Mosslemi [121] defined
it as “the feeling or perception of safety”. In pHRI research, this term should not be
mistaken with the feature of personalized safety systems that modify their actions based
on human characteristics – such as those proposed by Traver et al [122], which are
sometimes called “subjective safety”.

2.3.2 Concepts related to perceived safety

There are two terms that are associated with perceived safety and may be used in a
broader context.

Trust. Trust in a social context is a psychological element that reduces complexity
and fosters confidence in a system’s safety, according to Mukherjee and Nath [123].
Ferrin et al. further suggest that trust as an attitude helps people rely on each other when
faced with social dilemmas [124]. There is no unique specification of the term “trust”
in pHRI; however, Kok and Soh [125] defined trust as the multidimensional influence
of past events on the decisions one makes in an uncertain environment. In this thesis,
we look at papers that address how much humans trust the fact that robots will not harm
them. This is connected to the idea of safety, although it is not exactly synonymous.
Someone might trust, for example, that a robot will be successful in completing the
given task.

Comfort. Pineau [126] stated that comfort is everything that supports the prosperity
and convenience of life in the context of perceived safety. Specifically for pHRI,
comfort was defined by Koay et al. as the fact that a robot can “perform and provide
assistance for certain useful tasks in a socially acceptable manner” [62]. Similar to
trust, the concept of comfort is linked to perceived safety, where ’socially acceptable
manner’ implies that the robot’s motion does not appear potentially dangerous for
the operator. For instance, Norouzzadeh et al. claimed that “colliding with a robot
would definitely imply the risk of injury, which is depicted in the high discomfort rating
(negative comfort)” [127].

2.3.3 Expressing lack of perceived safety

The absence of perceived safety is often expressed by terms such as stress, fear, anxiety,
and surprise. In our study, we will focus on these emotions as they relate to a lack of
perceived safety in a pHRI scenario.

Stress (or strain). According to Folkman and Lazarus [128], stress is a specific
relationship between a person and their environment that the individual perceives as
challenging or exceeding their capabilities, thus endangering their well-being. In the
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context of pHRI, stress can be induced by factors such as the robot’s proximity to
the human operator, its movements, or the potential loss of control resulting from the
automation of robotic agents. Pollak et al. [28] have specifically defined these factors in
their research.

Fear. Fear is an emotional response that can prompt changes in one’s attitude or
intentions, as is a part of the evolutionary mechanism aimed at survival of individuals,
as noted in Perkins et al.’s work [129]. In the context of pHRI, we did not find a readily
available, specific definition of fear, as it is commonly used without explicit elaboration.
For instance, Yamada et al. [32] emphasized that detecting fear was crucial in ensuring
the emotional security of humans along with their physical safety.

Anxiety. In psychology, anxiety has three main meanings: anxiety as a state,
anxiety as a personality trait, and anxiety as an adaptive emotion or dysfunction.
Anxiety is an emotional condition that arises in anticipation of an event. According
to Spielberger [130], it involves sensations of nervousness, apprehension, tension,
and worry that are accompanied by physiological arousal. In other words, anxiety is
a reaction that helps people prepare to confront environmental changes or potential
threats [131]. When interacting with robots, Nomura and Kanda [132] defined the term
“robot anxiety” as the feelings of fear or anxiety that impede people from interacting
with robots that possess communication capabilities, particularly those designed for
dyadic communication.

Surprise. Surprise can be described as the astonishment and wonder that a person
feels towards the unexpected. Celle et al. [133] defined “surprise” in psychology as
an emotion that arises when there is a disparity between what one expects and reality.
Although not directly specified, in the context of pHRI, the term is closely associated
with the perception of a lack of security. For example, Arai et al. [43] observed that
a robot’s sizable and bulky appearance, combined with its rapid and unpredictable
movements capable of causing collisions, can evoke feelings of fear and surprise.
Similarly, Norouzzadeh et al. [127] stated that being caught off guard by the reactions
of a robot could contribute to a lower perceived sense of safety.

2.3.4 The concepts of valence and arousal

To move beyond the use of distinct emotions like happiness, fear, and anxiety,
researchers in emotion detection often rely on a two-dimensional representation that
measures valence and arousal. Kulic and Croft [35] explain that valence indicates
whether an emotion is positive or negative, while arousal measures the intensity of the
emotion. While the valence/arousal approach provides less detailed information than
discrete emotion categories, it appears sufficient for robotic control and can be easily
converted into a measure of user approval.
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2.4 Assessment methods

To determine the level of perceived safety in pHRI experiments, various methods
have been employed in different categories, as indicated in the taxonomy of Fig.
2.2. These methods can be broadly classified into four categories: questionnaires,
physiological measurements, behavioral assessment, and direct input devices. Table
2.2 shows how these methods have been used with different robot types. In each
row, the table lists the type of assessment, namely questionnaires (Q), physiological
assessment (PA), behavioral assessment (BA), direct input devices (D), and their
combinations. In each column, a different robot type is considered, and precisely
industrial manipulators, indoor mobile robots, mobile manipulators, and humanoid
robots. Although a combination of different assessment methods is recommended for a
reliable assessment in [29], some studies have solely relied on questionnaires due to their
low cost compared to physiological measurements. Questionnaires were also commonly
used in conjunction with behavioral assessments. Physiological measurements were
always used in conjunction with questionnaires, probably due to the low cost of
questionnaires. The use of direct input devices was less common and only found
in a few papers.

Physiological assessment is not commonly used in experiments involving indoor
mobile robots. The reason might be that this type of measurement is hard to use
outdoors or when humans are not stationary. The other point is that physiological
feedback is widely used when interacting with industrial manipulators. This may be
because many of the experiments involving industrial manipulators were conducted
with human subjects in a sitting position, which makes it easier to obtain and reliably
measure physiological data. Another probable reason is that industrial manipulators
usually perform tasks at a very close distance from humans compared to other robot
types.

2.4.1 Questionnaires

In the field of pHRI, the use of questionnaires or surveys is widespread. These research
tools rely on self-reported data to gather information from human participants about
various aspects of their interaction with robots. In the field of psychology, questionnaires
are described as a mean of gathering information from or about individuals in order to
describe, compare, or explain their experience, attitudes, and actions [134].

In a typical pHRI experiment, researchers often administer pre-interaction question-
naires to participants. These questionnaires typically include demographic questions
such as age, gender, and height, as well as questions related to participants’ previous
experience with robots, personality assessments (e.g., the Big Five Domain Personal-
ity Traits Scale [135] used in previous studies [67, 87, 100, 105]), and any necessary
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ASSESSMENT 
METHODS

PHYSIOLOGICAL 
SIGNALS

Heart rate

Respiration rateMuscle response

Eye gaze

Galvanic skin response

BEHAVIORAL 
ASSESSMENT

Proxemics

F-formation

DIRECT INPUT 
DEVICES

ASRD

CLD

QUESTIONNAIRES

GSQ, NH-33, NARS, RAS, RoSAS

Figure 2.2: Taxonomy of assessment methods for perceived safety in pHRI (from [1]).

Industrial
manipulators

Indoor
mobile robots

Mobile
manipulators

Humanoid
robots

Q [44] [45] [48]
[49] [50] [53]
[54] [55] [56]
[57]

[67] [70] [71]
[72]

[75] [78] [79]
[81]

[83] [84] [85]
[87] [92] [93]
[95] [96] [97]
[98] [100] [102]
[104] [105]
[107] [108]
[112] [114]
[115]

PA - - - [86] [106]
BA [31] [7] - - [88] [99]

Q+PA [32] [33] [34]
[35] [36] [37]
[39] [40] [43]
[51] [59] [28]
[60]

- [76] [106]

Q+BA [52] [64] [66] [69]
[74]

[80] [82] [91] [94]
[101] [103]
[111] [110]

Q+PA+BA [47] [61] - [77] [109] [113]
Q+PA+D [41] - - -
Q+BA+D - [62] [63] [65] - -

Table 2.2: Assessment methods by robot type (adapted from [1]).
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pre-tests (e.g., typing speed or gaming experience). These questions help researchers
analyze the relationship between independent variables (such as age and gender) and
dependent variables (such as distance from the robot). After the interaction, participants
fill out a post-trial questionnaire to capture their reflections on the pHRI experience and
their perception of the robot, and/or a post-test to assess any learning gains or changes
in perception [136].

Questionnaires can take different forms, including those with closed questions using
scaling methods (such as Semantic Differential (SD) [137] and Likert scale [30]), or
those with open questions [137]). Scaling was defined by Taherdoost [137] as “the
process of generating the continuum, a continuous sequence of values, upon which
the measured objects are placed”. One type of scaling is the SD scale, where “the
respondent is asked to indicate his or her position on a scale between two bipolar words,
the anchors" [30]. It was invented by Osgood, Suci, and Tannenbaum [138]. In pHRI,
it typically includes the phrase: “Please rate your impression of the robot”. Another
questionnaire type is the Likert scale, where “subjects are asked to respond to a stem,
often in the form of a statement, such as “I like ice cream”. The scale is frequently
anchored with choices of “agree”– “disagree” or “like”–“dislike” [30].

An open question is defined by Taherdoost [137] as a question “in which the
respondent does not have to indicate a specific response”. This question usually
requests a long, detailed answer. On the other hand, a closed question is one “in which
a respondent has to choose from a limited number of potential answers” [139]. Closed
questions include Yes/No options, multiple choices, Likert, and SD scales.

While analyzing the papers, the following questionnaires were usually found:

• Godspeed Series Questionnaire (GSQ). Bartneck et al. [30] proposed GSQ
to evaluate the human perception of robotic setups [140]. The questionnaire
comprises five SD [137] scales that measure anthropomorphism, perceived
intelligence, likeability, animacy, and perceived safety. The perceived safety
scale consists of 5-point SD items such as anxious-relaxed, calm-agitated, and
quiescent-surprised. The following works used the GSQ in their experiments:
[73, 74, 103].

• NH-33. The NH-33 was introduced for the first time in [141] with a focus
on the psychological safety of humans by assessing the level of security of
specific humanoids. The questionnaire has 33 7-point Likert scale items covering
performance, acceptance, harmlessness, humanness, toughness, and agency. This
type of questionnaire was used in the work [61].

• Negative Attitude towards Robots Scale (NARS). The Negative Attitude towards
Robots Scale (NARS) was developed by Nomura et al. [142]. It assesses the
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negative attitude of humans, with 14 5-point Likert scale items classified into
negative attitudes toward: a) situations and interactions with robots (6 items), b)
social influence of robots (5 items), and c) emotions in interaction with robots (3
items). NARS was used in multiple studies [71, 85, 94, 96, 105, 106, 110].

• Robot Anxiety Scale (RAS). RAS was designed by Nomura et al. [85]. It
assesses anxiety toward robots. There was a pilot study in which the participants
wrote open answers about their anxious feelings when communicating with
the robot. Commonly used phrases were detected, such as “anxiety toward
motions or approaches of robots", “anxiety toward the unpredictability of
robots’ actions”, and “anxiety toward interaction with robots”, and were then
included in the questionnaire. RAS was used in different studies, and precisely
[96, 105, 106, 110].

• Robotic Social Attribute Scale (RoSAS). RoSAS assesses the perceived social
characteristics of robots and how they influence the quality of cooperation with
people. This 18-item scale was developed by Carpinella et al. [143]. The scale
has three main factors: warmth, competence, and discomfort. Specifically, the
“discomfort” factor, which is of interest for perceived safety, contains the following
terms: aggressive, dangerous, awful, awkward, scary, and strange. RoSAS was
used in [55, 74, 109].

2.4.2 Physiological signals

The second category of methods involves physiological signal measurement, which
is a part of the research field known as psychophysiology, described in detail in
[29]. According to Stern [144], psychophysiology refers to any research in which a
physiological measure is the dependent variable in the form of the subject’s reaction, and
the experimenter manipulates a behavioral independent variable. Physiological signals
are crucial as they provide insight into subconscious and psycho-biological phenomena
that subjective measures like questionnaires cannot capture. Also, participants cannot
consciously control their autonomic nervous system activities [29], which are related to
physiological signals. The dependent variables in the analyzed papers included heart
rate, galvanic skin response, eye gaze, muscle response, and respiration rate.

Heart rate measures the cardiac response and serves as a significant biomarker
connected to the activation of the autonomic nervous system. Variations in heart rate
measurement are typically related to variations in stress and fear (see, e.g., [28, 60]).

Galvanic skin response (sometimes called “electrodermal activity”) provides
information on sweat gland production levels related to skin activity and is directly
associated with the state of stimulation of the sympathetic nerve. Increased levels of
galvanic skin response are related to the subject’s arousal. This emotional state can
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arise from stress, fear, anxiety, or surprise. Galvanic skin response is composed
of two elements: “tonic skin conductance, the baseline value recorded when no
emotional stimulus is applied, and phasic skin conductance, the response acquired
when environmental and behavioral changes occur” [145]. Galvanic skin response is
quicker than heart rate but is affected by muscle contraction, making it difficult to use
when performing collaborative tasks [32].

Eye gaze is “an indicator of situation awareness” [146]. In pHRI, the source of
danger might be the robot; if people feel secure near the robot, then they may not look
at it very often because they do not perceive it as harmful. In some works, such as
that of Yamada and Umetani [32], humans’ eye gaze was used in conjunction with
pupillary dilation. The latent time from the point when the participants started visually
accepting the change in the motion of the robot (i.e., the moment when the robot motion
was reason of a sudden acceleration) until the period when their pupils dilated was
measured: this time strongly depended on whether the subject predicted the abrupt
change in the robot motion.

Muscle response, particularly the corrugator muscle, is associated with negative
emotions such as fear and anxiety [40]. This muscle is placed above each eyebrow,
near the nose bridge, and makes the brows lower and contract. Other muscles were
also considered in some cases. The biceps’ activity was used to monitor physiological
arousal in [59]. As an alternative, the researchers in [76] gave a handover task for
the subjects and the robot and measured the activity of the deltoid muscle. In all the
mentioned papers, muscle activity was detected using electromyography (EMG).

The respiration rate increases with arousal, prepares the body for a fight-or-flight
scenario, and decreases when humans feel relaxed [144]. The same hormones that
cause an increase in heart rate when a human subject feels stressed are responsible for
faster respiration.

Table 2.3 lists all the analyzed papers in which physiological signals were used.
In each row, the table lists the evaluated variables, such as heart rate (HR), galvanic
skin response (GSR), eye gaze (EG), muscle response (MR), respiration rate (RR), and
their combinations. In each column, a different robot type is considered: industrial
manipulators (IM), mobile manipulators (MM), and humanoid robots (HR). No
physiological assessment was conducted for indoor mobile robots.

2.4.3 Behavioral assessment

The behavioral assessment approach is based on photo and video recordings of the
experiments and was applied in [7, 31, 52, 61–66, 68, 69, 74, 80, 88, 91, 99, 101, 103, 110,
111, 113]

Behavioral assessment often involves analyzing how far or how close human
participants perform their tasks relative to the robot. This measure is usually inversely

17



2. Perceived safety: literature review

IM MM HR
HR [51] [28] [60] - [109]

GSR [33] [34] [37]
[43]

[77] -

EG - - [113]
MR [59] - -

GSR+EG [32] - -
HR+RR - - [86]

HR+GSR [47] - -
HR+GSR+EG [61] - -
HR+GSR+MR [35] [36] [39]

[40] [41]
- -

HR+GSR+RR - - [106]
GSR+EG+MR - [76] -

Table 2.3: Physiological assessment by robot type (adapted from [1]).

related to the perceived level of safety and is based on the concept of proxemics,
introduced by Hall [147] to describe how humans use space in cultural contexts
during human-to-human interaction. Hall identified four zones applied in interpersonal
relations that range from intimate to public in order of closeness: intimate, personal,
social, and public. Proxemics in pHRI examines human attitudes and emotions as robots
enter any of these zones, with the resulting distance that humans maintain from robots
serving as an indicator of their perceived safety. This approach was utilized in several
studies, specifically [62–64, 70, 91, 93, 99, 100, 110].

Proxemics in pHRI is also concerned with human-robot spatial arrangements. One
relevant concept from psychology is the F-formation, which refers to the way people
position themselves in a circle during conversations and maintain this arrangement
as others join the group by adjusting their spatial orientation and position [148]. The
idea of F-formations and similar approaches to human-robot spatial arrangements were
applied in studies such as [62–66, 69, 87, 89, 93, 107, 110].

2.4.4 Direct input devices

The final group of behavioral assessment types includes devices designed to provide
immediate feedback during an experiment. Like questionnaires, these instruments offer
a subjective measure of perceived safety, which can be obtained in real time rather
than at the end of the session. Two examples of such devices are the Affective-State
Reporting Device (ASRD) and the Comfort Level Device (CLD). The ASRD, as utilized
by Zoghbi et al. in [41], was a modified joystick created in-house that was capable of
recording affective states expressed by each user. The CLD, on the other hand, was a
handheld monitoring device that enabled participants to show their comfort level during
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the experiment and was employed by Koay et al. in studies such as [62, 63, 65, 89, 93].

2.5 Industrial manipulators

Industrial manipulators are the type of robots that have been the subject of the majority
of papers in pHRI concerning perceived safety. Standard industrial manipulators and
collaborative robots, or “cobots”, can be used to classify them. The former are often
bigger and move faster than the latter, and they are not designed to share a workplace
with people during routine task execution.

Earlier works employed the MH33 (Volkswagen) [7, 31, 38, 42], A460 (CRS)
[35, 36, 39–41], P50 (General Electric) [7, 31, 38], Movemaster RM-501 (Mitsubishi)
[33, 34, 37], IRB-120 (ABB) [46, 48], SMART SiX (Comau) [44], Motoman-K10S
(Yaskawa) and SRX-410 (SONY) [45] standard industrial manipulators (SONY). With
the exception of polar and SCARA robots, all of the mentioned manipulators include
rotating joints and are serial or quasi-serial (i.e., serial with a kinematic parallelogram).
With the exception of MH33, which is a very large robot with a reach of 2400 mm, the
described robots are tiny or medium-sized and have a maximum reach between 445 and
1549 mm.

Although perceived safety is taken into account by all papers considered in this
chapter, it was viewed from numerous perspectives, as can be seen in the corresponding
column in Table 2.1. Furthermore, in [36, 39, 40], the terms “valence” and “arousal”
were used to describe the participants’ emotional experiences as a general framework.
Additionally, the researchers in [44] explicitly focused on motion prediction, while
papers [32, 35, 36, 39–41, 43, 45, 46, 48, 49] concentrated on establishing a relationship
between perceived safety, robot velocity, and proximity between human and robot.
In [33,41], the perception of the robot’s location and approach trajectory by people was
investigated. In [33, 37], the impact of the robot’s visibility and audibility on human
subjects was examined.

More current studies have used the following cobots for their experiments: MICO
6-DOF (Kinova) [50], LBR iiwa 7 R800 (KUKA) [28, 52, 55], Sawyer (Rethink
Robotics) [61], UR3 (Universal Robots) [60], UR5 (Universal Robots) [49, 56], UR10
(Universal Robots) [47], and Panda (Franka Emika) [59]. These cobots are small or
medium-sized serial manipulators with rotary joints, with a coverage variation between
500 and 1300 mm.

