
Quantum Evolutionary Algorithm for Quantum

Circuit Synthesis

by

Georgiy Krylov

B.S., Nazarbayev University (2016)

Submitted to the Department of Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

NAZARBAYEV UNIVERSITY

June 2018

c○ Nazarbayev University 2018. All rights reserved.

Author .
Department of Computer Science

May 8, 2018

Certified by. .
Martin Lukac

Associate Professor
Thesis Supervisor

Accepted by .
Vassilios D. Tourassis

Dean, School of Science and Technology

2

Quantum Evolutionary Algorithm for Quantum Circuit

Synthesis

by

Georgiy Krylov

Submitted to the Department of Computer Science
on May 8, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science

Abstract

Quantum computing area has a lot research attention due to opportunities that pos-
sessing such device could provide. For example, quantum computers could deliver
new insights to previously unsolvable problems. The reason for that is higher paral-
lel capabilities of such devices. In addition, since quantum computers are naturally
reversible, no heat dissipation occurs during computation [21]. This property could
serve as a viable solution to the problem that computer chip production industry
faces. Moreover, since the chip manufacturing industry reaches nanometer scale of
size of elements, the effects that could cause unexpected information behavior in
classical paradigm are part of the technology of quantum devices [31, 14].

Considering possible benefits that could be achieved by quantum computing de-
vices, the new areas of Quantum Information Theory, Quantum Cryptography, Quan-
tum Algorithms and Logic Design and many others emerged at the end of the twen-
tieth century [31]. These areas are concentrating their efforts on solving problems of
designing communication protocols, ensuring the security of the new systems, con-
structing appropriate algorithms. Computers that could be advancing in finding
solutions in problems listed above require quantum circuits that have optimal struc-
ture and could implement error correction. This is the main motivation for this thesis
work to explore the problem of circuit design. The approach that we investigate is
circuit construction by the means of Quantum Evolutionary Algorithms. We propose
a version of an algorithm that accounts with specificity and constraints of quantum
paradigm. We use its Graphic Processing Unit (GPU) accelerated classical implemen-
tation to evaluate the behavior and performance of the proposed algorithm. Later
we discuss additional complexity introduced by accounting with these constraints.
We support our ideas with results of synthesis of small circuits and compare the
performance with classical genetic algorithm on similar task.

3

Thesis Supervisor: Martin Lukac
Title: Associate Professor

4

Acknowledgments

Thanks to Professor Martin Lukac, Professor Benjamin Tyler and Professor Bernd

Steinbach for help with the work. Special thanks to Dr Martin Lukac, Dr Mona Rizvi

and Dr Benjamin Tyler for being great mentors. I would also like to say thank you

to my family members for all their support.

5

6

Contents

List of Abbreviations 13

1 Problem Description and Motivation 15

1.1 Introduction . 15

1.2 Reversible Computers as a Solution of Problem of Heat Generation . 16

1.3 Quantum Computers . 17

1.3.1 Quantum Computers as an Implementation of a Reversible Com-

puter . 17

1.3.2 Physical Realization of Quantum Computer 18

1.4 Motivation for using Quantum Computers 19

1.5 The Proposed Quantum Evolutionary Algorithm 21

2 Background 23

2.1 Quantum Information Theory . 23

2.1.1 Definitions in Vector Form Notation 23

2.1.2 Matrix Form . 26

2.2 Quantum Circuits . 27

2.2.1 Introduction to Quantum Circuits and Logic Design 27

2.2.2 Models for Quantum Circuit Design 31

2.3 Logic Circuits Design . 33

2.3.1 Problem of Logic Design . 33

2.3.2 Application of Evolutionary Computation to Circuit Synthesis

Problem . 34

7

2.3.3 Quantum Evolutionary Computation 35

3 Quantum Evolutionary Algorithm for Design of Quantum Circuits 37

3.1 Quantum Encoded Quantum Evolutionary Algorithm 37

3.2 Quantum Gates Representation . 38

3.2.1 Rotation gates . 39

3.2.2 Interaction gates and templates 39

3.3 Population Initialization . 41

3.4 Circuit Construction . 43

3.4.1 Circuit Segments . 43

3.4.2 Segments Construction . 44

3.4.3 Circuit construction . 45

3.5 Fitness Evaluation . 46

3.5.1 Segment Fitness . 47

3.6 Evolutionary Search . 48

4 Results and discussion 51

4.1 Results . 51

4.1.1 Evaluation of QEQEA . 51

4.1.2 Experiments Description . 52

4.2 Comparing QEQEA and GPUGA . 54

4.3 Discussion and Future Work Suggestion 56

4.4 Conclusion . 57

A Brief Software Package Description 59

8

List of Figures

1-1 The complexity comparison of best performing Shor’s algorithm vs.