2.5.1 Description of selected papers on industrial manipulators

Karwowski and Rahimi in their pioneering research papers [7,31] examined how people
perceive safe velocity for two industrial manipulators of varying proportions, a P50
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(smaller robot) and an MH33 (larger robot). The primary distinction between the
two articles is that while [31] featured students as subjects, [7] examined industrial
employees’ responses. In both works, the size of the robot was noted as a key element
that influences the impression of the robot’s safe motion. The gender of the subjects
was found to have no significant impact on these findings. In fact, the participants found
that the smaller robot’s maximum speed – 66.6 cm/s in [31] and 63 cm/s in [7] – was
associated with better safety ratings, whereas the bigger robot’s maximum speed – 39.7
cm/s in [31] and 51 cm/s in [7] – was associated with a lower safety evaluation.

The above-mentioned works by Karwowski and Rahimi were subsequently modified
and repeated in a virtual environment in [38]. The authors demonstrated that the
two results of [7, 31] (i.e., the subjects’ gender does not affect the sense of safety,
while the robot size does influence the safe perception of maximum robot velocity)
were confirmed. This demonstrated that virtual settings create an effective teaching
context. In [42, 45], additional findings were presented regarding how well simulated
settings can simulate the perceived safety of real industrial robot manipulators. Notably,
in [45] it was shown that the robot type also influences the perception of safety: in
fact, participants perceived the maximum range of the robot as larger and waited longer
(after the robot had stopped) to enter the manipulator working area for a SCARA robot
(SRX-410) than for a 6R-quasi-serial robot (MOTOMAN-K10S), even though there
was no distinction in perception between the two robot sizes.

Kulic and Croft [35, 40] measured the anxiety and fear of human participants during
experiments with a CRS 460 manipulator. The researchers used a questionnaire and
physiological assessments such as galvanic skin response, heart rate, and corrugator
muscle activity. There were two motion planning algorithms applied to control the robot
motion: a potential field planner with obstacle avoidance and a safe motion planner
with an additional danger criterion (i.e., the minimization of the potential force during a
collision along the path). The results indicated that participants exhibited higher levels
of measured arousal during instances of fast robot motion. Additionally, the potential
field planner obtained higher rates of surprise and anxiety compared to the safe planner,
specifically when the robot was moving at high velocity. A fuzzy inference engine
was employed for valence/arousal detection: according to the authors, this method was
reliable for medium/high arousal levels but not for valence. They obtained such a result
because the corrugator muscle activity used for detecting valence was inappropriate if
the stimulus was the moving robot.

The next works of Kulic and Croft [36, 39] were aimed at detecting the human
affective state. They employed a user-oriented approach based on Hidden Markov
Models (HMMs [149]) to enhance the valence estimation introduced in their previous
works [35, 40]. Similar planners as in [35, 40] were applied for robot control. Three
HMMs (low, medium, and high levels) were used for representing valence and arousal.
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Contrary to the fuzzy inference engine proposed in [35, 40], the user-specific HMMs
evaluated valence rate using the collected complex data from physiological signals. In
addition to valence estimation, the authors showed the significance of human attention,
as the detected physiological data was different when the stimulus consisted of robot
motion or other environmental conditions.

Arai et al. [43] used an SD questionnaire (evaluating surprise, fear, discomfort, and
tiredness) as well as a galvanic skin reaction measurement to assess the participants’
psychological strain while working alongside a moving industrial manipulator. The
participants’ responses were assessed regarding the robot’s speed, relative proximity,
and whether or not they had received prior notice about the robot’s motion. The results
of the experiments led to the conclusion that, in order to prevent mental fatigue, a
minimum distance of 2 m between a person and a robot and a maximum speed of the
robot of 0.5 m/s, had to be maintained. Additionally, it was found that having prior
notice of the robot’s motion greatly diminished mental stress.

By conducting two-phase research, Charalambous et al. [49] determined the key
variables affecting trust in pHRI and created an associated trust measurement scale.
In order to identify a collection of trust-related topics and create a questionnaire, they
performed an exploratory study to get participants’ previous views. The questionnaire
was then used to collect data from trials using three distinct industrial manipulators.
It was found that the perceived threat caused by the size of the robot, the lack of
real collisions with the operator, and the existence of a smooth and predictable robot
motion were the key drivers of safety-related trust growth when working with industrial
manipulators (particularly when the robot was picking up objects and moving slowly).
And finally, the majority of participants stated that having more experience working
with the robot would enhance their trust rate in the robot.

Koert et al. [57] proposed two approaches (based on spatial deformation and temporal
scaling) for real-time human-aware motion adaptation with a focus on generating the
robot motion via imitation learning with probabilistic movement primitives. Using a
goal-based intention prediction model that was derived from human movements, the
work’s primary objective was to ensure perceived safety and comfort. By analyzing
motion data and questionnaires on perceived safety and subjective comfort level, 25 non-
expert human subjects participated in a pick-and-place task to assess the effectiveness of
both approaches. It was determined that more communication (such as visual feedback)
would likely improve the perception of safety because the regularity of motion as well
as the awareness of why the robot was reacting in a certain manner were always linked
with higher levels of perceived safety. The findings, however, indicated that it was
difficult to make inferences from the subjects’ answers. For instance, one group of
participants perceived the temporal scaling technique as secure, while another group
perceived it as dangerous.
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The work of Pollak et al. [28] focused on stress experienced during pHRI tasks
involving industrial manipulators. The experiments consisted of a collaborative task
executed in both autonomous mode (in which the robot controlled all operations)
and in manual mode (in which each operation was initiated by the participant). The
results on stress appraisal were collected both via questionnaires and via heart rate
measurements. It was concluded that in manual mode, the participants had higher levels
of secondary stress appraisal (i.e., “the complex evaluative process of what might and
can be done about the demanding situation” [28]) and lower heart rates: this means that
the participants felt less confident (and thus more stressed) when not being in control of
the interaction (i.e., with the robot working in autonomous mode).

Rather than using industrial robots as in [7, 31, 43], Bergman and van Zandbeek [56]
investigated the influence of the manipulator’s motion and distance on perceived safety
using a cobot (UR5). Using questionnaires, it was determined that perceived safety was
directly correlated with human-robot distance and that perceived safety was inversely
correlated with robot speed. The employed speeds of 25 cm/s and 40 cm/s were both
generally within the range of speeds that were perceived as safe in previous works
(the smallest threshold was 39.7 cm/s for large robots in [7]); in both scenarios, the
subjects assessed the robot activity as comparatively safe, evaluating it roughly at 5.63
and 4.76, respectively, on a scale from 1 (unsafe) to 7 (safe). This can be attributed to
the fact that cobots operate at lower speeds than industrial manipulators. The subjects
evaluated, on average, at 5.97 and 4.40 movements with the robot halting at distances
of 50 cm and in the 7.5–15 cm range, respectively, using the same scale for perceived
safety as described above. The movements were judged to be reasonably safe because
the obtained values were in the upper half of the range. This result may appear to
be in contradiction with the findings of the [43], which found that a distance of 2 m
was required to obtain perceived safety. However, it is reasonable to assume that the
smaller operating speeds of cobots and the fact that most participants were aware of
the implemented state-of-the-art safety features significantly reduced the threshold set
in [43] for industrial robots.

2.5.2 Achieving perceived safety for industrial manipulators

Overall, a higher relative human-robot distance, as seen in works like [43,47,53,54,56]
(potentially exceeding a defined threshold, e.g., 2 m in [43]), and a lower robot speed, as
observed in [7, 31, 35, 38, 40, 41, 43, 45, 56, 60] (potentially below a specified threshold,
e.g., 0.5 m/s in [43]), contributed to an enhanced sense of perceived safety. Moreover,
findings from [56] suggest that deploying a cobot, in particular, lowers the speed
threshold at which the manipulator behavior is regarded as safe.

Furthermore, participants exhibited greater acceptance of higher robot acceleration
and speed as their distance from it increased [32,34,48]. Smaller robots were considered
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to be less dangerous [49] and enabled greater velocities to be viewed as being safe [7,31].
The specific type of robot employed in the experiments can also affect how safe
individuals feel [45], but there is no comprehensive research on how structural robot
characteristics affect people’s perceptions of safety.

Additionally, in [49,53,56,57,59,60] and [43,57], perceived safety is achieved when
the robot behavior is generally smooth and predictable. Because of this, the human
subjects tended to feel more comfortable when they had some control over the robot
motion, such as when exactly the motion would begin [28]; this is obviously linked to
the predictability problem mentioned in [49, 53, 56, 57, 59, 60]. The handling forces and
the prevention of sudden robot movements during handovers also improved perceived
safety [44, 50, 55].

When the subjects were well-experienced with robots [37, 39, 49, 54, 55] or had
prior knowledge of the robot safety features [49, 52], their sense of safety increased.
Gender does not appear to be a relevant factor, based on the findings of [7,31,61], while
extrovert participants tend to get closer to the manipulator, based on [61].

2.6 Indoor mobile robots

In this thesis, we consider a moving base without robot arms or other moving
components that operates in indoor spaces as an indoor mobile robot. PeopleBot
(ActivMedia Robotics) was the most widely used robot in the articles [62–71], followed
by Cozmo [73], Giraff [72], and Sphero [74]. Both Giraff and PeopleBot are
telepresence robots that consist of a movable base and a vertical extension where
a screen is placed that allows the robot to communicate with the human operator. The
total height of PeopleBot is 112 cm and Giraff is 170 cm. Instead, Cozmo and Sphero
are toy robots, and their heights are 6.35 cm and 7.28 cm, respectively.

The majority of the mentioned works do not explicitly concentrate on the perceived
risk of injuries that existed when working with industrial manipulators; rather, they seek
to assess participants’ comfort as the robot approaches them or maneuvers around them.
It could be explained by the comparatively slow speed of motion of the studied mobile
robots (the highest speed of PeopleBot is 0.8 m/s, for example), which makes them less
dangerous for potential physical injury.

Mobile robots were used for entertainment, service, guidance, and duties like
fetching and carrying in [62, 63, 66, 68, 69, 71], reaching or being reached by humans
in [68, 70, 72, 73], and following people in [64, 65]. In order to analyze how close the
robot could get to the human and from what side, standard proxemics [64, 70, 73, 74]
and F-formation concepts [64, 72] were used when the participants selected their most
and least favored approach routes for the robot motion in [62–64, 66–69, 71, 72]. Robot
distance and velocity were taken into account in [66–71, 74]. The Wizard-of-Oz
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method was the model that was most frequently used to determine the robot movements
in [62–65, 67].

2.6.1 Description of selected papers on indoor mobile robots

In the research conducted by Koay et al. [62], the connection between subjects’ comfort
and how far they were from the robot as it moved around them was examined. The
CLD that was previously presented in Section 2.4.4 was used to gather responses from
participants. The subjects would usually act uncomfortable whenever the robot would
either follow them, appear on a collision route with their direction of motion, or block
the way they were going. Similar findings were reached by Koay et al. [63], who
captured their experiments on video and subsequently examined them to judge how
comfortable people were feeling based on their body language, facial expressions,
and speaking. In addition to the results in [62], it was found that the human subjects
felt discomfort when the robot rotated in place or was crashing objects. The subjects
preferred the robot following them at a closer distance when it was on the left side (such
that it was visible) rather than when it was directly behind them in [65].

In the experiments conducted by Hüttenrauch et al. [64], the participants accom-
panied the robot on a tour around a room while the latter followed behind them. The
human then requested that the robot look for a particular piece of furniture or close or
open it. A hidden human operator would receive the information from the subject’s
speech and would directly control the robot using a Wizard of Oz style. Following the
trials, the researchers used questionnaires from users, videos, and audio recordings of
the subjects’ instructions to perform a spatial interaction analysis. The F-formation
system was also used in [72] to evaluate the participant’s comfort with the robot moving
around them while they were playing Mikado in groups sitting at a table. The assess-
ment was made using the Likert scale [150] and confirmed the result in [64], i.e., the
participants preferred the robot approaching them from the front.

Woods et al. [66] took into consideration the various starting locations of the
participants while the robot was bringing a snack to the subjects. After each
experimental set, the users responded to a questionnaire asking about their opinions
on the robot’s movements. Another subject was present in the experiments who was
viewing a live video broadcast of the scenario (video trial), in addition to the subject
who would directly engage with the robot in the live trial. This second person also had to
give feedback on the robot’s movements. Live subjects preferred the robot approaching
them from the front-left or front-right orientation in the first scenario (subject sitting at a
table), whereas the subjects in the video trials preferred the robot arriving from the front.
Subjects in both live and video trials reported feeling uncomfortable when the robot
approached them from the front in the second scenario (humans leaning against a wall
with the wall behind them). Finally, in live and video trials, both subjects preferred the
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robot approaching from the front-left and front-right directions (as in the first scenario),
while the robot approaching from the back was the least comfortable case in scenarios
with the subject standing or sitting (in both cases, in an open space).

The study by Syrdal et al. [67] intended to determine a relationship between the
participants’ comfort level as the robot approached them from various sides and their
psychological characteristics (personality traits). These were characterized using the
Big Five Domain Scale that is discussed in Section 2.4. According to the experiment
findings, the front-right and front-left motions of the robot were the most pleasant
for the participants. However, more extroverted people demonstrated higher rates of
tolerance for robot behavior when the robot approached them from uncomfortable
directions, such as from behind.

The outcomes of two research studies that examined the optimal approach path to a
sitting human subject by the robot were discussed in the work by Dautenhahn et al. [68].
Most participants were more comfortable when the robot came at them from the right
or left side rather than the front.

In the article by Walters et al. [70], subjects were communicating with PeopleBot. It
was found that 56% of the subjects permitted the robot to approach their personal zone,
in accordance with Hall’s proxemics theory. Additionally, the human participants who
had previously used PeopleBot came closer to it (on average, 51 centimeters) than those
who had never used it before (73 cm). The distances in both instances were between 40
and 80 centimeters, which is the usual range for human-human contact between friends
and relatives (see, for example, [151]). The influence of the voice with which the robot
communicated with the subjects (synthesized/female/male voice) was also considered,
concluding that, when the robot was speaking with a synthesized (neutral) voice, the
human subject, on average, would allow it to keep a distance (of 80 cm) greater than
that used when the robot spoke with a male/female voice (41/60 cm, respectively).

Two sessions of interaction with PeopleBot were part of the studies reported by
Syrdal et al. [71]. The robot showed more socially engaged behavior in one session,
adapting its behavior to the participants, rather than treating them as any other obstacle
in the environment. The findings demonstrated that because the robot’s movement was
less predictable, its more socially engaged behavior was uncomfortable for the user.

2.6.2 Achieving perceived safety for indoor mobile robots

The front-right and front-left directions of the mobile robot’s approach towards the
subjects appeared to be the most comfortable, whereas the approach from behind
appeared to be the most uncomfortable [62, 66, 67, 72]. Participants who were
more extroverted demonstrated a higher tolerance for uncomfortable directions of
approach [67]. When participants were siting or leaning against a wall, the straight
frontal approach was viewed as uncomfortable, but in open areas, these approach
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directions were accepted as comfortable [66, 68, 69]. The subjects preferred that the
robot followed them from the side rather than directly behind them in [65, 69], most
likely to keep it in their field of vision. The subjects evaluated the comfort level
of interaction as low when the robot was either in their way or was moving in their
direction with probable collision [62, 63].

According to Hall’s proxemics, the favored distance when performing a job in
collaboration with someone was in the personal zone; based on the intersection of
the findings in [64, 70], we estimated that this distance for pHRI tasks was between
46 and 80 cm. However, when participants were working independently, they may
have felt uneasy if the robot was placed closer than 3 meters away from them or in
the social zone set aside for face-to-face interactions. A greater proximity to the robot
was also found to make participants from particular ethnic backgrounds feel more
comfortable [73]. When completing a job in collaboration, the face-to-face arrangement
in terms of F-formation was demonstrated to be the best one [64].

In contrast to participants without prior experience, those who had participated in
pHRI experiments in the past permitted the robot to approach them closer [70]. Finally,
when the robot motion was unpredictable, the human respondents felt uneasy [71].

Due to the fact that all of the studied indoor mobile robots are comparatively small
in size, it is unclear whether the findings can be applied to larger robots. For example,
would a person feel secure when interacting with a large mobile robot in Hall’s personal
zone, such as the Waypoint Robotics MAV3K, which has a surface area of almost 2
meters and can carry up to 1360 kg of payload? Even though we anticipate that human
participants would choose a larger distance for a larger robot based on the findings
described for industrial manipulators, this is still a question that remains unresolved.

2.7 Mobile manipulators

When a robot has one or more robotic arms installed on a moving base, we refer to it
as a mobile manipulator in this thesis. The articles where the robot has two arms and
a face (even if implemented, for example, by using a computer monitor) are instead
excluded from this category and included in the humanoid robots category described
in the next section. The list of the included mobile manipulators are: Jido [76], which
consists of an MP-L655 platform with a Mitsubishi PA-10 (a mid-size 6-DOF serial
industrial manipulator with a load capacity of 10 kg) on top; HERB [78], which consists
of a Segway mobile platform with two Barrett 7-DOF WAM arms (1000 mm of stretch
and 3 kg of load capacity); Care-O-bot3 [80], which consists of a Neobotix MOR
omnidirectional platform with a KUKA LBR manipulator (800 mm of stretch and 7 kg
of load capacity) and a Schunk SDH gripper.

For mobile manipulators, perceived safety was evaluated in terms of: comfort
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[75, 76, 78–80], trust [79, 81], fear [81], stress [76], surprise [75, 79], and anxiety
[75]. The most common application for mobile manipulators in research articles and
experiments was the execution of handover tasks [76,78]. As was the case for industrial
manipulators, the impact of mobile manipulators’ velocity and distance from human
subjects was examined in a number of papers (see, for example, [76,78,80,81]). Virtual
reality tools rather than real experiments were used in [75].

2.7.1 Description of selected papers on mobile manipulators

Dehais et al. [76] implemented a previously created human-aware motion planning
algorithm to give the robot secure and ergonomic motions when performing a bottle
handover task with a human partner. Three distinct motions were performed, each with
a different velocity, grasp recognition method, and implementation of the planner. The
questionnaires and the galvanic skin reaction, deltoid muscle activity, and eye gaze
were used to measure the levels of stress and comfort (defined, in this situation, as the
physical demand needed to grasp the bottle). Looking specifically at the findings for
robot velocity, it was determined that a motion with a medium velocity (up to 0.25 m/s)
was the safest and most comfortable. Motions with a low speed (four times slower
than with the medium-velocity profile) still had low levels of comfort because the
participants would become anxious and try to grasp the bottle before the robot motion
was complete. Motions at a high velocity (no limits were enforced on the robot’s
velocity) were perceived as the most unsafe.