best known classical algorithm, adapted from [26] 20

2-1 The Bloch sphere . 25

2-2 Example of single qubit gates: a) quantum NOT gate, b) Hadamard

gate . 28

2-3 SWAP gate: a) the SWAP gate, b) the matrix of SWAP gate 29

2-4 Feynman Gate: a) the CNOT gate, b) the matrix of CNOT gate . . . 30

2-5 : The Toffoli Gate: a)the quantum gate, b) the function matrix . . . 30

2-6 Example of efficient realization quantum Toffoli gate extracted from

[20] . 31

2-7 Realization of Peres gate in different models: a)Elementary Quantum

Gates [40], b) Multiple Controlled Toffoli [40], c) Ising model from [20] 31

2-8 General evolutionary algorithm procedure 34

3-1 High level flow of the quantum evolutionary algorithm 38

3-2 Measurement simulation: a) pseudo code for measurement simulation,

b) parallel axis decoding from qutrits 39

3-3 Construction of templates for interactions between non-neighboring

qubits . 40

3-4 Segments layout with 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑊𝑖𝑟𝑒𝑠 = 3, 𝑠𝑖𝑧𝑒𝑂𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 2

and 𝑠𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 4 . 42

3-5 Possible logic layout within a quantum circuit: a) circuit split to seg-

ments, b) segments are not enforced 43

9

3-6 Classical and Parallel procedure of Kronecker product 44

3-7 The procedure of segments construction prior circuit building stage . 45

3-8 Building a circuit of length three affecting two qubits having two indi-

viduals in the population . 46

3-9 SU3 matrix construction, where 𝑐𝑘 = 𝑐𝑜𝑠𝜃𝑘 and 𝑠𝑘 = 𝑠𝑖𝑛𝜃𝑘, from [39] 49

10

List of Tables

4.1 Result of CNOT gate synthesis (𝑠𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙=3, 𝑠𝑖𝑧𝑒𝑂𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =

1) . 52

4.2 Experiments results . 53

4.3 Comparison of Results and performance between the QEQEA and a

classical GPGPU . 56

11

12

List of Abbreviations

𝐶𝑁𝑂𝑇 Controlled NOT gate

𝐶𝐶𝑁𝑂𝑇,𝐶2𝑁𝑂𝑇 Three qubit Controlled NOT gate

𝐶𝐻/𝐶𝑍 Model (gate set) for circuit design, named after

gates it uses: Controlled Hadamard gate and Con-

trolled Z gate

𝐶𝑁𝑂𝑇/𝐶𝑉/𝐶𝑉 † Model (gate set) for circuit design, named after

gates it uses: CNOT, controlled V (square root of

NOT gate) and its conjugate transpose 𝑉 †

GA Genetic Algorithm

GPU General Purpose computing for Graphic

Processing Units

GPGPU Graphics Processing Unit

GPUGA Graphics Processing Unit accelerated Genetic

Algorithm

NMR Nuclear Magnetic Resonance

SU(3) Special Unitary group of degree 3

QEA Quantum Evolutionary Algorithm

QEQEA Quantum Encoded Quantum Evolutionary

Algorithm

13

14

Chapter 1

Problem Description and Motivation

1.1 Introduction

The rapidly growing amount of information and the variety of tasks creating the need

to process it demands an increase in available computing power. The traditional ap-

proach achieving increase in computational power of a computer is to increase the

number of transistors laid out on the integrated circuit. This approach was prophe-

sied by Gordon Moore in 1965 [28], and his ideas, informally were called Moore’s law.

In its essence, the Moore’s law states that the number of elements on a chip doubles

once per 18 months, and its components get cheaper proportionally within the same

period of time [28]. Considering the trends of making devices more mobile or at least

making them the same size, the increase of chip size is not desirable. Thus, the pre-

ferred way of achieving an increase in computing power is to shrink transistors in size.