Understanding how people respond to the touch initiated by robots was the goal of
Chen et al. [77]. 56 people participated in trials where the Cody robot would touch and
wipe their forearms. The subject could be verbally informed by the robot about the
touch or not. Even though the robot action would be identical, it could audibly indicate
whether the contact was intended to comfort the subject or clean their skin (instrumental
touch) by using the terms “affective touch” or “instrumental touch”, respectively. The
subjects felt more at ease when they thought that an instrumental touch, rather than
an affective touch, was being applied. This proved how a person’s subjective reaction
to robot-initiated contact can be greatly influenced by their perception of the robot’s
purpose. When there was no verbal notification, participants displayed a greater degree
of comfort. Even though there was no obvious inference to be drawn from this, it
demonstrated that verbal warnings were not always better for participants’ experiences
and should be carefully planned.

Strabala et al. [78] first examined works about the process of how people perform
handover tasks with an emphasis on their coordination process, particularly in terms of
shared signs and cues. Based on this information, the authors proposed a coordination
paradigm for human-robot handovers that separately considered the social-cognitive
and physical elements of the interaction. They conducted experiments to assess human-
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robot handover behaviors. The researchers came to the conclusion that the human
subjects did not feel comfortable when the robot used high force when handing an
object to them, managed to keep a fast velocity when it was near their hands, or was
performing an action that was commonly considered unpredictable.

The study by Dragan et al. [79] concentrated on various robot motion features and
how they affected physical cooperation with human participants. A robot’s behavior can
be functional (achieving the goal without colliding), predictable (meeting the human’s
expectations), or legible (enabling the human collaborator to understand the robot’s
goal). In experiments where a mobile manipulator helped a human person make a
cup of tea, it was crucial to understand how the human subject perceived the robot’s
behavior as it moved to grasp the cup. All three motion types – functional, predictable,
and legible – were performed, and after each trial, a questionnaire was completed. The
results showed that legible and predictable movements were perceived as being safer
than motions that were only functional.

2.7.2 Achieving perceived safety for mobile manipulators

The perception of robot safety increases as the human-robot distance increases [81] and
is relatively high if the robot’s motion is not fast, particularly when the robot is near
the human body [76, 78, 81]. The participants permitted the robot to approach them
closer (precisely, at a distance equal to 57 centimeters) if the robot was moving at a
slow velocity and/or if they had prior experience with the same activity, based on the
results in [80]. Furthermore, the motion’s predictability raised people’s perception of
safety, as noted in [76, 78, 79]. In particular, during handover tasks, the perception of
safety was reduced if the robot moved the item slowly and did not hand it over for a
considerable amount of time [76], or if it pushed the participant’s hand back during the
transfer [78].

For a different type of contact than handover, the authors of [77] found out that
different verbal warnings given before contact can affect the comfort level (even when
the actual motion performed by the robot was the same) and that in some cases, verbal
warnings could decrease comfort. In case the robot’s arm velocity decreased as it was
getting closer to the human hand, the participants felt safer [78].

The importance of robot size was not specifically investigated by comparing two or
more robots, as was done in the case of indoor mobile robots, but we anticipate that
mobile manipulators would be subject to the same factors stated in Section 2.6.2.

2.8 Humanoid robots

The works in this subsection are concerned with humanoid robots, or robots with two
arms along with legs or a base, which can be either movable or motionless. As a
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result, the Baxter [102–104, 109, 112, 114, 115], Willow Garage PR2 [94, 97, 98, 111],
Robovie [83, 85, 91], HRP-2 [84, 95], Nao [96, 106], Pepper [107, 108], WE-4RII [86],
PeopleBot with head [87], iCat with arms [90, 92], Domo [88], Meka [100], Robi [101],
iCub [105], and ARMAR-6 [113] robot systems were all included in this part. Moreover,
these works included PeopleBot with four appearance versions [89, 93], Robovie with
ASIMO [91], Sacarino with or without a human-like upper part [99], Nao with PR2 of
two height setups [110], and Nomadic Scout II with and without a mock-up body [82].

The research papers that used humanoid robots in the experiments frequently
examined perceptions of humanlikeness or anthropomorphism of these robots in
addition to perceived safety [84, 91, 95, 97, 101, 106, 110, 113]. They also studied the
differences and the common features of robot and human conditions during interaction
[90–92]. Some papers were inspired by results of human-human communication from
the psychological point of view [94, 97, 98, 105, 108, 110, 111].

The robots performed the following tasks in close proximity to the human subjects:
handover [88,90,92,97,98,109]; approaching the human subject [82,89,93,94,107,110];
playing games [89,93,95,108]; pick and place [84]; talk and touch [96,106]; handshake
[95].

2.8.1 Description of selected papers on humanoid robots

Several of the early research investigations into psychological safety employed Robovie
[83, 85, 91]. The Robovie’s construction details and one of its first assessments by
human beings were provided by Kanda et al. [83]. The experiment evaluated three
robot behaviors as a consequence of a human-initiated interactive action: passive (after
touching, the robot completed one action and returned into the waiting phase), active
(after touching, the same action was performed by the robot and the participant viewed
it), and complex (after touching, the robot went to daily work and idling tasks, in which
it was moving in the surrounding space). The participants chose passive behavior as
their preferred one and kept a 41-centimeter distance from the robot, which is in the
intimate zone.

PeopleBot in [87, 89, 93] was another robot that was used for similar studies. The
findings of a long-running study (5 weeks, 8 sessions) involving 12 participants were
given by Koay et al. in [89] and [93]. Two men and one woman from each set of
participants interacted with one of four PeopleBot variations: small/tall mobile robots
without heads or small/tall humanoids. There were three distinct approaching scenarios
(no-interaction, physical, and verbal). The participants’ degree of comfort was assessed
through CLD, a questionnaire, and a semi-structured interview based on the Big Five
domain scale [135]. In the final analysis, it was determined that the robot approaching
from either the front or the side was the most acceptable situation. Additionally,
participants were more inclined to give permission to the robot to come closer towards
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the end of the 5-week period than at the beginning. Furthermore, individuals eventually
began to choose verbal communication over physical contact, which was not the case
at the start of the trial. According to [93], when the robot blocked their way or moved
following a collision trajectory with them, people did not feel at ease. The participants
were comfortable when the robot warned them before approaching. Additionally, it was
determined that the participants’ level of comfort would significantly rise due to the
robot’s consistency.

The handover task performed by an iCat robot with arms was evaluated in an
experiment by Huber et al. [90], testing two velocity profiles for the robot: a
conventional trapezoidal velocity profile in joint coordinates and a minimum-jerk
profile of the end-effector in Cartesian coordinates. Participants rated the level of how
human-like the robot’s motion was and how safe they perceived it to be. The results
suggest that participants’ level of trust was similar in both cases, and both velocity
profiles were similarly perceived as human-like. However, the minimum-jerk profile
had higher safety ratings, and the robot was perceived as safe if its maximum speed did
not exceed 1 m/s.

The perception of safety was also examined using Willow Garage PR2 in the
following papers: [94, 97, 98, 111]. Takayama et al. [94] focused on the features
that might affect proxemic behaviors and the perception of safety. Three scenarios were
used in the experiment: a person approaching the robot, the robot moving independently,
or being controlled remotely while approaching a participant. The results of monitoring
people’s behavior and their questionnaire responses indicated that individuals who
owned pets or had experience with robots were more likely to let the robot approach
them. Participants of both genders moved closer to the robot when it was looking
down at their legs, but when it was looking up at their faces, women tended to distance
themselves from the robot more compared to men.

Butler and Agah [82] focused on the psychological impact of robot behavior patterns
on humans in daily life, such as approaching or avoiding a human and executing tasks
in crowded surroundings. Two types of robots were used in the experiments: mobile
robot and humanoid. Participants rated the fast-moving humanoid with a maximum
speed of 40 inches per second as the most uncomfortable and a motion with a slow
speed (10 inches per second) for both robot types as the most pleasant. Overall, when
the body was added to the mobile base and the robot became a humanoid, the human
subjects rated the behavior of such a robot as less comfortable.

Rajamohan et al. [110] investigated the effects of multiple factors on people’s
preferential communication distances with robots. There were three robot types: a
humanoid Nao robot (58 cm), a short PR2 (133 cm), and a tall PR2 (164.5 cm). When
one of the robots approached participants, they were instructed to say “stop” whenever
they felt uncomfortable. Additionally, subjects were told to approach the robots and

30



Humanoid robots

to stop if they felt uncomfortable. The findings indicated that humans preferred when
the robot approached them, rather than when they did it themselves. Men let the robot
come closer than women did. The maintained distance was also impacted by the robots’
height, since the Nao robot was permitted to approach people more closely than either
the PR2 short or tall robot.

Fitter et al.’s [112] used perceived safety and trust as their primary measures. During
the experiments, a human and a Baxter robot performed a hand-clapping exercise for
an hour to assess the robot’s physical reactivity, facial reactivity, arm stiffness, and
clapping rhythm. Facial reactivity increased the participants’ perception of Baxter’s
pleasantness and energy, but physical reactivity decreased their perception of Baxter’s
pleasantness, energy, and dominance. While a greater clapping speed made Baxter
appear more enthusiastic and more dominating, higher arm stiffness enhanced perceived
safety and lowered dominance.

2.8.2 Achieving perceived safety for humanoid robots

A great part of research using humanoid robots studied how people’s proximity to the
robot and preferred approach direction affected their behavior. As a result, data indicated
that participants desired Robovie to remain at a distance of 41 centimeters [83].The front
approach was preferred for the PeopleBot [93]. Along with these findings, PR2 [94]
and PeopleBot [89] both showed that past exposure to pets and robots had an impact on
people’s proximity.

Comparison of perceived safety between two or more robots was also made. As a
result, the short and tall PR2 robots in [110] were allowed to move closer to humans than
the small Nao humanoid. Another example is the comparison of ASIMO, ROBOVIE,
and humans in the proxemics experiment [91]: human participants were at a shorter
distance from ASIMO in contrast to Robovie or another human.

Non-verbal social cues were also investigated, and the following outlines were drawn:
Baxter’s facial reaction was seen as more pleasant [110], whereas PR2’s eye contact
was critical for handover duties [98]. Men were observed to allow the robot to approach
them closer than women did [110], particularly when the robot was looking straight
into the participants’ faces [94].

Other works in this section also focused on the robot motion: for instance, the
comfort level grew with predictable robot behavior [93], Baxter’s higher arm stiffness
raised perceived safety [112], and the minimum-jerk profile of the iCat arms obtained
higher safety scores [90].

In addition to the obvious physical and behavioral distinctions between robots, such
as size, height, and vocal and non-verbal indications, there are a number of additional
visual and design features that are significant. The uncanny valley effect [152] and
anthropomorphism, for instance, might affect how safe humans believe the robot to be.
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Industrial
manipulators

Indoor
mobile
robots

Mobile
manipulators

Humanoid
robots

Distance [43] [47] [53]
[54] [56]

[63] [64] [70] [81] [83]

Robot speed [31] [7] [35]
[40] [41] [43]
[45] [60]

- [76] [78] -

Robot speed
∝ distance

[32] [34] [48] - [80] [81] -

Direction of
approach

- [62] [66] [67]
[68] [69] [72]

- [93]

Robot size &
appearance

[31] [7] [49] - - [89] [91]
[110]

Motion fluency
& predictability

[49] [53] [56]
[57] [59] [60]

[71] [76] [78] [79] [90] [93]

Communication [43] [57] - - [98] [110]
Smooth
contacts

[44] [50] [55] - [76] [78] -

Table 2.4: Factors that influence perceived safety (adapted from [1]).

2.9 Discussion

2.9.1 Factors determining perceived safety

Table 2.4 lists the key elements of robot behavior and features that affect perceived
safety for all robot types examined in Sections 2.5-2.8. In particular, distance, robot
speed, proportionality between robot speed and distance, direction of approach, robot
size and appearance, motion fluency and predictability, communication, and smooth
contacts are the factors that are given in each row. The different types of robots are
taken into account in each column.

The results for each factor are listed in the following:

• Distance: The perception of a robot’s safety increases with the increasing distance
between humans and robots. For industrial manipulators and cobots [43, 56] the
distance needs to be greater than values of about 2 m and 0.5 m, respectively. For
indoor mobile robots [64, 70] this space must be 46-80 cm. For small humanoid
robots [83], it is better for the robot to be 41 cm further from the human. In a few
situations, distances were correlated with the various proxemics zones of Hall.

• Robot velocity: Slower moving robots are considered safer. For industrial
manipulators, for example, a comfortable speed threshold of 0.5 m/s was
determined in [43].
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• Robot speed proportional to distance: as the robot gets further away from humans,
greater and faster speeds are perceived as safe.

• Direction of approach: Some directions of approach are considered safer than
others (e.g., coming from the side rather than the front, or from the back side).

• Robot size and appearance: Despite how the robot moves, bigger robots and those
with certain characteristics (related to shape and color) are considered less safe.

• Motion fluency and predictability: People’s perceived safety is higher when a
robot moves fluently and predictably.

• Communication: By adding notifications that give a heads-up about the specific
robot action (by making a sound before it moves, for example), perceived safety
is increased.

• Smooth contacts: When interactions occur (such as during a handover), the
absence of sudden robot movements positively affects how safe people perceive
the situation to be.

There are some characteristics that are universal (such as motion fluency and
predictability), while others are limited to specific types of robots (e.g., an industrial
manipulator handover task might involve transferring smooth contact forces). Certain
aspects are ignored for some kinds of robots simply due to the settings of the
experiments. For example, in papers on indoor mobile robots, the robot velocity and
size were never taken into account as factors related to perceived safety because they
were always too small to affect the participants. Finally, people who have previously
dealt with a comparable system typically consider the robot safer.

There were only five articles that used the Wizard-of-Oz approach in the experiments,
compared to the other 78 observed papers that applied other controlling techniques
for robot motion. This was expected, as stated in [30] – the use of Wizard-of-Oz
was applicable only to the research environment and laboratory conditions, and had
limitations to be used in the “complex world of everyday users”. What is common for
these researches was that all of them worked with the indoor mobile robot PeopleBot,
the most commonly used robot type. Additional similarity is that proxemics was studied
in [62–64]. The articles [62,63,65] used the questionnaire, behavior assessment together
with the device to rate the human perception of comfort about the robot. There are some
already mentioned results of the articles that utilized this approach: the robot motion
toward the human was rated as the most comfortable from the front (right and left
directions), and less comfortable from behind [62, 67]. Humans preferred the robot to
follow them from the side, compared to behind direction [65]. When the robot blocked
the path of the human, this kind of behavior was uncomfortable for them [62, 63].
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2.9.2 Perceived safety and safety standards

A number of safety standards have been developed to protect human operators. For
instance, the European Union regulates the use of machinery by the 2006/42/EC
standard, which guarantees a uniform regulation of safety. According to the ANSI/RIA
R15.06 and R15.08 standards of the United States, industrial manipulators, autonomous
mobile robots, and mobile manipulators must meet certain specifications and safety
precautions. The International Standard Organization (ISO) has also established safety
requirements for personal care robots used in non-medical applications (ISO 13482)
and industrial robots (ISO 10218-2 and ISO/TS 15066).

Even if these safety standards are not concerned with perceived safety, they can help
raise perceived safety. A first demonstration of this concept is the speed and separation
monitoring (in short, SSM) mode of operation outlined in ISO/TS 15066 [153, clause
5.5.4] (which will play an important role in the experimental part of this thesis),
requiring that an industrial manipulator reduces its velocity proportionally to the
distance from human operators in order to prevent a potential collision. As shown
in Section 2.9.1, higher speeds are only considered safe when the robot is further away
from humans, which means that speed-and-separation monitoring enhances perceived
safety. A second demonstration of the same idea is the power and force limiting mode
of operation, which is described in ISO/TS 15066 [153, clause 5.5.5]: as long as the
exchanged kinetic energy is lower than a certain threshold, the robot is permitted to
collide with the human operator at a nonzero speed. As a consequence, lighter robots
are permitted to go at higher speeds since the robot’s kinetic energy is proportional to
both its speed and mass. This factor relates to perceived safety as well, since human
participants often feel nervous around a fast-moving robot when it has a larger size (see
Section 2.9.1).

2.9.3 Experiment duration and location

In general, the majority of the described works deal with short-term studies that lasted
from a few minutes to a few hours and were often conducted on the same day for
each participant. The explanation for this is that the length of the experiment allowed
researchers to evaluate participants’ responses and test out new assessment techniques.
The exceptions were [37, 89, 93], which carried out longer experiments over a period of
up to two months to evaluate the impact of the human subjects’ long-term habituation
on the interaction with the robot.

Experiments were conducted in (i) research laboratories, (ii) surroundings close to the
living environments of the subjects, (iii) factories, (iv) symposia and fairs, and (v) virtual
environments. Due to the obvious advantages in terms of trials set up, the majority
of investigations were carried out in laboratory conditions. In order to improve the
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amount of natural human-robot interaction, the studies that were carried out in settings
that were closer to actual living conditions were conducted in homes, apartments, and
rooms. The participants remarked that, because of these circumstances, they could act
naturally and did not feel like they were being examined. Therefore, based on these
articles, we may draw the conclusion that this type of location can raise the degree of
truthfulness of subjects’ reactions. The purpose of the factory studies was to evaluate
how safely humans and robots could interact in settings more akin to manufacturing
operations. In order to easily reach people with various degrees of familiarity with
robotics technology, experiments were carried out during trade exhibitions [52] and
a symposium reception event [70]. In some articles, virtual reality was employed, so
as to reduce safety hazards while still giving the participants an immersive experience.
According to Weistoffer et al. [47], physical experiments are still required for complete
research, particularly when it comes to measuring human physiological parameters,
even though virtual reality may be a useful tool to gauge the acceptability of interaction
between humans and robots and draw preliminary conclusions through questionnaires.
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Chapter 3

Perceived intelligence: literature
review

This chapter provides an overview on the concept of robot perceived intelligence and
on how it has been studied in the literature, concentrating on the relationship between
perceived intelligence and habituation. The chapter is structured as follows: Section 3.1
mainly focuses on a summary of the factors that influence perceived intelligence.
Section 3.2 describes general aspects of the surveyed papers on the connection between
perceived safety and habituation, such as the assessment methods (questionnaires)
used for perceived intelligence assessment and a description of the robots used in the
experiments. Section 3.3 reports a brief survey of existing papers, with the objective of
assessing how the effect of habituation was studied in relation to perceived intelligence,
and what results were obtained. Section 3.4 provides a discussion of the different results
obtained in the surveyed papers, with the aim of detecting general trends in the variation
of perceived intelligence.

3.1 Factors that influence perceived intelligence

High levels of perceived intelligence, which usually correspond to high levels of trust,
are important to make robots accepted by potential users. Perceived intelligence has
been studied not only for robots, but for a wider category of intelligent agents, such as
chatbots and smartphones. In [154] it is mentioned that, if an agent is perceived as more
intelligent, its perceived usefulness increases [155], together with the trust towards
it [156].

If perceived intelligence influences perceived usefulness and trust, it is in turn
influenced by different factors, as studied in [157–160]. According to the categorization
in [154], the perceived intelligence of an agent increases with the following
characteristics:

• autonomy: the extent to which an agent can operate in an independent and
goal-directed way without human intervention;

• adaptability: the ability to improve the match between its functioning and the
environment;
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• reactivity: the capacity to react to changes in the environment;

• multifunctionality: the ability of a single agent to execute multiple functions;

• cooperativeness: the capability to cooperate with other agents to achieve a
common goal;

• human-like interaction: the degree to which an agent communicates and interacts
with humans in a natural, human-like fashion;

• personality: the ability to show the properties of a credible character.