However, this approach has several drawbacks arising from fundamental principles of

physics and computation theory. The first issue encountered is the heat generation

linked with performing classical computation. This problem can be dealt with by

implementing reversible computing - a model of computing which does not generate

heat during the process of computation due to specific logic design. Another prob-

lem is the hard limit on the size of a transistor, depending on the chemical elements

used to produce it [14]. If the size of integrated circuit element reaches the electron

wavelength scale, the effect of electron energy quantization will appear, resulting in

15

information distortion [14]. Overcoming these obstacles requires persistent innova-

tions to stay cost effective. One of the viable approaches emerged during the past

decade is to create task-specific devices instead of general purpose computers. For

example, using Graphic Processing Units for solving problems of machine learning

and artificial intelligence became a widely applied practice. Because of the relative

success of this approach, there is growing interest in considering different paradigms

and insights on solving various computational tasks. Very promising computational

paradigm to consider is quantum computing, because it could serve as a solution

to all the problems described above. This is possible because quantum circuits are

reversible in their nature, possessing the property of not generating heat similar to

any other reversible computer. Quantum effects are part of the technology and thus

do not lead to information distortion in same way they do for classical computers.

Additionally, quantum computers outperform classical ones in tasks that benefit from

higher parallel execution capabilities. Moreover, the area of quantum cryptography

introduces new perspectives on dealing with security problems.

1.2 Reversible Computers as a Solution of Problem

of Heat Generation

The classical hardware architecture relies mostly on use of binary devices. Such

devices are prone to heat dissipation which on a large scale of integration becomes

a significant problem. The problem arises from the design of these devices that are

constructed to be in either ZERO or ONE state and support operations of changing

the state. The essence of the problem is an inability to determine which operation

should be applied based on the original state of the device. Thus, the change of

state procedure is always performed regardless of the original state and damping the

excess energy from the device [15]. For example, if the state ONE of the device

is desired, there is no possibility to choose whether the change from ZERO to ONE

should happen or the device was already at the ONE state and no operation should be

16

performed. In other words, for each bit erased or otherwise thrown away, the energy

amount of 𝑘𝑇 ln2 joules must be dissipated, where 𝑘 is the Boltzmann constant, and

𝑇 is an absolute temperature of the system.

However, if the computer could be designed to implement reversible logic compu-

tations, this problem would get solved. According to Benett [4], irreversible functions

could be translated to their reversible analogues by storing all the information that

otherwise would be thrown away. Moreover, general purpose reversible computers are

claimed to exist and they do not require significantly more complex design than their

classical analogs.

1.3 Quantum Computers

1.3.1 Quantum Computers as an Implementation of a Re-

versible Computer

The idea of a logically reversible computer that does not require heat dissipation as

a part of technology resulted in research for possible ways to construct such a device.

Clearly, such system had to be fully isolated, and there were several attempts to

build such computers. There are models of reversible computers such as an adiabatic

computation [18] or billiard balls computer [9]. However, these architectures were

unsatisfying either in terms of speed of performing computations or the system was

prone to losing energy due to friction. Another model was inspired by findings in area

of quantum physics. The nature of quantum mechanics was complying with proposed

constraints. The transformations in quantum mechanics are unitary, moreover, each

operation could be mathematically undone by applying an inverse matrix operation

on the system. This means the reversibility on each step in such systems is achievable

for most operations except input and output.

The theories about the quantum world and their projection in the area of computer

science led to proposal of a model of a quantum computing device. In this model,

the state of the computer was evolving with time and each change of the system was

17

proposed to be an abstraction of computation applied to the system of input quantum

bits [33]. Moreover, unitary evolution of quantum process is able to simulate Turing

machine behavior [3]. Such systems would be free from dissipating heat requirement,

in fact, it has to be a fully isolated from interaction with outer world. The only two

allowed interactions with outer world would be a process of preparing the inputs and

reading the outputs (quantum measurement). The ability of building such device

depends on satisfying two conditions: constructing logically reversible functions and

implementing physical components.

1.3.2 Physical Realization of Quantum Computer

There are many problems impairing physical realization of quantum computers: con-

struction of the machinery, error correction of the logic circuits, the monetary cost of

the process as a whole and many more. This includes cooling, circuitry design and

base material cost.

To implement a quantum computer that could efficiently perform computation,

five main requirements should be satisfied. We list them exactly as they were put in

original source [8] for clarity:

∙ A scalable physical system with well characterized qubits;

∙ The ability to initialize the state of the qubits to a simple fiducial state, such as

|000...⟩;

∙ Long relevant decoherence times, much longer than the gate operation time;

∙ An ’universal’ set of quantum gates;

∙ A qubit-specific measurement capability.