In addition to the above-mentioned general results, the factors that influence perceived
intelligence were also studied specifically for robots. To the best of our awareness of
the literature, perceived intelligence is positively influenced by the following factors:

• Transparency: the previous knowledge by the human participant of the task that
the robot will perform [161].

• Animacy: how much the robot is perceived as behaving as a living being
[27, 162, 163].

• Trust: how much a user can be confident that the robot will successfully complete
an assigned task [164, 165].

• Human-like appearance: as we are used to expect other human beings to be more
intelligent than, for example, animals or machines, a higher level of intelligence
is typically assigned to robots that appear as more human-like [162, 163, 166].
Indeed, anthropomorphism and perceived intelligence are known to be positively
correlated [167], even though the relationship between these two characteristics
can be influenced by the so-called uncanny valley, i.e., the fact that “more human-
looking characters will be perceived as more agreeable up to a point at which they
become so human people find their nonhuman imperfections unsettling” [167].

• Human-like gestures: they play a similar role as human-like appearance [168,169],
but they are not influenced by the uncanny valley.

In case a robot can speak, voice tone and speed of talking also influence perceived
intelligence [169–172].

Thousands of papers were written in recent years in which the perceived intelligence
of robots was assessed, but, to the best of the author’s knowledge, no review papers
were written to summarize these results. After having surveyed the main characteristics
related to perceived intelligence in the previous part of this section, in this chapter
we focus on understanding how perceived intelligence changes as a result of multiple
interactions with a robot. In this case we can use the term habituation, which has
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already been studied in HRI to understand the effects of human participants becoming
accustomed to interacting with robots (see, e.g., [89, 173]). Regardless of its specific
contextualization in robotics, habituation was first defined in the field of neurobiology
as “a behavioral response decrement that results from repeated stimulation and that
does not involve sensory adaptation/sensory fatigue or motor fatigue” [174].

3.2 Overview of the surveyed papers

The publications studying the variation of perceived intelligence analyzed in this
survey correspond to references [55, 93, 101, 175–184]. In order to assess the effect
of habituation, perceived intelligence was rated after each of multiple experimental
sessions, possibly assessing the effect of habituation. In the remainder of this section,
we provide information on (A) how perceived intelligence was assessed, (B) what
robots were used for the experiments, and (C) how the chosen papers were selected.

3.2.1 Assessment methods for perceived intelligence

Since its introduction in 2009 by Bartneck et al., The Godspeed questionnaire [30] has
been the most commonly used assessment method to measure perceived intelligence
(and other characteristics) of robots. The ideas at the basis of this questionnaire were
derived from Warner and Sugarman’s intellectual evaluation scale [185]. Specifically,
the perceived intelligence scale consists of the evaluation of the following robot
capabilities in the form of five-point semantic differential scales with Likert type
scaling: incompetent-competent, ignorant-knowledgeable, irresponsible-responsible,
unintelligent-intelligent, foolish-sensible. It is worth reporting that Bartneck and co-
authors had already mentioned the use of a robot intellectual evaluation scale, excluding
the incompetent–competent item, prior to [30], and precisely in [162, 163, 186–188].
The Godspeed questionnaire was used in [101, 177, 179–181, 183].

A concept that can be considered as practically equivalent to perceived intelligence
is that of competence of a robot, as perceived by human subjects. Indeed, incompetent-

competent was one of the Godspeed questionnaire items, and the term perceived

intelligence will be used in the remainder of the chapter to refer to the concept of
competence as well. Competence is used as a general category in the Robotic Social
Attributes Scale (RoSAS) [143] and is further split into the evaluation, via a Likert scale,
of how well the following adjectives (items) describe the robot: reliable, competent,

knowledgeable, interactive, responsive and capable. Specifically, competence according
to the RoSAS questionnaire was studied in [55, 176, 178, 182].

Ad-hoc questionnaires were also employed. A questionnaire that, similarly to
RoSAS, evaluated competence, was used in [175], by assessing (again via a Likert
scale) the perception of the following robot qualities: intelligent, organized, expert and
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thorough. In [93], participants were asked the following questions: ”How intelligently
did the robot respond to your directions in each trial?” and ”In which trial did the robot
behave the most intelligently?”. These two questions were rated on a Likert scale from
1 (“very intelligent”) to 5 (“not at all intelligent”).

3.2.2 Robots used in the experiments

The most commonly used types of robots in the analyzed works were humanoid robots:
Nao in [180], Pepper in [181], the 3D blended embodiment Furhat in [176, 178, 182],
the humanoid robot Rapiro in [183], and Robi in [101]. The combination of humanoid
and mobile robots was studied in [177] with Nao and Roomba, in [93] with four
appearance configurations of PeopleBot, and in [184] with QTrobot and Mistry robot.
The collaborative manipulators KUKA LBR iiwa 7 R800, Universal Robots UR5 was
used in [55, 179], respectively. Finally, the two virtual agents IVA Vince (robot-like)
and IVA Billie (human-like) were compared in [175].

3.2.3 Research method

In order to select the papers object of this survey, we first used different search engines
(Google Scholar, IEEEXplore, ScienceDirect, Scopus) for the keywords “robot” AND
(“perceived intelligence” OR (“competence” AND “RoSAS”)) AND (“habituation” OR
“longitudinal” OR “novelty effect” OR “ordering effect”). Indeed, the term competence

is often used with different meanings outside the RoSAS questionnaire, and terms such
as longitudinal study, novelty effect and ordering effect were often used to indicate a
study of habituation, even when the term “habituation” was not explicitly mentioned.
In addition to the publications found with this method, we also considered works cited
in them that were potentially relevant. The articles were further screened by eliminating
those entries which did not satisfy the following requirements:

• The work is published in English language either as an international journal
papers, in the proceedings of an international conference or as a book chapter.

• Experiments are run in which human participants interact with a robot (either real
or, in few cases, virtual), and perceived intelligence is evaluated using a suitable
questionnaire.

• The change in perceived intelligence over multiple sessions is assessed and
presented in the results.

After this screening, the above-mentioned 13 works [55, 93, 101, 175–184] were
obtained.
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3.3 Analysis of the surveyed papers

In this section we provide a description of the surveyed papers in chronological order,
by focusing either on the connection between habituation and perceived intelligence,
both in the description of the experiments and in the interpretation of the questionnaire
results by the authors. Additional experimental tasks and/or questionnaires not related
to perceived intelligence are mostly not reported, to focus on the survey topic. It is
worth noticing that in [93,178,179,181–183] the so-called Wizard of Oz approach [118]
was used, meaning that these robots were partially controlled by a human operator
without participants being aware of it.

Perceived robot intelligence was rated in [93] by having participants play the so-
called “hot and cold game” with a robot. In this game, the robot searched for an object
randomly chosen by the participant in a room, while the participant guided the robot by
saying “hot” or “cold”, respectively, if it was either close or far from the object. The
experiment consisted of three rounds, in which the robot would always avoid obstacles
in the room: during the first and third rounds the robot reacted to human words by
changing its motion direction on the word “cold”; in the second round, instead, it
moved randomly across the room without reacting to human words. The results of
the questionnaire showed that the robot was rated as more intelligent during the third
round of the trial, whereas the lowest marks were given in the second round. This
work did not assess habituation by studying the variation of perceived intelligence
while the same robot behavior was observed; therefore, it is not possible to conclude if
habituation had a positive or negative effect on the perception of intelligence. However,
the different evaluation of the same robot behavior in rounds one and three seems
to indicate that perceived intelligence is influenced by what participants experienced
immediately before the round. More specifically, an improvement of the actual robot
intelligence led to a positive bias in its perception.

In [175], each participant interacted with one of two virtual agents: a human-like
agent with child voice named Billie and a robot-like one with machine voice named
Vince; each of them, throughout the whole experiment for a single participant, would
either make gestures when speaking, or not (the type of agent and the presence/absence
of gestures was randomly assigned). The virtual agent performed a self-introduction
and asked the participant to answer a questionnaire about perceived level of competence.
After filling the questionnaire, the participant watched a presentation given by the
virtual agent, before evaluating competence once more. For both agents it was observed
that, on average, competence rates improved in the second questionnaire when the use
of co-speech gestures was present, and worsened when it was absent. Although the
robot behavior between first session (introduction) and second session (presentation)
was different, to the best of our understanding this behavior did not display a varying
level of intelligence. Therefore, the variation of perceived intelligence can be attributed
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to habituation, differently from [93], in which the robot behavior was purposefully
changed to be less intelligent in the second session.

In [101], human subjects engaged – either actively or passively – in conversations
with a small humanoid robot in pairs over two sessions. Perceived intelligence was
assessed after the first session and after the second session (in which its rating increased,
though not significantly, with respect to the first session).

When evaluating human-to-robot handovers, the authors of [55] varied three factors
– initial position, retraction speed, and grasp type – in people’s interactions with
the robot for a total of 8 conditions per user. Regardless of the obtained results
relating competence to the listed factors, the authors examined whether the participants’
perception changed over the course of repeated handover interactions with the robot,
concluding that there was no significant trend in competence.

In [176], participants were gradually exposed to the motionless 3D blended
embodiment Furhat (consisting of a robotic head) with different variation in terms
of human-likeness. There were three stages of interaction: first participants only
observed the robot when this was motionless, just blinking the eyes; then, the robot
introduced itself by speaking without reacting to the participant’s actions; finally, the
robot interacted with the participant by playing a game involving a conversation. While
there was no significant difference in robot competence ratings between the first and
second stages, there was a significant difference in perceived competence between
the last stage compared to the first and second stages, with this difference being more
pronounced when the more human-like variants of the face were used. This confirms
the foreseeable expectation that “the more participants are exposed to the robot’s
capabilities, the more competent they perceive it” [176].

With the aim to evaluate perceived intelligence of a vacuum cleaner Roomba
robot during its interaction with a humanoid Nao robot, [177] conducted a within-
subject design study with two conditions: "interactive" and "no interactive". In the
“interacting” condition, the Roomba robot consistently achieved a higher rating of
perceived intelligence by the participants as compared to the “no-interactive” condition.
However, there was no ordering effect for perceived intelligence.

In [178,182] participants played a geography-themed cooperative game with a Furhat
robot three times (3-10 days apart) with a different robot embodiment (human-like,
machine-like and morphed, cf. [176]) and had a social face-to-face chat before and after
the game. Data from study [178] showed that the human-like robot face was perceived
as significantly more competent compared to the morphed face, while the findings from
study [182] additionally suggest significant differences in competence ratings between
human-like and machine-like embodiment. In both works, no significant changes in
perceived intelligence due to habituation were reported.

In [179] it was investigated how animal-like character animation principles

42



Discussion

(appearance, smooth motion, breathing, gaze and posture) can enhance perceived
intelligence of the Universal Robots UR5 cobot in a collaborative task. Results from two
user studies suggested that while appearance, smooth motion and posture did not have
an effect on cobot’s perceived intelligence, manipulating animal-like breathing motions
as well as gazing behaviour significantly improved cobot’s perceived intelligence.
However, no correlation was found between these factors and any ordering effects.

In [180], a Nao robot interacted with participants by means of spoken sentences
and gestures. The interaction during each of two sessions consisted of ten sentences
pronounced by the robot with their accompanying gestures. For half of the participants,
in the first session the first five sentences were determined using a pre-programmed
method, while the next five sentences were selected using an ad-hoc machine-learning-
based method developed in the paper; the reverse order was followed in the second
session. For the other half of the participants, the opposite sequence of methods was
followed through the sessions. While no significant differences on perceived intelligence
were found regarding the use of different methods, it was determined that, regardless of
the used order of methods, perceived intelligence significantly increased from the first
session to the second.

The goal of the research [181] was to evaluate a 5-week mindfulness sessions
administered by either a teleoperated Pepper robot controlled by an experienced human
coach via teleoperation, or by the same human coach directly. In both cases, no
significant differences were observed in perceived intelligence over time.

The focus of the research work [183] was to study the perception of the fact that
a Rapiro robot would take (or not) the initiative to initiate an interaction with human
participants. Participants interacted in sequence with both robot conditions: active
(the robot was first to greet participants) and passive (the robot waited for participants
to greet the robot first), with the order being counterbalanced. Neither the specific
condition (active or passive) nor the order of execution of the conditions led to any
significant variations in terms of perceived intelligence.

The work described in [184] explored how the employees of a tech company
perceived a QTrobot and a Misty robot as well-being coaches programmed to deliver
positive psychology exercises four times over four weeks. No significant differences
in competence ratings were obtained neither between the two robots, nor between
subsequent sessions.

3.4 Discussion

The results on perceived intelligence for each of the analyzed papers are reported in
Fig. 3.1. Paper numbers are reported on the horizontal axis, whereas the vertical axis
indicates if there were any significant perceived intelligence variations detected, or
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Figure 3.1: Summary of the variation of perceived intelligence, in different papers, due
to habituation. The size of each circle is proportional to the number of participants,
which is indicated inside the sphere.

not. The number of participants is proportional to the size of each circle, and indicated
inside the circle. Out of the 80 participants of [175], some of them were randomly
assigned to an agent making gestures (for which an increase was detected) and some to
an agent not making gestures (for which a decrease was detected); this is the reason for
the presence of two circles, for each of which we assume a size of approximately 40.
No correlation was found between the obtained results and the number of participants.

Habituation seems to cause, regarding perceived intelligence,

• a significant increase in [175, 180];

• no significant change in [55, 101, 177–179, 181–184];

• a significant decrease in [175].

It is worth highlighting that papers [93, 176] could not be used to assess the effect
of habituation as, despite running multiple experimental sessions each followed by a
questionnaire, the robot behavior changed quite dramatically in subsequent sessions,
and the order in which these behaviors were presented to the users was always the same.
In particular, [93] presented a result on how the variation of perceived intelligence in
subsequent sessions can be influenced by the previously-observed robot behavior.
Specifically, after observing a non-intelligent robot behavior, participants tend to
evaluate the robot as more intelligent when it behaves normally, compared to the same
evaluation of this normal behavior without any previous experience; this observation
should be accounted for in future research.

The great majority of surveyed papers showed no significant changes in perceived
intelligence due to habituation. An increase was observed for a robot or virtual agent
speaking with participants while making gestures in [175]. However, again in [175]
the perceived intelligence of the same virtual agent decreased when the latter was
not making gestures. This can be related to the fact that, as already mentioned in
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the introduction, the presence of human-like gestures in general improves perceived
intelligence ratings. In [180], instead, an increase of perceived intelligence was observed
for all conditions. Overall, we can conclude that habituation seems to have a positive
effect on perceived intelligence, although no significant variations were observed in the
majority of the analyzed papers.

A possible explanation of the general trend is that, as the robot behavior is complex,
it is not easy to immediately infer the rules that determine its actions. Thus, as a better
understanding of the robot behavior is achieved in subsequent sessions, the perceived
intelligence rates also increases.
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Chapter 4

Safe motion planning algorithms

As mentioned in the introductory chapter, the experiments described in this thesis were
aimed at evaluating perceived safety and robot perceived intelligence during pHRI. The
human participants executed a task consisting of moving objects on a table while sitting
on a chair placed in front of it (a more detailed explanation of the task will be provided
in Chapter 5). In the meantime, a collaborative robot, placed behind the same table and
in front of the participant, executed an independent sequence of pick-and-place tasks.
The goal configuration to be reached by the robot, which assumed different values in
time – for instance, based on the cube that had to be picked up – was formulated in
the robot’s configuration space. The latter was defined by the vector of joint angles
θ, whose size nθ was equal to the number of joints (specifically equal to 7 for the
considered Kinova Gen3 robot). During the robot motion, safety had to be guaranteed
for the human participant. This was accomplished via the SSM safety criterion, already
mentioned in Section 2.9.2, which is further detailed in the following section.

4.1 Speed and separation monitoring

The SSM strategy presented in this section is based on the ISO/TS 15066 SSM criterion
that Marvel et al. [189] described in their paper in detail. The aim of SSM is to provide
safe and comfortable interaction between people and robots by continuously controlling
the robot speed (typically measured by optical encoders) based on the distance to the
human (obtained via encoders to assess the robot configuration and using an optical
motion capture system to determine the location of several points of the human body).
The underlying concept is the following: the robot always needs to be able to come to a
halt before humans can touch it. As the time after which the human can reach physical
contact with the robot is proportional to the distance between the two, the upper bound
on the robot speed decreases with the human-robot distance. In the following, we
explain how this is achieved in mathematical terms.

The SSM framework works under the hypothesis that a person’s velocity would
never exceed a certain limit v̄h (specifically set by safety regulations), which in our trials
equals 2 m/s. A number of virtual spheres, each centered at a different time-varying
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position (for example, coinciding with the second robot joint or with the left shoulder
of the human), are used to provide a conservative estimate of the volume occupied by
both robot and human. In the proposed case study, we implemented nr = 7 spheres for
the robot and nh = 14 spheres for the human.

The spheres radii on the human operator and the center coordinates in a determined
fixed reference frame are defined as Rh,j and ph,j , respectively, with j = 1, . . . , nh. It
is assumed that the speeds of these sphere centers can never be higher than v̄h. For
the robot spheres, the following variables are used: the center coordinates of the robot
spheres, located in the same reference frame as for the human participant, are referred
to as pr,i, with i = 1, . . . , nr. The radii of the same robot spheres are identified as Rr,i,
with i = 1, . . . , nr. The scalar velocity of each robot sphere center is indicated by vi.

The distance dih between the ith robot sphere and the union of all human spheres
can be obtained as

dih = min
j=1,...,nh

{dij − (Rr,i + Rh,j)} , (4.1)

where dij ≜ ∥pr,i − ph,j∥ is the distance between the centers of the corresponding
spheres. In case the value dij − (Rr,i + Rh,j) (and consequently dih) becomes negative,
then it means that a collision between the robot and human spheres has happened. We
also introduce the distance drh between the unions of all robot spheres and all human
spheres, which is equal to

drh = min
i=1,...,nr

dih. (4.2)

The objective of the SSM implementation is to enforce the following condition:

v̄h

(
Tdr + vi

ār

)
+ viTdr + v2

i

2ār

+ ϵs ≤ dih, i = 1, . . . , nr, (4.3)

where ār indicates the maximum deceleration that the motors may apply to the robot
sphere centers, which in our study was set equal to 5 m/s2; Tdr is the so-called “detection
and reaction time”, accounting for the time interval needed for the robot to get access to
the human operator’s position and to accordingly modify its speed (this time interval was
set equal to 100 ms, i.e., twice the sampling period of the motion planning algorithm);
ϵs indicates the accuracy of human location tracking achieved with the available motion
capture system, which is equal to 4 mm.

Now we will explain how the above condition (4.3) is related to the explanation
of the SSM principle provided above. The value v̄h (Tdr + vi/ār) represents how far
the human operator is able to go during the detection and reaction time of the robot
(in total, a distance equal to v̄hTdr), and while the robot speed decelerates until it
stops (a distance equal to v̄hvi/ār). The expression viTdr + v2

i /(2ār), instead, returns
the distance reached within the same time period by the ith robot sphere center. The
sum of these distances, plus the measurement precision ϵs, cannot be greater than the
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current distance dih between the human and the center of the ith robot sphere. This
guarantees that the robot can always stop before a possible collision happens, under
the conservative assumption that human and robot are on a collision course, pointing at
each other (as there is no a-priori information on the direction of the velocity vectors
associated with robot and human speeds). At each sampling time, the motion planning
algorithm has to determine the maximum permitted speed of each robot sphere center,
which we refer to as v̄i, by solving (4.3) as a second-order algebraic equation.

4.2 Motion planning with fixed and variable path

The standard way of implementing the SSM criterion is to modulate a robot motion
that has already been defined in the absence of the human operator. For the considered
pick-and-place tasks, this motion in its basic formulation would not account for the
distance with the human: to adapt it, the robot path (i.e., the sequence of configuration
values without any reference to robot speed) is maintained constant, and the speed is
modulated so as to guarantee SSM. Let us refer to the velocity of the ith robot sphere
center for the basic robot motion without human presence as v̂i. In order to maintain
the same path as in basic robot motion, all robot joint velocities have to be scaled to the
same quantity. It can be easily shown that, in order to guarantee SSM, all robot’s joint
speeds have to be multiplied by the following coefficient:

c = min
(

min
i=1,...,nr

v̄i

v̂i

, 1
)

. (4.4)

Actually, the scaling has to be achieved for the linear velocities of the sphere centers
rather than for the angular velocities of the robot joints; however, the latter implies
the former, as a result of the linear relationship between the robot’s sphere center
velocities and joint speed (see, e.g., [190]). Modulating the robot speed on a fixed path
as described above will be referred to in the remainder of the thesis as a fixed-path
(FP) algorithm. A continuous regulation of the robot velocity will be used in this work
by recalculating c at each sampling instant; this is a more advanced version of the
standard SSM algorithm used in industrial practice, where the robot speed threshold
only changes based on specific thresholds that identify the human location (the reason
for this is that a motion capture system would be too expensive to use in industrial
practice, and therefore simpler sensors such as laser scanners are routinely employed).

If humans often block the robot’s path, productivity (in our case, depending on
how many cubes can be placed in a given time interval) may be low, as the robot
has to keep stopping and waiting for the human to move away again. Oleinikov
et al. [191] suggested a real-time motion planning algorithm as a potential solution,
which defines the robot joint velocities based on a prediction of the robot movement
given the human operator position measured at the current time instant. This motion
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planning algorithm is implemented using model predictive control (MPC), which solves
a nonlinear constrained optimal control problem in real time (i.e., at each sampling
time). This problem consists of minimizing a suitable cost function that accounts for
quantities such as the distance of the robot configuration from its reference (to be
eventually steered to zero) and the joint velocities (which should not be kept high if not
necessary). As for the constraints, they include avoidance of fixed obstacles (i.e., the
table surface) and a slightly more conservative version of the SSM constraint defined
in (4.3), together with limits on joint angles and velocities. In the following, we will
refer to this motion planning strategy with a variable path simply as MPC. MPC is a
more “intelligent” version of SSM, which adds the ability to change the robot path to
that of modulating the robot speed; in the following, we will be testing if participants
would actually perceive this different level of intelligence or not. As this thesis is using
the MPC algorithm to study perceived safety and robot perceived intelligence, and the
definition itself of the MPC algorithm does not constitute an original contribution, we
omit the mathematical details of how the optimal control problem is formulated and
numerically solved; the interested reader will find all necessary details in [191]. On
the contrary, the variations of the FP and MPC algorithms described in the following
section were defined in [2] and are a contribution of this thesis.

It is worth mentioning that the robot path for the FP algorithm is established by
running MPC without a human operator present, so that the comparison between the
two algorithms can be fair, based on the same baseline motion. In this way, when the
human participant is absent, FP and MPC roughly determine the same robot motion
and thus have the same productivity.

In order to provide a visual representation of the robot’s motions for these two
algorithms, one can see in Fig. 4.1 how the robot performs a pick-and-place task by
moving a cube from the left to the right of the human operator, with the latter being
motionless in the shown position. This figure presents the behavior of the two algorithms
and displays the task completion time (for the pick-and-place motion) for each scenario.
Specifically, in Fig. 4.1a and Fig. 4.1b, the human was close enough to have an impact
on the robot’s motion: MPC chose to move the robot slightly away from the human so
that it could move faster in accordance with the SSM principle and achieve a lower task
completion time, while FP only decreased the robot velocity along its predetermined
path. In Fig. 4.1c and Fig. 4.1d, where the human was closer to the robot, FP had to
halt its motion after 5 s in order to meet the requirements of SSM. In Fig. 4.1c and
Fig. 4.1d, where the human was closer to the robot, FP had to halt its motion after 5 s in
order to meet the requirements of SSM; in contrast, MPC built a completely different
path, raising the end-effector height during its movement in order to maintain a distance
from the human that enabled the robot to finalize its task. Since a human operator must
generally move continually to finish a task, when FP is used, the robot motion never
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MPC: 11.1 s

MPC: 10.0 s

FP: stopped after 5 s

FP: 14.3 s

Figure 4.1: Robot trajectory for the human operator’s shown in static poses, with the
presented numerical value showing the task completion time for the specified pick-and-
place operation (from [2]).

totally stops but instead restarts as soon as the space between the person and robot
grows once again; however, this may significantly lower robot productivity.

4.3 Heart-rate based motion planning

As already mentioned in Section 2.9.2, decreasing robot speed proportionally to human
distance, as done with SSM, can also improve perceived safety because people typically
feel safer if the robot velocity reduces with distance, as already discussed in Chapter 2.
However, in Chapter 2 it was also noticed that perceived safety can depend on robot
speed without considering how far the robot is from the human. Reducing the robot
speed at all times to improve perceived safety might not be a good idea, as that would
always reduce productivity; however, it might be effective to further slow down the robot
if the operator feels nervous, which we did by measuring heart rate (HR). Monitoring
the physiological characteristics of the human operator is a real possibility in modern
industrial settings because of the accessibility of low-cost sensors built into user-friendly
equipment like wristbands.

The Empatica E4 wristband used in our studies provides HR and Galvanic skin
response (GSR) measurements with a 1 s sampling period. Preliminary tests with our
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setup (with GSR measurements) demonstrated that the GSR value steadily grew as the
user executed the given task, and the GSR value could not be related to the perception
of the robot by the human. The reason for the increasing GSR value depends on a
well-known fact: GSR can be significantly affected by muscle contraction, making it
challenging to effectively utilize it during scenarios that require a long-term motion of
the human [32]. As a result, we made the decision to simply rely on HR, which was
also the solution adopted by Pollak et al. in [28].

Since each subject’s resting HR value varies between 60 and 100 beats per minute,
we decided not to determine the robot speed only based on the HR value; otherwise, the
robot would move slower for subjects who have a higher resting HR value. Instead, we
chose to base the definition of our perceived safety index σ on the HR growth above
a baseline level HR0. The baseline level HR0 is an average HR value that must be
determined for each subject when he/she executes the same task without a moving robot.
Thus, ideally, the increase of the HR value measured during the experiments beyond
HR0 should be due to the presence and motion of the robot.

For properly scaling the σ value such that it would usually take values between 0
and 1, we also tried to obtain the value of the difference HR−HR0 for which the subject
would be reasonably scared or stressed to justify a significant reduction in the robot
velocity; this value is referred to in the following as HR∆. In order to find this value,
we explored the literature on how the HR value changes due to lack of comfort, having
human participants watch scary movies [192], watch threatening images [193], perform
cognitive tasks [194] and interact with robots [47, 51, 106]. The research by Weistroffer
et al. [47], which examined whether human subjects found the presence of robots in
assembly lines acceptable, is the one that comes closest to our own. It came up with
a value of HR∆ equal to 20 beats per minute (bpm), and we will use this value for
normalization.

Overall, the value of σ will be defined as follows at each sampling instant:

σ = max
{HR − HR0

HR∆
, 0

}
. (4.5)

The HR value is not supposed to take values below HR0, but if it did, we would get
σ = 0 in accordance with (4.5). Typically, the value of σ ranges between 0 and 1, with
the possibility of times when it exceeds 1, if the HR value takes values higher than
HR0+HR∆. We chose to use this terminology (i.e., naming σ “perceived safety index”)
despite the fact that the value of σ is actually inversely related to perceived safety, as
inferred by the HR value. The reason for this is that the notion of perceived safety is
already well-established in the literature, and a name such as “discomfort index” might
not have been immediately understandable.

The value of σ was used to generate two variants of the FP and MPC algorithms,
called FP-HR and MPC-HR. In these new motion planning algorithms, after defining a
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tuning parameter γ ∈ [0, 1], the value of v̄i for each robot sphere center (defined for FP
or MPC) would be instantly replaced with a new value v̄′

i, corresponding to

v̄′
i = max {1 − γσ, 0} · v̄i. (4.6)

A sudden change in the participant’s HR value would result in a similarly rapid change
in the value of v̄′

i; in fact, the resulting modification in the robot real speed would
normally occur in less than a second.

There would be minimal variation between the FP and MPC algorithms and their
modified variants if the constant coefficient γ had a value that was too small. On the
other hand, an excessively high value of γ would significantly lower the robot speed
even for a slight increase in HR above HR0, which might diminish productivity too
much. By following a trial-and-error procedure, we choose to select γ = 0.5 in order to
find a middle ground between these two extreme scenarios.
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Chapter 5

Methodology
This chapter provides an explanation of the methodology followed to run the
experiments that are at the core of the thesis. It introduces the experimental setup,
the experimental procedure, the formulated hypotheses, and the measures defined to
confirm or reject them.

5.1 Experimental setup

Figure 5.1 provides an overview of the experimental setup. As a robot manipulator, a
Kinova Gen3 was used, which is an ultra-lightweight robotic arm specifically designed
for pHRI. The motion planning algorithms were developed for this specific robot on a
Linux computer running the Robot Operating System (ROS) that was connected to the
robot. This computer was equipped with 16 GB of RAM and an Intel Core i9-7900X

Figure 5.1: Experimental setup. The 12 PrimeX13 cameras, the RGB camera, and the
supporting cube frame that make up the OptiTrack motion capture system are shown in
this figure. One can see the table inside the cube where the Kinova Gen3 robot is set up
and where the human participants, wearing the marker-equipped suit, complete the task
given to them.
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Figure 5.2: Motive software connected to the OptiTrack and analyzed camera input in
order to provide global 3D locations, markers, rotational information with respect to
the human local reference, and skeletal tracking.

CPU. The operational details in terms of the applied optimization algorithms along with
their associated details are unchanged compared to the MPC algorithm described by
Oleinikov et al. [191] and are therefore not reported in detail here. The software toolbox
ACADO [195] was used to generate a C code to solve the optimal control problems
associated with the MPC and MPC-HR algorithms in real time.

An OptiTrack system consisting of 12 OptiTrack PrimeX13 cameras and one RGB
camera was used for tracking human movements. The cameras were fixed to a support
frame made of aluminum extrusions that were joined to form a robust cube frame. The
first step for employing the OptiTrack system in the experimental setup is the calibration
process, which is necessary to achieve precise spatial relationships between multiple
cameras. The purpose of calibration is to guarantee that the system recognizes the
relative locations and orientations of all cameras. Calibration and the tracking processes
were executed by the Motive software prior to the experiments. The calibration of
the motion capture system was executed with respect to the robot coordinate system
with a maximum error (equivalent to the specified measurement precision ϵs) of 4 mm
and a maximum time delay of 11 ms (consisting of acquisition period and software
delays). The Motive software was connected to the OptiTrack device using a specialized
Windows PC (also with an Intel Core i9-7900X CPU and 16GB RAM) and acquired
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Figure 5.3: 3D simulation in Gazebo of the Kinova Gen3 manipulator and of the human
(represented using the virtual spheres mentioned in Chapter 4).

the current human upper-body position in space (Fig.5.2). Each human subject was
required to wear a set of markers connected to a special suit (since the OptiTrack system
was of the marker-based type), and their positions were identified by the cameras in
real time, as shown in Fig.5.4. Motive analyzes the image projections of markers
from multiple camera angles, and then uses an advanced algorithm to triangulate their
locations. Using this information, it creates a complete 3D reconstruction of the human
skeleton. The Windows PC streamed the motion capture data that was received by the
ROS machine through the NatNet Client. A 3D simulation in Gazebo of the Kinova
Gen3 manipulator exactly replicating the movement from the experimental setup and of
the human is shown in Fig.5.3.

The aforementioned Empatica E4 bracelet (shown in Fig.5.5, Bluetooth-enabled with
an app called “E4 realtime”) was used to collect HR data. The ROS machine was linked
to the E4 real-time software through a TCP/IP interface, and it continuously updated the
HR value. A photoplethysmography sensor inside the wristband monitored the blood
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Figure 5.4: The scheme for attaching markers to the costume of the participant in the
experiment in the Motive application.

volume pulse, from which it determined the interbeat interval (IBI). The wristband
built-in algorithm immediately eliminated invalid IBIs [196]. To lessen the potential
impact of measurement noise in our trials, the resultant HR value was low-pass filtered
through a three-sample moving average filter. The example of the resulting log file is
shown in Fig.5.6.

5.2 Experimental procedure

There were 48 individuals who participated in a within-subject experiment, including
18 men and 30 females, between the ages of 18 and 38 (24.98±5.289, where 24.98 is
the mean age and 5.289 is the standard deviation). They were all either Nazarbayev
University employees (managers, laboratory technicians, and administrative staff) or
students (either undergraduate or graduate students in robotics, psychology, education,
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Figure 5.5: E4 wristband.

Figure 5.6: The figure displays a screenshot of the Log.txt file obtained from the E4
wristband with the timestamp, HR, and GSR data.
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Figure 5.7: The figure displays a detailed view of the task. There is a box on the left
where the pieces are stored. The box for the triangle, square, and circle pieces is placed
on the right. The box for placing the screw is located in front of the human participant.

or chemistry). Each individual engaged with the robot while interacting in four
circumstances (FP, MPC, FP-HR, and MPC-HR algorithms). To prevent an ordering
effect, we carefully counterbalanced the conditions; more specifically, each of the 24
possible sequences of the four motion planning algorithms was executed exactly for
two participants.

Each participant took part in a single session that lasted for approximately 30-40
minutes. Each participant read and signed the consent form and completed a pre-
experiment questionnaire that asked about their age, attitude toward sharing workspace
with robots, and prior experience working with robots. Then the subject was shown
a video of the task to be completed. After that the experimental session started. The
subject would sit in the chair shown in Fig. 5.1 while wearing the OptiTrack suit with
markers and the E4 wristband on the left arm.

The task for humans that was previously explained in the video is shown in Fig. 5.7.
The task included selecting one of four different types of small elements (a screw,
triangle, square, or circle) from a box to the left side of the participant and either
inserting it in the box to the right (for triangles, squares, and circles) or screwing it into
the box in front of the participant using the right hand while keeping the left arm in a
resting, motionless pose. This task explanation is suitable for right-handed respondents.
The terms “left” and “right” in the task description must be switched for the left-handed
subjects.

The experiment task was designed so as to replicate, in an idealized and simplified
way, a manufacturing task involving human-robot workspace sharing. When the human
was inserting a small piece into the box in front of him/her, the robot at that time had
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chance either to avoid the human hand, or to stop, depending on the running algorithm,
as was mentioned before. These different robot behaviors were supposed to be rated by
the human participants as more or less intelligent and safe, depending on the subjects’
perception about the robot.

The considered task can be seen as a simplified version of an assembly scenario
within a factory. For example, factory workers might be assembling parts of a car
engine while a manipulator works on different parts of the same engine. Alternatively,
one can think about a human operator sorting boxes in a warehouse, while the robot
executes a similar task in the same shared workspace.

The task was executed for a period of 4 minutes for each motion planning algorithm.
Before running the task with the moving robot, the average HR value was recorded
during the execution of the task for 4 minutes without the moving robot, and this
average value was assigned as HR0 value to the participant. After a brief pause, the
participant would perform the same activity for 4 minutes while the robot carried out its
pick-and-place task using one of the four motion planning algorithms mentioned earlier.
The robot would move cubes from the participant’s left to right sides, and vice-versa.
The participant would complete a questionnaire regarding their perception of the robot
throughout the experiment at the end of the four minutes; the specific questions will be
detailed in Section 5.4. During this activity (lasting about one minute), a new value for
HR0 would be established in order to account for the possibility that performing the
task might slightly increase the participant’s HR baseline, which cannot be ascribed to
stress but only to physical activity. Then, another experiment with a different algorithm
would be executed, and a related questionnaire would be completed. As a result, all
four algorithms would be performed on one subject. At the end of the last questionnaire,
each subject was requested to sort the four algorithms from the safest to the least safe.

Prior to running the experiments, several manipulation checks were performed.
During these tests, we found out that the skin conductance was increasing because
the human was moving his/her hand while executing the task, not because of feeling
unsafe or uncomfortable. That was the reason to eliminate the skin conductance from
the biological signals detection measure for our experiments as was stated in Section
2.3. Next, the human felt tired when executing one experimental set for 5 minutes, so
we shortened it to 4 minutes, and gave some short break for one minute for the subjects
to have a rest. After different trials, the box where the screws had to be inserted was
placed on the table in front of the human on a distance that was comfortable, at the
same time making the robot deviate from its original trajectory (in case of MPC or
MPC-HR) or stop (in case of FP or FP-HR), in order to make the difference between
FP and MPC more obvious for the humans.

The Nazarbayev University Institutional Research Ethics Committee (NU-IREC),
which follows the guidelines outlined in the report "Ethical Principles and Guidelines
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for the Protection of Human Subjects of Research" ("Belmont Report"), approved
the experimental procedure that was followed for all 48 subjects. An application for
NU-IREC’s approval titled "Experiments on human-robot workspace sharing" was
approved on June 20, 2021. All participants provided a written informed consent form.

5.3 Hypotheses

In the following, we formulate our hypotheses based on the experiment’s outcomes.
Although the main focus of this work is on perceived safety and robot perceived
intelligence, the first hypothesis is related to productivity. Indeed, it is important to
assess the productivity of the algorithms used, as, for example, an improvement in
perceived safety also has to be assessed against the variation in productivity for the
same algorithm. Indeed, an algorithm that improves both productivity and perceived
safety is a very good candidate for being implemented in industrial practice; on the other
hand, an algorithm that improves perceived safety but worsens productivity has to be
carefully considered based on the specific application. Given the provided description
of the employed motion planning algorithms, it may be predicted that the robot will
achieve higher productivity when it is able to move continuously, redefining its motion
in real time (i.e., in the case of MPC or MPC-HR), compared to the case in which it
often has to stop due to human presence without being able to modify its path (i.e., in
the case of FP or FP-HR). Also, the decline of the robot speed based on HR data is
likely to decrease productivity. Based on this reasoning, the following hypothesis was
formulated:

H1: a) robot productivity with MPC is higher than with FP;
b) robot productivity with MPC-HR is higher than with FP-HR;
c) robot productivity with FP is higher than with FP-HR;
d) robot productivity with MPC is higher than with MPC-HR.