These requirements, also known as DiVincenzo Criteria, are describing the diffi-

culty of construction of a real computer. There are several possible approaches for

physical realization; for example, optical quantum computers [32] or quantum com-

puters utilizing NMR technology, supercooled Josephson junctions [10] or Trapped

18

Ions [35]. The proposed technologies are believed to be computationally equivalent.

However, none of proposed methods solves the problem of physical realization in its

entirety. All of the proposed realizations are currently expensive and only big national

agencies or corporations like Microsoft or IBM could afford to possess them. This

high monetary cost implies that quantum devices should have the most efficient and

optimized circuitry.

1.4 Motivation for using Quantum Computers

Research in area of quantum computers and algorithm construction resulted in quan-

tum algorithms more suitable for problems requiring parallel computations. These

algorithms executed on quantum computers can show exponentially better results

with respect to time of execution of an algorithm, compared to previously known

algorithms applied to solve similar problems. An example of such problem is integer

factoring problem. There is no known polynomial time algorithms for performing that

task on classical computers, however the quantum Shor’s algorithm was theorized to

reduce computational complexity of factoring problem to polynomial. This algorithm

was tested and implemented on physical quantum computer for small cases [38]. The

Figure 1-1 displays the extracts from comparing Shor’s algorithm and state of the

art (by year 2003) classical algorithm [26]. The work additionally makes prediction

about the the scenario for 2018, following Moore’s law principles. The prediction

was supported as valid by year 2014 with benchmark of new classical algorithm for

factoring task [11]. The Grover’s algorithm for performing the search for an ele-

ment of unordered database could serve as an additional example of possible benefits.

The application of the quantum integer factoring algorithm can compromise current

encryption algorithms in a scale of minutes instead of days, relative to clusters of

classical computers [5]. Area of security and cryptography could also benefit from

using quantum computers. The inability to copy quantum information while being

an obstacle for other tasks can ensure a security specialist that the data was not lost.

Moreover, an attempt of compromising the data could also be detected during use

19

Figure 1-1: The complexity comparison of best performing Shor’s algorithm vs. best
known classical algorithm, adapted from [26]

of quantum encrypted communication. This could be used to create a pair of quan-

tum encryption keys unique to channel. The state of the art research in quantum

computing investigates the possibility and feasibility of applying quantum comput-

ing algorithms and devices to another active research area: machine learning. The

study [5] shows that reasonable quantum speedup may be attained from quantum

computers’ efficiency in performing Basic Linear Algebra Subroutines. Moreover, it

considers the reasonable possibilities of exploring quantum machine learning algo-

rithms, for instance: Quantum Bolzman Machines, Quantum Principal Component

Analysis, Quantum Least Squares Fitting and some other.

The combination of problems that quantum computers can overcome due nature

of quantum computation and the possible gains in areas listed above outmatch the

difficulties related to its construction. This makes research in area of quantum com-

puting and related problems attractive and important.

20

1.5 The Proposed Quantum Evolutionary Algorithm

This research was inspired by the success of evolutionary approach to circuit synthesis

and optimization [22, 34]. Moreover, since evolutionary algorithms were proven to

benefit from Graphic Processing Unit accelerations [20], we planned to apply General

Purpose GPU programming practices in our work. Furthermore, we plan to construct

our algorithm in a way its parts could be executed on quantum computer, making

several constraints and limitations that would affect our design choices. The previous

study in the field outlines several possible improvements with respect to defining pop-

ulation in a more quantum compliant way, complexity of computation and difficulty

in implementation of evolutionary operators. This algorithm follows general direc-

tions from existing quantum algorithms [7], however we differ from previous work by

making emphasis on building a more quantum-compatible algorithm.

This thesis work covers:

∙ Quantum encoding for the evolutionary algorithm;

∙ Construction of evolutionary algorithm by selecting evolutionary operators that

are more quantum compliant than classical evolutionary algorithm;

∙ Determine if the quantum evolutionary algorithms implemented on classical

hardware are a viable approach to the problem of quantum logic design.

21

22

Chapter 2

Background

2.1 Quantum Information Theory

2.1.1 Definitions in Vector Form Notation

From a data representation point of view, the main distinguishing characteristic of

quantum computers is the use of quantum bits, or qubits, instead of classical bits.