The next three hypotheses are instead related to perceived safety. The HR-based
variants of the algorithms were defined with the aim of improving perceived safety.
Indeed, based on the results from the literature reported in Chapter 2, if the robot speed
decreases due to an increase in the HR value, we expect the human participants to
perceive the robot as safer. Therefore, we formulated the following hypothesis:

H2: a) perceived safety with FP is higher than with MPC;
b) perceived safety with FP-HR is higher than with MPC-HR;
c) perceived safety with FP-HR is higher than with FP;
d) perceived safety with MPC-HR is higher than with MPC.

Furthermore, when participants interact with the robot for a longer time and become
aware of the fact that the robot motion is safe (regardless of the algorithm employed),
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their perception of safety should improve. This leads to formulating the following
hypothesis:

H3: perceived safety increases with time within the same experimental session due to
habituation.

The third hypothesis on perceived safety is related to the previous experience that
participants might have with working with robots. Similarly to what we formulated
for H3, we expected that accumulated experience (as long as the participant did not
have negative experiences, e.g., getting injured) should increase comfort during pHRI
experiments. Therefore, we formulate the following:

H4: perceived safety increases proportionally with previous participants’ experience
interacting with robots.

The final three hypotheses are related to perceived intelligence. We expected that the
MPC algorithm would be perceived as more intelligent by the participants in contrast to
the FP algorithm since it can modify the robot path when necessary. The comparison of
MPC-HR with FP-HR would also follow the same logic. Additionally, we believed that
the HR-based speed modulation would make the robot perceived as more intelligent
compared to the regular versions of the same algorithms for both the FP-HR and MPC-
HR scenarios; the reason for this is that the participants might understand that the robot
slows down when their HR increases. The following was thus formulated:

H5: a) perceived intelligence with MPC is higher than with FP;
b) perceived intelligence with MPC-HR is higher than with FP-HR;
c) perceived intelligence with FP-HR is higher than with FP;
d) perceived intelligence with MPC-HR is higher than with MPC.

As already mentioned, in our experiments, participants were exposed to different
motion planning algorithms executed by the robot in sequence, without knowing what
algorithm the robot was currently executing. If a single algorithm had to always
be used, two outcomes would be possible: (i) if the behavior of the robot can be
explained by straightforward principles, over time humans will come to realize these
rules and eventually consider the robot as less intelligent; (ii) if the robot shows a
complicated behavior, humans will gradually understand it and will judge the robot
as more intelligent as time passes. Each trial set in our research utilized a different
algorithm, but because their order was counterbalanced and the robot behavior was
generally highly complex, we anticipated effect (ii) to be present (also based on the
conclusions of Chapter 3), so we made the following hypothesis:

H6: perceived intelligence increases with the number of the experimental set.
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Finally, we were interested in determining how participants’ prior experience interacting
with robots affected their perceptions of robot intelligence. On the one hand, more
knowledgeable human subjects may be able to quickly figure out the nuances of the
motion planning algorithms and judge the robot to be intelligent. On the other hand,
the same respondents may have had lower overall assessments of perceived intelligence
if they had higher expectations for the robot’s intelligence. Assuming that these two
effects counterbalance each other, we may expect that prior experience has no bearing
on how intelligent the robot is perceived:

H7: perceived intelligence does not vary with the previous experience of participants
interacting with robots.

5.4 Measures

The following independent and dependent variables were considered to test the
formulated hypotheses.

Independent variables:

• The motion planning algorithm and the order of execution of each algorithm
within each experiment: both choices were made by the scientist conducting the
experiment.

• The previous experience of the subject, which came from the pre-experiment
questionnaire as a response to the question: “Have you ever worked/interacted
with a robot?”. Response options were (4) “I work with robots”, (3) “often”, (2)
“once or twice”, or (1) “never”.

Dependent variables:

• The robot productivity, which was indirectly evaluated using the average task
completion time (ATCP). This value indicates the mean duration of the time
frame – within a period of time equal to 4 minutes – which the robot needed to
move a cube from its rest location to its target place. The ATCP value was solely
dependent on the applied algorithm and the movements of the subject, since the
distance between these positions remained nearly constant. The ATCP is inversely
linked to productivity because this indicator suggests that fewer pick-and-place
activities will be performed in the same amount of time with a large ATCP.

• Two 5-point Likert scales for response to the pre-experiment questionnaire – “I
would feel nervous while interacting with the robot (with answers: 1-strongly
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disagree to 5-strongly agree)” and “I would feel nervous while sitting in front of
the robot (with answers: 1-strongly disagree to 5-strongly agree)” – which were
combined by averaging the scores; the resulting scale was called pre-experiment

nervousness. The Negative Attitude Towards Robots (NARS) questionnaire [142]
was the basis for these questions, with slight modifications. In particular, the first
question is an adjusted version of NARS item 8 ("I would feel nervous operating
a robot in front of other people"), changed to take into consideration that the
human participants did not operate the robot, instead they physically collaborated
with it; the second question is an adjusted version of NARS item 10 ("I would feel
very nervous just standing in front of a robot"), modified to account for the fact
that the subjects in our study would be sitting instead of standing when answering
the question.

• The perceived safety experienced by the participant. This was measured by five
distinct measures (three subjective and two physiological), and precisely:

1. The average HR value within a period of 4-minutes. A higher average HR

value is an indicator of higher physiological stress [28] for the same subject.
This tendency indicates lower perceived safety.

2. The average σ within a period of 4-minutes. There is a relationship between
this measure and the previous one, but there is no 1-to-1 correlation between
the two.

3. Two 5-point Likert scales for response to the post-experiment questionnaire
– “I felt nervous while interacting with the robot (1-strongly disagree to 5-
strongly agree)” and “I felt nervous while sitting in front of the robot (with
answers: 1-strongly disagree to 5-strongly agree)” - merged by averaging
the rates (Cronbach’s α = .87) [197]. It resulted in a single scale named
nervousness. This is the post-experiment version of the pre-experiment

nervousness rate shown above.

4. Two 5-point semantic differential scales to answer the questions “Please
rate your emotional state on this scale” from “anxious” to “relaxed” and
from “calm” to “stressed” were merged by averaging the rates (Cronbach’s
α = .844). These questions form a subset of those in the Godspeed
questionnaire on perceived safety [30] that substituted the original term
"agitated" with the term "stressed". It was done because we considered the
participants, who were all non-native English speakers, would understand it
better. The resulting differential scale (DS) was called perceived safety DS

for simplification.

5. The ranking of the experienced robot motions, as a response to the question
“Sort the four experiments (1-4) from the one in which you felt the safest to
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the one in which you felt the least safe”, that was asked to the subjects at
the end of the whole experimental session.

• The robot perceived intelligence, obtained in the post-experiment 5-point semantic
differential scale questionnaire - “Please rate your impression of the robot on
these scales:“ from “non-intelligent” to “intelligent”.
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Results and discussion

This chapter provides the results of the statistical analysis of the results of the
experiments whose methodology was described in Chapter 5. A more detailed account
of the data related to these results is given in Appendix A. To evaluate the assumption
of normality, a set of Kolmogorov-Smirnov (K-S) and Shapiro-Wilk tests [198] overall
and within groups were performed on all dependent variables. We primarily focus
on presenting significant differences (defined by a p-value satisfying the condition
p < 0.05). We provide data on the central tendency and dispersion as (mean ±
standard deviation) for each dataset that is discussed. Since the majority of scores were
not normally distributed, a series of Friedman tests [199] was used for the statistical
data analysis. When data were normally distributed, one-way and two-way repeated
measures ANOVA tests [200] were used. Mauchly’s Test of Sphericity [201] was
conducted, and when the assumption of sphericity was violated, a Greenhouse-Geisser
correction [202] was used. The results are then discussed.

6.1 Results on robot productivity (H1)

A Friedman test was run on the ATCP values (inversely proportional to productivity) to
verify H1. Between different algorithms, there was a statistically significant difference
in robot productivity: χ2(3) = 127.575, p < 0.001. The robot was significantly less
productive with FP (19.99 ± 2.87) than with MPC (11.76 ± 0.78): χ2(1) = 48.000,
p < 0.001, as shown in Fig. 6.1a.In addition, productivity was significantly higher with
MPC-HR (13.50 ± 2.10) than with FP-HR(22.64 ± 4.61): χ2(1) = 48.000, p < 0.001.
We can thus accept H1a and H1b.

The productivity results with FP (19.99 ± 2.87) was significantly higher than
productivity with FP-HR (22.64 ± 4.61): χ2(1) = 16.333, p < 0.001, productivity
with MPC (11.76 ± 0.78) obtained significantly higher productivity than with MPC-HR
(13.50 ± 2.10): χ2(1) =30.083, p < 0.001. So, H1c and H1d are accepted.
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Figure 6.1: Mean values for different motion planning algorithms: a) ATCP (inversely
proportional to robot productivity); b) perceived safety DS; c) nervousness; d) ranking.
Significance levels for pairwise comparisons are indicated as * for p < 0.05, ** for
p < 0.01, and *** for p < 0.001. The error bars display the standard deviation
(from [2]).

6.2 Results on perceived safety (H2, H3 and H4)

6.2.1 Perceived safety with different algorithms (H2)

A set of Friedman tests were run on the perceived safety measures mentioned in Section
5.4 in order to assess H2. The average HR and average σ values, corresponding to
physiological measures, did not show significant differences amongst algorithms.

Between FP and FP-HR, there was a statistically significant difference in how
individuals evaluated perceived safety DS: χ2(1) = 4.172, p = 0.041. Participants
evaluated their level of perceived safety DS for the FP algorithm (4.31 ± 0.83)
substantially higher than they did for FP-HR (4.08 ± 1.05), as demonstrated in Fig. 6.1b.

The nervousness measure was then analyzed using a number of Friedman tests.
Between FP and FP-HR, there was a statistically significant difference in the
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nervousness score: χ2(1) = 3.857, p = 0.049. Similarly to perceived safety DS,
we discovered a significant difference between the two FP-based algorithms, with or
without HR-based speed modulation, since FP (4.57 ± 0.78) was considered to make
participants feel less nervous than FP-HR (4.38 ± 0.90), as shown in Fig. 6.1c.

Furthermore, a Friedman test showed significant differences in ranking between
MPC and FP (Fig. 6.1d): χ2(1) = 8.333, p = .004. MPC (2.77 ± 1.12) was rated as
the least safe algorithm, with FP (2.15 ± 1.01) being the one that generated the safest
robot motion.

In conclusion, we can reject H2b-d and partially accept H2a as indicated by the
ranking measure.

6.2.2 Effect of habituation (H3)

We studied the perceived safety distribution based on the order in which each of the
four subsequent robot motions was executed, regardless of the applied motion planning
algorithm. As was mentioned before, each motion was executed for 4 minutes, and all
achievable sequences were tested among 48 participants.

A Friedman test showed a statistically significant difference in perceived safety DS

based on the sequence of execution: χ2(3) = 9.572, p = 0.023. According to Fig. 6.2a,
there was a statistically significant difference between the first and second robot motions
(χ2(1) = 10.800, p = 0.001), and between the first and third motions (χ2(1) = 4.235,
p = 0.040).a. The first robot motion’s perceived safety DS rating (3.91 ± 0.15) was
significantly lower than that of the second (4.27 ± 0.11) and third (4.30 ± 0.12) motions.

The nervousness measure was then subjected to several Friedman tests. The
difference between the first and fourth robot movements on the nervousness scale
was statistically significant (χ2(1) = 3.846, p = 0.049). The first robot motions caused
participants to feel significantly more nervous (4.24 ± 0.14) than the fourth robot
motions (4.58 ± 0.11) (Fig. 6.2b).

We can accept H3 as supported by subjective measures such as perceived safety DS

and nervousness.

6.2.3 Effect of previous experience with robots (H4)

To test H4, we divided the participants into two groups based on their prior experience:
inexperienced (those who answered "never" or "once or twice" to the question "Have
you ever worked/interacted with a robot?") and experienced (those who answered
"often" or "I work with robots" to the same question). 34 individuals were classified as
being inexperienced, and 14 as being experienced. H4 is rejected because there was no
statistically significant difference between the groups for either the algorithms or the
order of execution.
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Figure 6.2: Mean values based on the order of execution: a) perceived safety DS;
b) nervousness. Significance levels for pairwise comparisons are indicated as * for
p < 0.05, ** for p < 0.01, and *** for p < 0.001. The error bars display the standard
deviation (from [2]).

It is worth noticing that the information on pre-experiment nervousness obtained
in the pre-experiment questionnaire never provided any significant results regarding
its relationship with the variables obtained from the questionnaires filled out after the
experimental sessions.

6.3 Results on Perceived Intelligence (H5, H6 and H7)

6.3.1 Perceived intelligence with different algorithms (H5)

To evaluate the assumption of normality, a series of Kolmogorov-Smirnov (K-S) and
Shapiro-Wilk tests were run on the perceived intelligence scale from the post-experiment
questionnaire.

The motion planning algorithms MPC (3.92±1.048), MPC-HR (3.75±1.021), FP
(3.94 ± 1.080), FP-HR (3.85 ± 1.072) resulted in no significant difference in perceived

intelligence scores, according to a Friedman test: χ2(3) = 1.090, p = 0.780. In
Fig. 6.3a, the resulting mean values and standard errors are displayed. Thus, we
concluded that H5 is not supported by our experimental data.

6.3.2 Effect of habituation (H6)

A Friedman test used to assess H6 showed a significant difference in perceived

intelligence depending on the order in which the algorithms were run: χ2(3) = 8.202,
p = 0.042. As can be seen in Fig. 6.3b, there was a minor statistically significant
difference between the first and second motion χ2(1) = 3.571, p = 0.058, the first
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Figure 6.3: Mean values of Perceived Intelligence a) between algorithms irrespective
of their execution order, b) between algorithms depending on their execution order
and c) based on the participant’s previous experience. Significance levels for pairwise
comparisons are indicated as * for p < 0.05 (from [3]).

and third motions: χ2(1) = 6.000, p = 0.014, and the first and fourth motions:
χ2(1) = 5.261, p = 0.022. When compared to the second (3.92 ± 1.028), third
(3.96 ± 1.051), and fourth (3.98 ± 1.120) robot motions, the perceived intelligence of
the very first (3.60 ± 0.984) motion was much lower. H6 was therefore approved.

6.3.3 Effect of previous experience with robots (H7)

In order to test H7, we divided the participants into the same two groups (experienced
and inexperienced) that had already tested H4. According to one-way ANOVA (see
Fig. 6.3c), there was no statistically significant difference between the two groups based
on previous experience with the robot (F(1, 46) = 2,057, p = 0.158).
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6.4 Discussion

6.4.1 Productivity

Our findings completely confirm H1. Regarding H1a and H1b, we would like to point
out that not every type of human motion would lead to a higher performance of MPC
over FP (and of MPC-HR over FP-HR). In fact, changing the robot’s path based on the
present location of the human is only convenient when the human blocks the robot’s
movement over a relatively long period (of at least a few seconds). In the case of very
fast human motion, for example, with the participant approaching the robot only to
quickly pick up an object, the strategy put in place by FP (i.e., just slow down and wait
for the human to move away) could achieve a higher level of productivity than defining
a new robot motion, as done by MPC. Indeed, the new motion would lead to a longer
robot path, which might not be beneficial when the human blocks the shorter path
followed by FP only for a very short time interval. Instead, as the robot velocity reduces
in MPC-HR with respect to MPC and in FP-HR with respect to FP, we can confidently
predict that the productivity of the HR-based algorithms will never be greater than that
of the algorithms without an HR-based speed decrease. As a result, we anticipate that
H1c and H1d will always be confirmed, regardless of the specific human motion.

6.4.2 Perceived safety with different algorithms

One of our subjective assessments (ranking) led us to accept H2a, indicating that FP
had a greater perceived level of safety than MPC. While the robot in the MPC scenario
occasionally was generally more unpredictable and moved more rapidly (it could move
faster, being able to remain at a larger distance from the human, based on SSM), the
robot in the FP case moved along a fixed trajectory by specification and at a slower
speed. Both characteristics are generally linked to increased perceived safety in the
robotics literature [40, 41, 53, 107, 112], as discussed also in Chapter 2. As a result,
this finding correlates with earlier research results. Despite the rejection of H2b-d, we
discovered a different pattern in the connection between the perceived safety ratings in
FP and FP-HR. Indeed, both perceived safety DS and nervousness indicate that people
generally perceive FP to be safer than FP-HR. This could be because the robot’s average
slower velocity during FP-HR also resulted in more frequent pauses, which increased
the participants’ anxiety and nervousness.

A notable observation that combines the results of H1 and H2 is that implementing
the HR-based speed reduction in both FP or MPC does not result in any positive
outcome, at least based on our trials, as it reduces productivity and has no effect on
perceived safety (or, for FP, even worsens it). As was already indicated, the decline in
productivity was mostly predictable because using HR-based techniques slows down
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robot speed. The lack of influence of HR-based speed modulation on perceived safety
was instead unexpected. In order to better understand this aspect, we explored the
literature to see if similar results were obtained in the past.

Unfortunately, there are few published studies where robot behavior is changed in
real time in response to physiological feedback from humans [203–206]. Only Kulic
and Croft’s work [206] examines how a person and a manipulator interact, making it
the only one whose findings can be compared to ours. So-called medium-term and
short-term planners were used to plan the robot’s motion at three separate levels (long,
medium, and short term) and were affected by physiological feedback. A danger
index was calculated based on the current position and velocity of the robot and the
human, as well as the human’s head orientation and the physiological assessment of the
affective state, reducing the robot speed in proportion to the detected level of anxiety.
Kulic and Croft’s experiment results [206] analyzed the implications of this additional
speed decrease on robot movements, but they did not assess the impact that adding
this component to the motion planning algorithms had on the participants’ perceived
safety. Even so, the robot used by Kulic and Croft was an industrial manipulator, and
the motion of the robot was not designed using SSM, which was developed a few years
later: its motion without speed reduction would have, as a consequence, resulted in a
rather “scary” experience for the participants. Therefore, we would expect that in their
approach, if perceived safety had been measured, it would have improved when speed
reduction occurred. On the contrary, in our case, the robot was already lightweight
(being a cobot) and moved relatively slowly, even without HR-based speed reduction,
in order to satisfy the SSM requirements. As a consequence, the further reduction in
speed might not have been perceived as improving safety, as the MPC and FP motions
were already perceived as safe.

6.4.3 Perceived intelligence with different algorithms

According to the obtained results, there was no significant difference in the perceived
intelligence ratings of the four algorithms and the user’s previous experience with robots.
We were surprised to find that, despite the differences among the various algorithms,
there was not a significant difference in perceived intelligence in H4. Indeed, as
discussed in Chapter 3 (specifically, in Section 1), adaptability is a major factor that
influences the perceived intelligence of an intelligent agent, although this factor was
never specifically studied in the past for robots. It is possible that this occurred because
even the most basic algorithm (FP) produced a relatively complicated robot motion (for
instance, applying the SSM conditions). Additionally, FP made it more obvious to the
subjects that the robot would reduce its speed when it came close to the participant’s
body. This may not have been the case when using MPC, as the robot would always
change its path, thus making it more difficult to infer when and why it would change
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its speed. As a result, the perceived intelligence of MPC and MPC-HR may not have
differed significantly from FP and FP-HR due to the difficulty in comprehending the
complicated behavior of these algorithms, which may have compensated for their real
higher level of complexity. The fact that participants generally did not understand how
robot speed varied based on the HR value may have contributed to the lack of variability
in perceived intelligence when applying the HR-variant of the algorithms.

6.4.4 The effect of habituation

Based on subjective measurements, our findings show the impact of habituation on
perceived safety. This outcome confirms H3, and it is consistent with findings from the
robotics literature, including [39, 40, 89, 93], as participants frequently become adapted
to the experimental setting and the movements of the robot.

The finding of significance also concerned the impact of habituation on the perceived
intelligence rate, which may have been caused by the fact that, at least according to the
participants’ expectations, the robot behavior was generally non trivial to understand.
Participants would therefore rate the robot as more intelligent as they came to understand
the rules that controlled its behavior. This result is in line with the general trend in
the literature discussed in Chapter 3. In particular, the majority of studies found
no significant change in perceived intelligence due to habituation. A few studies
were instead pointing towards a significant increase in perceived intelligence due to
habituation, and the result in this thesis provides a further element in this direction.

6.4.5 The effect of previous experience with robots

Even though earlier studies [85, 142] suggested that prior robot experience would affect
participants’ perceptions of safety, this was not supported by our study. This is probably
due to the robot’s very low velocity, mass, and size, as well as to the fact that all of the
developed algorithms are safe according to the ISO/TS 15066 standard. This factor
reduced the disparities between experienced and inexperienced people by enabling
novice participants to quickly adapt to physically interacting with the system.

As was expected, the perceived intelligence ratings of the robot were not affected by
previous experience with the robot, which confirmed H7. Unfortunately, we did not
find any previous works where any correlation between experience and perception of
robot intelligence was studied to compare with our findings.
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Chapter 7

Conclusions
In this final chapter, we summarize the thesis content focusing on the research questions
defined in Chapter 1. An overview of possible future work is also provided.

7.1 Addressing the research questions

The first research question focused on how perceived safety and perceived intelligence
change if the robot path is either fixed or modified in real time based on the current
human position. Participants ranked the fixed-path motion planning algorithm FP
as safer than the variable-path MPC algorithm – based on the ranking measure –
which led to accepting H2a (“perceived safety with FP is higher than with MPC”).
This was expected, due to the relatively higher speed and lower predictability of
MPC as compared to FP; indeed, these two factors were described in the literature –
in [7, 31, 35, 40, 41, 43, 45, 60] and [49, 53, 56, 57, 59, 60], respectively – as influencing
perceived safety for robots in general and for manipulators in particular (see also
Section 2.9.1). On the other hand, the FP-HR algorithm was not perceived as safer
than MPC-HR, and this could be explained by the lower speed of the robot for both
algorithms, which might have made their differences less apparent. Regarding perceived
intelligence, there was no significant difference between the four algorithms. This
might have happened because even the most straightforward algorithm (FP) generated
a somewhat complex robot motion following the SSM requirements; as a consequence,
the ability of MPC to modify the robot path was not perceived as an additional level of
intelligence, also due to lack of transparency, as the participants were not aware of the
implemented algorithms.

The second research question directed its attention to the difference in perceived
safety and perceived intelligence between the case in which the robot speed is decreased
in real time based on the HR measurement value, and the case in which this does not
happen. The expected outcome of higher perceived safety and perceived intelligence
when the HR variant of the algorithms was used was not confirmed by the experimental
results. In particular, no significant result was obtained, apart from one case: specifically,
when the FP algorithm was used, the robot was rated as safer than when the FP-HR
variant was run, which contradicted our expectations. This might be explained by the
frequent robot pauses that happened in the FP-HR case, which increased the participant’s
nervousness. In terms of perceived safety, this general outcome might be due to the fact
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that the robot motion was already perceived as safe using either MPC of FP, without
their HR-based versions. In terms of perceived intelligence, the same considerations
reported for the first research question apply.

The third research question asked how perceived safety and perceived intelligence
change due to habituation. Habituation led to a significant increase of both perceived
safety and perceived intelligence, leading to the acceptance of both H3 and H6. This
result was probably obtained also thanks to the above-mentioned lack of transparency.
More in detail, as the participants were not aware of the details of the algorithms
governing the robot motion, they might have expected the robot to be neither very safe
nor very intelligent at the beginning. However, as participants interacted for a longer
period with the robot, they gradually learnt that this was both safe and intelligent.

Finally, the fourth research question focused on how perceived safety and perceived
intelligence change based on the participants’ previous experience with the robot.
According to our obtained results, previous experience with robots affected neither
perceived safety nor perceived intelligence in a significant way. These findings
are in contrast with the results of previously published research. For instance, in
[37, 39, 49, 52, 54, 55] more experienced human participants rated the robot as safer.
The reason for our result on perceived safety is probably that the robot motion was safe
enough to be perceived as such also by an inexperienced participant. As for perceived
intelligence, the result is probably due the fact that a more experienced participant
would be able to understand the features of the motion planning algorithm, but at the
same time would have higher expectations in terms of robot intelligence.

7.2 Limitations

One of the main limitations of this research study consists of how perceived safety is
assessed in real time via physiological feedback to modify the robot motion. Relying
only on heart beat is clearly simplistic, and the use of Galvanic skin response did not
seem feasible, as this was influenced by the fact that the participant was moving. During
the preliminary phase of the experiments, we considered the possibility of analyzing
the human subjects’ face expressions in real time to assess perceived safety, but all
participants wore masks during the experiments because of the Covid-19 pandemics.

A second limitation is the fact that these algorithms, being aimed at manufacturing
applications, should be ideally tested on factory workers, who might have a different
perception of safety and robot intelligence compared to students and university
employees. This was also made difficult by the Covid-19 pandemics, and by the
fact that in Kazakhstan there are few high-tech companies in which workers routinely
work in contact with collaborative manipulators.
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7.3 Open Research Questions

There is a number of open research questions related to the results of this thesis. For
example:

1. Would a different strategy for reducing the robot speed based on a real-time
estimate of perceived safety (other than FP-HR and MPC-HR) achieve better
results in terms of improving perceived safety itself? For example, would the
detection of face expression achieve better results?

2. How would the results of the described experiments change when actual factory
workers participate in the study, and what modifications should be made to the
algorithms to better adapt to factory workers?

3. If applied to industrial (non-collaborative) manipulators, would the HR-based
algorithms actually improve perceived safety?

7.4 Future Work

Future work on perceived safety could be directed towards using similar motion planning
algorithms on standard industrial manipulators. In this case, the robot would have higher
mass and size, and would move in general at higher speeds. This could highlight the
differences between the FP and MPC algorithms on the one hand, and their HR versions
on the other hand. Furthermore, more sophisticated MPC versions on one side (e.g.,
MPC based on explicit predictions of the human motion), and simpler algorithms on
the other side (e.g., safety-rated monitored stop) could be added to provide a wider
spectrum of motion planning algorithms to compare. The consideration of industrial
employees in the participant pool is another possible research direction.

A possibility for further research on perceived intelligence would be to conduct
experiments with different robots, different a-priori information given to participants and
different tasks, to assess how perceived intelligence varies depending on transparency,
animacy, human-like appearance and gestures. In particular, the role of information
(i.e., transparency) surely deserves further investigation. One can expect that little
information provided before the experiment on either robot appearance or task would
more likely lead to a change in perceived intelligence as compared to the case in which
a very detailed description is provided, or (even more) to the case when a video of
the task is shown to the participant before the experiment. Regarding habituation, we
can expect that either little initial information or a complex robot behavior that has
to be understood would lead to a more significant variation of perceived intelligence,
compared to the case in which participants know all details of the task beforehand, or
in which the robot behavior is very easy to predict.
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As discussed in [79], a motion is legible if the robot reaches the goal and avoids
collisions, enabling the human participant to quickly and confidently infer the goal.
The effect of legibility is as important as that of predictability in the way it influences
perceived safety. In the experiments described in this thesis, legibility was not relevant,
as the robot goal was clear from the beginning (i.e., the human would always know
where the cube was going to be placed). However, the path that the robot would follow
to reach that location was changed when using MPC and MPC-HR, which reduced
predictability. In future work, the described experiments could be modified to study the
effect of legibility on perceived safety. For example, the robot could place a picked cube
at one of two different locations: these locations would be known to the participants,
who however would not know which one the robot would choose every time. Two
MPC algorithms could be defined with different levels of legibility. One algorithms
(more legible) would be the same as implemented in this thesis. In the other one (less
legible), the goal point in the optimal control problem would be changed during the
robot motion, which would make it difficult for the participant to infer where the robot
would eventually place the cube.
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Appendix A

Experimental data
Tables A.1 - A.12 presented in the following show the data obtained from the
participants, reporting either the answers from the questionnaires or the bio-metric
measures from the E4-wristband. The following list describes the terms used in the data
report and their explanation:

• Pre-Experiment: Experience - Answer to the question "Have you ever worked/in-
teracted with a robot?" with the options: 1-"never", 2-"once or twice", 3-"often",
4-"I work with robots".

• Pre-Experiment: Nervous Interacting - Answer to the statement "I would feel
nervous interacting with a robot" with the options: from 1-"not nervous" to
5-"very nervous".

• Pre-Experiment: Nervous Sitting - Answer to the statement "I would feel nervous
just sitting in front of a robot" with the options: from 1-"not nervous" to 5-"very
nervous".

• Post-Experiment: (Algorithm Name) Order - Order of execution of the algorithm
during the experiment, from 1-first to 4-fourth.

• Post-Experiment: (Algorithm Name) Nerv. Interacting - Answer to the statement
"I felt nervous while interacting with the robot" with the answers: from 1-"not
nervous" to 5-"very nervous".

• Post-Experiment: (Algorithm Name) Nerv. sitting - Answer to the statement "I
felt nervous sitting in front of the robot " with the answers: from 1-"not nervous"
to 5-"very nervous".

• Post-Experiment: (Algorithm Name) Anxious-Relaxed - Answer to the statement
"Please rate your emotional state on these scales" with the answers: from 1-
"Anxious" to 5-"Relaxed".

• Post-Experiment: (Algorithm Name) Calm-Stressed - Answer to the statement
"Please rate your emotional state on these scales" with the answers: from 1-
"Stressed" to 5-"Calm".
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• Post-Experiment: (Algorithm Name) Rating Place - Answer to the statement
"Sort four experiments (1-4) from the one in which you felt THE SAFEST to
the one in which you felt THE LEAST SAFE" with the answers: from 1-"THE
SAFEST" to 4-"THE LEAST SAFE".

• Post-Experiment: (Algorithm Name) Average HR (bpm) - Average heart rate
measnrement from E4 wristband of each participant during one algorithm
execution (4 minutes) in bpm.

• Post-Experiment: (Algorithm Name) Average Safety Index - Average sigma value
- defined as described in the paper in equation (4) - obtained for each participant
during one algorithm execution (4 minutes).

• Post-Experiment: (Algorithm Name) Average ATCP (s) - ATCP (s) is the average
task completion time of the robot, inversely proportional to its productivity.

Afterwards, Tables A.13 - A.15 show the scales obtained by merging two rates:

• Pre Nervousness - Obtained by averaging the answers from Pre Nervous
Interacting and Pre Nervous sitting.

• (Algorithm Name) Perceived Safety DS - Obtained by averaging the answers from
(Algorithm Name) Anxious-Relaxed and (Algorithm Name) Calm-Stressed.

• (Algorithm Name) Nervousness - Obtained by averaging the answers from
(Algorithm Name) Nervous Interacting and (Algorithm Name) Nervous sitting.
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Subject ID 1 2 3 4

Pre-Experiment
Experience 3 4 2 2

Nervous Interacting 2 5 4 5
Nervous Sitting 5 5 5 5

MPC

Order 2 4 1 3
Nerv. Interacting 5 4 4 5

Nerv. Sitting 5 5 4 4
Anxious-Relaxed 5 5 3 4

Calm-Stressed 5 5 4 5
Rating Place 3 3 4 1
Average HR 7.09E+01 7.29E+01 6.51E+01 8.77E+01
Average SI 1.16E-01 3.36E-02 2.11E-01 5.65E-01

Average ATCP 1.16E+01 1.16E+01 1.16E+01 1.09E+01

MPC-HR

Order 4 3 3 1
Nerv. Interacting 4 4 5 4

Nerv. Sitting 5 5 5 4
Anxious-Relaxed 5 5 5 3

Calm-Stressed 5 5 5 4
Rating Place 4 4 1 2
Average HR 6.88E+01 7.22E+01 6.80E+01 9.32E+01
Average SI 3.69E-02 9.33E-03 3.73E-01 4.08E-01

Average ATCP 1.61E+01 1.21E+01 1.36E+01 1.42E+01

FP

Order 1 2 2 2
Nerv. Interacting 5 5 5 4

Nerv. Sitting 5 5 5 5
Anxious-Relaxed 5 5 5 4

Calm-Stressed 5 5 5 4
Rating Place 1 1 3 3
Average HR 6.66E+01 7.55E+01 6.56E+01 8.64E+01
Average SI 6.53E-02 2.27E-01 2.68E-01 1.01E-01

Average ATCP 2.84E+01 2.03E+01 1.62E+01 1.77E+01

FP-HR

Order 3 1 4 4
Nerv. Interacting 5 4 5 4

Nerv. Sitting 5 5 5 4
Anxious-Relaxed 5 5 5 4

Calm-Stressed 5 4 5 5
Rating Place 2 2 2 4
Average HR 6.96E+01 7.52E+01 6.50E+01 8.45E+01
Average SI 2.45E-01 1.79E-02 1.57E-01 7.93E-01

Average ATCP 2.46E+01 2.13E+01 2.41E+01 2.46E+01

Table A.1: Data obtained during the experiments. Part 1
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Subject ID 5 6 7 8

Pre-Experiment
Experience 3 4 3 1

Nervous Interacting 4 5 3 5
Nervous Sitting 4 5 4 5

MPC

Order 4 2 3 1
Nerv. Interacting 4 5 3 5

Nerv. Sitting 5 5 3 5
Anxious-Relaxed 5 4 3 5

Calm-Stressed 5 5 3 5
Rating Place 3 3 4 1
Average HR 7.59E+01 8.70E+01 8.81E+01 7.47E+01
Average SI 0.00E+00 1.48E-01 2.86E-01 1.62E-01

Average ATCP 1.13E+01 1.15E+01 1.11E+01 1.22E+01

MPC-HR

Order 2 1 2 2
Nerv. Interacting 4 5 3 5

Nerv. Sitting 5 5 2 5
Anxious-Relaxed 4 4 2 5

Calm-Stressed 4 5 3 5
Rating Place 1 1 2 2
Average HR 7.49E+01 9.25E+01 8.84E+01 7.01E+01
Average SI 6.45E-03 2.11E-01 4.41E-01 5.02E-02

Average ATCP 1.18E+01 1.30E+01 1.33E+01 1.37E+01

FP

Order 1 4 1 3
Nerv. Interacting 5 5 3 5

Nerv. Sitting 5 5 3 5
Anxious-Relaxed 2 4 3 5

Calm-Stressed 2 5 2 5
Rating Place 2 4 1 4
Average HR 7.42E+01 8.81E+01 8.50E+01 7.69E+01
Average SI 6.03E-02 8.87E-02 3.12E-01 4.23E-01

Average ATCP 1.66E+01 1.89E+01 1.83E+01 1.93E+01

FP-HR

Order 3 3 4 4
Nerv. Interacting 5 5 3 5

Nerv. Sitting 5 5 4 5
Anxious-Relaxed 5 4 2 4

Calm-Stressed 5 5 2 5
Rating Place 4 2 3 3
Average HR 7.54E+01 8.66E+01 8.77E+01 7.30E+01
Average SI 2.41E-01 7.77E-02 1.60E-01 1.38E-01

Average ATCP 1.96E+01 2.21E+01 2.14E+01 2.28E+01

Table A.2: Data obtained during the experiments. Part 2
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Subject ID 9 10 11 12

Pre-Experiment
Experience 4 2 3 2

Nervous Interacting 4 3 5 5
Nervous Sitting 5 5 5 5

MPC

Order 2 3 1 1
Nerv. Interacting 5 5 3 5

Nerv. Sitting 5 5 4 5
Anxious-Relaxed 5 5 2 5

Calm-Stressed 5 5 4 5
Rating Place 2 2 4 4
Average HR 7.55E+01 6.82E+01 7.13E+01 8.01E+01
Average SI 4.18E-02 1.79E-01 3.09E-02 4.32E-02

Average ATCP 1.12E+01 1.11E+01 1.07E+01 1.12E+01

MPC-HR

Order 3 1 4 2
Nerv. Interacting 5 5 5 5

Nerv. Sitting 5 5 4 5
Anxious-Relaxed 5 3 2 5

Calm-Stressed 5 4 5 5
Rating Place 3 4 1 3
Average HR 7.67E+01 7.03E+01 7.23E+01 7.94E+01
Average SI 6.73E-03 1.93E-01 2.03E-01 1.73E-01

Average ATCP 1.19E+01 1.28E+01 1.24E+01 1.24E+01

FP

Order 4 4 2 4
Nerv. Interacting 5 5 4 5

Nerv. Sitting 5 5 5 5
Anxious-Relaxed 5 5 4 5

Calm-Stressed 5 5 3 5
Rating Place 1 1 2 1
Average HR 7.67E+01 7.03E+01 7.01E+01 7.37E+01
Average SI 4.79E-02 9.26E-02 2.27E-01 2.63E-02

Average ATCP 1.72E+01 1.92E+01 1.85E+01 1.80E+01

FP-HR

Order 1 2 3 3
Nerv. Interacting 5 5 5 5

Nerv. Sitting 5 5 4 5
Anxious-Relaxed 5 5 2 5

Calm-Stressed 5 4 4 5
Rating Place 4 3 3 2
Average HR 7.49E+01 6.88E+01 7.20E+01 7.97E+01
Average SI 7.59E-02 9.81E-02 3.96E-01 1.49E-01

Average ATCP 2.18E+01 2.17E+01 2.09E+01 2.07E+01

Table A.3: Data obtained during the experiments. Part 3
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A. Experimental data

Subject ID 13 14 15 16

Pre-Experiment
Experience 1 1 1 2

Nervous Interacting 5 5 5 4
Nervous Sitting 5 5 5 5

MPC

Order 1 1 2 4
Nerv. Interacting 1 4 5 5

Nerv. Sitting 2 3 5 5
Anxious-Relaxed 3 2 5 5

Calm-Stressed 4 3 5 5
Rating Place 4 4 3 1
Average HR 7.64E+01 1.01E+02 8.96E+01 8.90E+01
Average SI 1.63E-02 4.30E-03 5.23E-01 3.09E-01