While classical bits are limited to 0 or 1, the qubit represents the superposition of two

fundamental states |0⟩ and |1⟩. Equation (2.1) demonstrates a single qubit quantum

system state in vector notation:

|𝜓⟩ = 𝛼|0⟩+ 𝛽|1⟩ (2.1)

for all possible assignments of complex coefficients 𝛼 and 𝛽, such that the normaliza-

tion condition (2.2) should always be satisfied:

|𝛼|2 + |𝛽|2 = 1. (2.2)

A system of one or more qubits is called quantum register. The process of deter-

mining the value of a quantum register is called measurement [31]. Oversimplified,

the measurement is a process of making a quantum system to become fixed at one

of its states. The probability of finding a qubit in one or the other state is equal to

23

square of absolute value of probability amplitude - a scalar multiple of a state in the

state equation. For instance, |𝛼|2 is the probability of getting state |0⟩ after measure-
ment applied to |𝜓⟩ from Equation (2.1). The measurement process is not reversible

and it is not possible to restore full information about measured qubit. One of the

types of information that can be lost upon measurement is the phase. The quantum

phase term meaning strongly depends on context [31]. For example, for 𝜃 being a

real number and |𝜓⟩ being a quantum state, the probability amplitude 𝑒𝑖𝜃 of a state

𝑒𝑖𝜃|𝜓⟩ is called global phase factor [31]. Another phase-related keyword is notion of

relative phase. For example the states |0⟩ and −|0⟩ are said "to differ by a relative

phase if there is a real 𝜃 such that 𝑎 = 𝑒𝑥𝑝(𝑖𝜃𝑏)" [31].

Quantum mechanics enables implementation of multiple valued logic. In a form

of adding extra states. The quantum unit of information that can have three possible

values is called qutrit. Qutrits are defined by superposition of three states, |0⟩, |1⟩
and, for instance |2⟩:

|𝜓⟩ = 𝛼|0⟩+ 𝛽|1⟩+ 𝛾|2⟩. (2.3)

By analogy, the normalization condition for qutrits (Equation (2.4)) constrains all

possible assignments of 𝛼 and 𝛽 and 𝛾 as well

|𝛼|2 + |𝛽|2 + |𝛾|2 = 1. (2.4)

The logic operations applied upon qubits are specified by unitary matrices. Equa-

tion (2.5) demonstrates an application of a NOT gate to a single qubit state (note

the coefficients difference between Equation (2.1) and Equation (2.5)):

𝑁𝑂𝑇 |𝜓⟩ = 𝛽|0⟩+ 𝛼|1⟩. (2.5)

Furthermore, the logic in quantum circuits can be treated as rotations of qubit state.

In order to explain and demonstrate such possibility, several operations should be

performed. First, the Equation (2.1) should be transformed into polar form and thus,

24

rewritten to

|𝜓⟩ = 𝑒𝑖𝛾(𝑐𝑜𝑠
𝜃

2
|0⟩+ 𝑒𝑖𝜑𝑠𝑖𝑛

𝜃

2
|1⟩) (2.6)

where 𝛾, 𝜃 and 𝜑 are real numbers [31]. However, the factor 𝑒𝑖𝛾 in this form could

be omitted, because it has no observable effects [31] and thus, the equation can be

finally transformed to:

|𝜓⟩ = 𝑐𝑜𝑠
𝜃

2
|0⟩+ 𝑒𝑖𝜑𝑠𝑖𝑛

𝜃

2
|1⟩. (2.7)

This form provides the possibility of representing the single qubit in three dimensional

space. This equation describes a unit three dimensional sphere that is known as Bloch

sphere [31], demonstrated in the Figure 2-1. The Bloch sphere provides means for

|0〉

|1〉

|θ〉

θ

1√
2
(|0〉 − i|1〉) 1√

2
(|0〉+ i|1〉)

1√
2
(|0〉 − |1〉)

1√
2
(|0〉+ |1〉)

ϕ

Figure 2-1: The Bloch sphere

visualizing single qubit rotations. Unfortunately, this model is not powerful enough

to represent operations on multi qubit systems [31].

Considering the size of computational problems, having a single qubit systems

would be insufficient for any meaningful task, multiple qubit systems should be used

instead. Major advantage from exploiting superposition in multi qubit systems is that

n qubits can represent 2𝑛 values simultaneously. In addition to compact representa-

tion, this property enables the highly parallel nature of quantum computation [31].