Average ATCP 1.29E+01 1.10E+01 1.13E+01 1.15E+01

MPC-HR

Order 4 3 3 3
Nerv. Interacting 5 2 5 4

Nerv. Sitting 5 4 5 5
Anxious-Relaxed 4 4 5 4

Calm-Stressed 5 4 5 4
Rating Place 2 3 4 2
Average HR 7.73E+01 9.57E+01 8.55E+01 9.03E+01
Average SI 6.05E-02 1.36E-01 8.25E-02 2.30E-01

Average ATCP 1.24E+01 1.28E+01 1.23E+01 1.25E+01

FP

Order 3 4 1 1
Nerv. Interacting 5 5 4 5

Nerv. Sitting 5 5 5 5
Anxious-Relaxed 5 5 5 4

Calm-Stressed 5 5 5 5
Rating Place 1 1 2 4
Average HR 7.79E+01 9.44E+01 9.04E+01 9.21E+01
Average SI 2.76E-02 2.18E-02 4.90E-02 4.42E-04

Average ATCP 1.85E+01 1.87E+01 1.98E+01 1.96E+01

FP-HR

Order 2 2 4 2
Nerv. Interacting 5 3 4 4

Nerv. Sitting 5 3 5 5
Anxious-Relaxed 4 3 5 4

Calm-Stressed 5 3 4 5
Rating Place 3 2 1 3
Average HR 7.71E+01 9.83E+01 8.45E+01 9.24E+01
Average SI 8.79E-02 1.09E-01 1.70E-01 1.52E-01

Average ATCP 2.10E+01 2.06E+01 2.14E+01 2.16E+01

Table A.4: Data obtained during the experiments. Part 4
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Subject ID 17 18 19 20

Pre-Experiment
Experience 2 1 2 1

Nervous Interacting 5 4 3 5
Nervous Sitting 5 5 3 5

MPC

Order 2 4 4 2
Nerv. Interacting 5 5 3 5

Nerv. Sitting 5 5 5 5
Anxious-Relaxed 5 5 4 5

Calm-Stressed 5 5 4 5
Rating Place 3 3 3 3
Average HR 8.51E+01 8.99E+01 8.81E+01 7.39E+01
Average SI 2.77E-01 4.69E-02 1.09E-02 5.35E-02

Average ATCP 1.13E+01 1.14E+01 1.15E+01 1.14E+01

MPC-HR

Order 1 1 1 4
Nerv. Interacting 5 5 2 5

Nerv. Sitting 5 5 2 5
Anxious-Relaxed 5 5 2 5

Calm-Stressed 5 5 2 5
Rating Place 4 1 4 1
Average HR 8.19E+01 9.35E+01 8.43E+01 7.26E+01
Average SI 1.90E-02 7.74E-02 2.79E-02 1.29E-02

Average ATCP 1.21E+01 1.24E+01 1.24E+01 1.25E+01

FP

Order 3 2 3 3
Nerv. Interacting 5 5 4 5

Nerv. Sitting 5 5 4 5
Anxious-Relaxed 5 5 4 5

Calm-Stressed 5 5 5 5
Rating Place 2 2 2 2
Average HR 7.73E+01 9.18E+01 8.79E+01 7.43E+01
Average SI 1.38E-02 1.44E-01 1.17E-01 1.02E-01

Average ATCP 1.87E+01 1.89E+01 2.04E+01 1.91E+01

FP-HR

Order 4 3 2 1
Nerv. Interacting 5 5 3 5

Nerv. Sitting 5 5 5 5
Anxious-Relaxed 5 5 4 5

Calm-Stressed 5 5 4 5
Rating Place 1 4 1 4
Average HR 7.92E+01 9.34E+01 8.40E+01 7.79E+01
Average SI 3.97E-01 1.52E-01 1.24E-01 1.18E-01

Average ATCP 2.10E+01 2.19E+01 2.23E+01 2.18E+01

Table A.5: Data obtained during the experiments. Part 5
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A. Experimental data

Subject ID 21 22 23 24

Pre-Experiment
Experience 3 2 1 2

Nervous Interacting 4 5 3 4
Nervous Sitting 5 5 4 5

MPC

Order 3 4 3 3
Nerv. Interacting 5 4 3 5

Nerv. Sitting 4 5 5 5
Anxious-Relaxed 5 4 2 5

Calm-Stressed 5 2 4 5
Rating Place 3 4 3 2
Average HR 9.68E+01 7.30E+01 9.54E+01 8.23E+01
Average SI 8.11E-02 3.27E-01 8.13E-01 2.85E-02

Average ATCP 1.17E+01 1.15E+01 1.15E+01 1.17E+01

MPC-HR

Order 4 2 4 2
Nerv. Interacting 5 4 4 4

Nerv. Sitting 4 5 5 2
Anxious-Relaxed 5 4 4 2

Calm-Stressed 5 2 5 2
Rating Place 4 3 4 4
Average HR 9.54E+01 6.95E+01 8.54E+01 8.32E+01
Average SI 1.86E-01 2.14E-02 3.03E-01 1.70E-02

Average ATCP 1.25E+01 1.24E+01 1.25E+01 1.22E+01

FP

Order 2 3 1 4
Nerv. Interacting 5 5 4 5

Nerv. Sitting 5 5 5 5
Anxious-Relaxed 5 5 4 5

Calm-Stressed 5 2 5 5
Rating Place 2 2 1 1
Average HR 9.72E+01 7.23E+01 9.27E+01 7.86E+01
Average SI 1.57E-01 1.98E-02 2.71E-01 3.25E-03

Average ATCP 1.88E+01 1.93E+01 1.88E+01 1.90E+01

FP-HR

Order 1 1 2 1
Nerv. Interacting 5 4 4 3

Nerv. Sitting 5 5 5 3
Anxious-Relaxed 5 4 4 2

Calm-Stressed 5 2 5 3
Rating Place 1 1 2 3
Average HR 9.61E+01 6.84E+01 9.11E+01 8.59E+01
Average SI 3.16E-01 8.74E-02 2.04E-01 2.50E-02

Average ATCP 2.15E+01 2.17E+01 2.11E+01 2.11E+01

Table A.6: Data obtained during the experiments. Part 6

108



Subject ID 25 26 27 28

Pre-Experiment
Experience 1 1 3 2

Nervous Interacting 5 5 5 2
Nervous Sitting 5 5 5 2

MPC

Order 4 1 3 2
Nerv. Interacting 5 5 5 2

Nerv. Sitting 5 5 5 4
Anxious-Relaxed 5 4 4 2

Calm-Stressed 5 5 5 2
Rating Place 1 4 2 1
Average HR 7.38E+01 1.08E+02 7.69E+01 1.01E+02
Average SI 1.44E-02 1.67E-01 1.03E-01 4.26E-02

Average ATCP 1.18E+01 1.13E+01 1.17E+01 1.46E+01

MPC-HR

Order 3 4 4 1
Nerv. Interacting 5 5 5 2

Nerv. Sitting 5 5 5 3
Anxious-Relaxed 5 4 5 1

Calm-Stressed 5 4 5 2
Rating Place 2 1 1 2
Average HR 7.70E+01 1.07E+02 7.74E+01 1.03E+02
Average SI 4.80E-01 2.80E-01 2.21E-02 5.54E-02

Average ATCP 1.44E+01 1.54E+01 1.12E+01 1.21E+01

FP

Order 2 3 1 3
Nerv. Interacting 5 5 5 1

Nerv. Sitting 5 5 5 2
Anxious-Relaxed 5 3 4 5

Calm-Stressed 5 4 5 1
Rating Place 3 2 3 3
Average HR 7.38E+01 9.85E+01 7.95E+01 1.05E+02
Average SI 1.10E-01 2.40E-01 7.88E-02 1.74E-01

Average ATCP 1.56E+01 1.99E+01 2.10E+01 1.61E+01

FP-HR

Order 1 2 2 4
Nerv. Interacting 5 5 5 1

Nerv. Sitting 5 5 5 1
Anxious-Relaxed 5 4 4 1

Calm-Stressed 5 5 5 1
Rating Place 4 3 4 4
Average HR 6.74E+01 1.04E+02 7.37E+01 1.03E+02
Average SI 6.40E-01 0.00E+00 8.37E-03 1.20E-01

Average ATCP 4.05E+01 3.01E+01 3.47E+01 2.01E+01

Table A.7: Data obtained during the experiments. Part 7
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A. Experimental data

Subject ID 29 30 31 32

Pre-Experiment
Experience 4 3 1 2

Nervous Interacting 4 4 4 4
Nervous Sitting 5 5 4 3

MPC

Order 1 1 1 1
Nerv. Interacting 5 5 3 4

Nerv. Sitting 5 5 2 4
Anxious-Relaxed 4 4 3 3

Calm-Stressed 4 5 4 4
Rating Place 2 1 4 4
Average HR 7.90E+01 7.94E+01 8.97E+01 9.04E+01
Average SI 4.42E-01 7.65E-02 3.65E-01 3.29E-01

Average ATCP 1.18E+01 1.24E+01 1.10E+01 1.15E+01

MPC-HR

Order 3 4 2 2
Nerv. Interacting 4 4 3 4

Nerv. Sitting 5 2 4 4
Anxious-Relaxed 3 3 4 4

Calm-Stressed 3 4 4 4
Rating Place 4 2 3 1
Average HR 8.36E+01 8.18E+01 8.80E+01 8.50E+01
Average SI 7.10E-01 2.43E-01 3.28E-01 8.73E-02

Average ATCP 2.03E+01 1.33E+01 1.29E+01 1.21E+01

FP

Order 2 2 3 4
Nerv. Interacting 5 3 4 5

Nerv. Sitting 5 3 5 4
Anxious-Relaxed 5 3 4 4

Calm-Stressed 4 4 5 4
Rating Place 1 3 2 2
Average HR 8.10E+01 8.06E+01 8.74E+01 8.73E+01
Average SI 4.36E-01 1.97E-01 4.14E-01 5.09E-01

Average ATCP 1.97E+01 2.98E+01 1.74E+01 2.36E+01

FP-HR

Order 4 3 4 3
Nerv. Interacting 4 2 5 5

Nerv. Sitting 5 3 5 4
Anxious-Relaxed 2 3 5 4

Calm-Stressed 3 3 5 4
Rating Place 3 4 1 3
Average HR 8.27E+01 8.09E+01 8.65E+01 8.57E+01
Average SI 4.34E-01 2.45E-01 1.01E-01 3.68E-01

Average ATCP 2.15E+01 1.89E+01 1.93E+01 2.45E+01

Table A.8: Data obtained during the experiments. Part 8
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Subject ID 33 34 35 36

Pre-Experiment
Experience 3 1 1 2

Nervous Interacting 4 5 4 2
Nervous Sitting 4 5 5 5

MPC

Order 1 2 2 3
Nerv. Interacting 5 5 4 4

Nerv. Sitting 4 5 5 4
Anxious-Relaxed 5 5 4 5

Calm-Stressed 4 5 4 5
Rating Place 1 1 1 3
Average HR 8.27E+01 7.54E+01 6.77E+01 8.13E+01
Average SI 3.42E-01 2.54E-01 1.94E-01 3.92E-01

Average ATCP 1.14E+01 1.29E+01 1.32E+01 1.10E+01

MPC-HR

Order 3 4 3 2
Nerv. Interacting 5 4 4 5

Nerv. Sitting 5 5 5 4
Anxious-Relaxed 5 4 4 4

Calm-Stressed 5 3 5 5
Rating Place 2 4 3 4
Average HR 8.30E+01 7.47E+01 6.66E+01 7.96E+01
Average SI 1.09E-01 4.49E-01 1.11E-01 4.14E-01

Average ATCP 1.15E+01 1.59E+01 1.30E+01 1.32E+01

FP

Order 4 1 1 1
Nerv. Interacting 5 4 3 4

Nerv. Sitting 5 4 4 5
Anxious-Relaxed 5 3 4 4

Calm-Stressed 5 4 3 4
Rating Place 3 2 4 2
Average HR 8.29E+01 6.95E+01 8.05E+01 8.05E+01
Average SI 2.65E-01 5.25E-01 3.21E-01 4.65E-01

Average ATCP 1.87E+01 2.04E+01 1.88E+01 1.88E+01

FP-HR

Order 2 3 4 4
Nerv. Interacting 5 3 5 5

Nerv. Sitting 5 4 5 5
Anxious-Relaxed 5 4 4 5

Calm-Stressed 5 3 5 4
Rating Place 4 3 2 1
Average HR 8.41E+01 7.50E+01 6.84E+01 8.15E+01
Average SI 3.66E-01 4.00E-01 2.48E-01 5.65E-01

Average ATCP 2.33E+01 2.91E+01 1.71E+01 1.77E+01

Table A.9: Data obtained during the experiments. Part 9
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A. Experimental data

Subject ID 37 38 39 40

Pre-Experiment
Experience 2 2 1 1

Nervous Interacting 5 4 5 5
Nervous Sitting 5 5 5 5

MPC

Order 4 4 2 3
Nerv. Interacting 5 4 3 5

Nerv. Sitting 5 4 4 4
Anxious-Relaxed 5 4 3 4

Calm-Stressed 5 4 4 4
Rating Place 1 4 3 4
Average HR 8.48E+01 9.42E+01 5.37E+01 8.05E+01
Average SI 4.00E-01 6.41E-01 2.02E-02 5.01E-01

Average ATCP 1.11E+01 1.40E+01 1.17E+01 1.21E+01

MPC-HR

Order 2 3 1 1
Nerv. Interacting 5 3 2 5

Nerv. Sitting 5 5 3 5
Anxious-Relaxed 5 3 3 5

Calm-Stressed 5 3 2 5
Rating Place 4 3 4 2
Average HR 9.17E+01 9.52E+01 5.62E+01 7.88E+01
Average SI 9.75E-01 7.91E-01 6.52E-02 5.84E-01

Average ATCP 1.50E+01 1.42E+01 1.12E+01 1.43E+01

FP

Order 1 1 4 2
Nerv. Interacting 4 4 3 5

Nerv. Sitting 5 5 5 5
Anxious-Relaxed 3 5 5 5

Calm-Stressed 4 5 5 4
Rating Place 3 2 2 3
Average HR 8.49E+01 9.26E+01 5.36E+01 7.80E+01
Average SI 3.58E-01 6.28E-01 1.52E-01 4.90E-01

Average ATCP 2.08E+01 2.42E+01 1.85E+01 1.94E+01

FP-HR

Order 3 2 3 4
Nerv. Interacting 5 3 1 5

Nerv. Sitting 5 4 5 5
Anxious-Relaxed 5 4 2 4

Calm-Stressed 5 4 2 5
Rating Place 2 1 1 1
Average HR 8.57E+01 9.66E+01 5.62E+01 7.99E+01
Average SI 4.82E-01 4.14E-01 1.95E-01 4.13E-01

Average ATCP 1.73E+01 2.03E+01 2.40E+01 2.49E+01

Table A.10: Data obtained during the experiments. Part 10
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Subject ID 41 42 43 44

Pre-Experiment
Experience 1 2 3 1

Nervous Interacting 5 5 3 4
Nervous Sitting 5 5 2 5

MPC

Order 4 3 4 2
Nerv. Interacting 5 3 4 5

Nerv. Sitting 5 4 4 5
Anxious-Relaxed 4 3 3 4

Calm-Stressed 5 4 4 4
Rating Place 4 4 4 3
Average HR 8.76E+01 8.84E+01 9.24E+01 9.15E+01
Average SI 2.20E-01 1.06E+00 6.11E-01 6.37E-01

Average ATCP 1.15E+01 1.21E+01 1.25E+01 1.29E+01

MPC-HR

Order 1 1 1 4
Nerv. Interacting 5 5 4 5

Nerv. Sitting 5 5 4 5
Anxious-Relaxed 5 4 4 5

Calm-Stressed 5 5 4 4
Rating Place 3 3 3 2
Average HR 9.46E+01 9.09E+01 8.41E+01 9.39E+01
Average SI 4.44E-01 5.97E-01 7.60E-01 7.44E-01

Average ATCP 1.16E+01 1.58E+01 1.51E+01 1.56E+01

FP

Order 2 4 3 3
Nerv. Interacting 5 5 4 5

Nerv. Sitting 5 5 4 5
Anxious-Relaxed 4 5 5 4

Calm-Stressed 5 4 5 4
Rating Place 1 1 1 1
Average HR 9.05E+01 8.82E+01 8.75E+01 9.18E+01
Average SI 4.97E-01 5.55E-01 3.04E-01 6.08E-01

Average ATCP 1.91E+01 2.17E+01 2.03E+01 2.33E+01

FP-HR

Order 3 2 2 1
Nerv. Interacting 5 4 4 3

Nerv. Sitting 5 3 4 2
Anxious-Relaxed 4 5 4 2

Calm-Stressed 5 4 5 2
Rating Place 2 2 2 4
Average HR 8.70E+01 8.29E+01 8.80E+01 9.62E+01
Average SI 1.72E-01 3.01E-01 4.26E-01 4.74E-01

Average ATCP 1.74E+01 1.84E+01 2.56E+01 2.58E+01

Table A.11: Data obtained during the experiments. Part 11
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A. Experimental data

Subject ID 45 46 47 48

Pre-Experiment
Experience 1 1 2 4

Nervous Interacting 3 4 3 5
Nervous Sitting 5 5 5 5

MPC

Order 2 3 4 3
Nerv. Interacting 3 5 5 5

Nerv. Sitting 3 5 5 5
Anxious-Relaxed 4 5 5 5

Calm-Stressed 4 5 5 5
Rating Place 3 3 4 1
Average HR 6.60E+01 1.05E+02 7.22E+01 9.41E+01
Average SI 4.34E-01 6.14E-01 6.83E-02 8.39E-01

Average ATCP 1.16E+01 1.15E+01 1.22E+01 1.22E+01

MPC-HR

Order 3 4 2 2
Nerv. Interacting 3 5 4 5

Nerv. Sitting 3 5 3 5
Anxious-Relaxed 3 5 3 4

Calm-Stressed 4 4 4 5
Rating Place 2 4 1 2
Average HR 6.26E+01 1.02E+02 7.65E+01 9.33E+01
Average SI 2.74E-01 5.64E-01 4.07E-01 7.23E-01

Average ATCP 1.34E+01 1.31E+01 2.22E+01 1.50E+01

FP

Order 4 2 3 4
Nerv. Interacting 2 5 5 5

Nerv. Sitting 3 5 5 5
Anxious-Relaxed 3 5 4 2

Calm-Stressed 3 4 5 2
Rating Place 4 2 3 4
Average HR 6.42E+01 1.03E+02 7.39E+01 9.64E+01
Average SI 3.68E-01 5.53E-01 9.75E-02 6.71E-01

Average ATCP 2.44E+01 2.26E+01 2.59E+01 2.12E+01

FP-HR

Order 1 1 1 1
Nerv. Interacting 4 5 4 5

Nerv. Sitting 5 5 3 5
Anxious-Relaxed 5 4 2 4

Calm-Stressed 5 4 2 4
Rating Place 1 1 2 3
Average HR 6.11E+01 1.00E+02 7.56E+01 9.68E+01
Average SI 4.30E-01 1.82E-01 9.44E-02 4.47E-01

Average ATCP 1.75E+01 2.64E+01 3.31E+01 1.65E+01

Table A.12: Data obtained during the experiments. Part 12
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A. Experimental data
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