Building a quantum register of two or more qubits can be done by applying the Kro-

necker product to the qubit states. Equation (2.8) displays an example of application

of Kronecker product to combine qubits |a⟩ and |b⟩ to a two-qubit quantum register :

25

|𝜓⟩ = |𝑎⟩ ⊗ |𝑏⟩ = 𝛼𝑎𝛼𝑏|00⟩+ 𝛼𝑎𝛽𝑏|01⟩+ 𝛽𝑎𝛼𝑏|10⟩+ 𝛽𝑎𝛽𝑏|11⟩. (2.8)

The multi-qubit states that can be constructed by sequence of Kronecker products

of the individual qubits are called separable states [6]. There are multi-qubit systems

that are not in a separable state, but are rather in entangled state [31], the state

that can not be split to a product of single qubet states. The entanglement effect

may appear when logic gates affecting two or more qubits are applied in the circuit.

This effect enables storing more information in quantum circuit. The entanglement

phenomena is purely quantum mechanical and does not exist in classical logic, so any

extra information carried in entangled state is also lost upon measurement [31]. It

is possible to affect the states of single qubits in the multi-qubit system as long as

it is in separable state. For instance, to negate the qubit |𝑎⟩ the 𝑋 operator can be

applied (note the coefficients reordered):

𝑋|𝜓⟩ = 𝛽𝑎𝛼𝑏|00⟩+ 𝛽𝑎𝛽𝑏|01⟩+ 𝛼𝑎𝛼𝑏|10⟩+ 𝛼𝑎𝛽𝑏|11⟩. (2.9)

2.1.2 Matrix Form

Since it is more convenient to represent logic functions as matrices for design pur-

poses, the matrix notation for qubit representation is used in this research. The

Equation (2.10) defines basic states of a single qubit:

|0⟩ =

⎡⎣1
0

⎤⎦ , |1⟩ =
⎡⎣0
1

⎤⎦ . (2.10)

This definition allows to rewrite the Equation (2.1) to become

|𝜓⟩ = 𝛼×

⎡⎣1
0

⎤⎦+ 𝛽 ×

⎡⎣0
1

⎤⎦ =

⎡⎣𝛼
𝛽

⎤⎦ . (2.11)

Note that normalization condition from Equation (2.2) should also be satisfied in this

case. Consequently, this means that all matrices are unitary - that is sum of squares

26

of absolute values of matrix terms on each row and column must be equal to one.

In matrix form, applying a function to a quantum state means multiplying the

desired function represented in a matrix form by the state vector. For example, the

Equation (2.5) in matrix form is

𝑁𝑂𝑇 |𝜑⟩ =

⎡⎣0 1

1 0

⎤⎦×
⎡⎣𝛼
𝛽

⎤⎦ =

⎡⎣𝛽
𝛼

⎤⎦ (2.12)

The Kronecker product can for matrices be defined as follows:

If A is m x n matrix and B is p × q matrix, then the result of Kronecker product A

⊗ B is of size mp × nq calculated as it is displayed in the Equation (2.13)

A⊗B =

⎡⎢⎢⎢⎣
𝑎11B . . . 𝑎1𝑛B
...

. . .
...

𝑎𝑚1B . . . 𝑎𝑚𝑛B

⎤⎥⎥⎥⎦ . (2.13)

To demonstrate a multi-qubit system construction, the Equation (2.8) should be

rewritten to:

|𝜓⟩ = |𝑎⟩ ⊗ |𝑏⟩ =

⎡⎣𝛼𝑎

𝛽𝑎

⎤⎦⊗
⎡⎣𝛼𝑏

𝛽𝑏

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝛼𝑎𝛼𝑏

𝛼𝑎𝛽𝑏

𝛽𝑎𝛼𝑏

𝛽𝑎𝛽𝑏

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.14)

2.2 Quantum Circuits

2.2.1 Introduction to Quantum Circuits and Logic Design

Single-Qubit Gates

The logic construction for quantum computers is based on applying unitary operations

and interactions of elementary particles used to build a quantum computer in the

specified architecture [31, 20]. Regardless of architecture, quantum computers are

convenient to implement classical reversible logic functions. A sequence of single

and two-qubit operators (gates) applied to a quantum register is called a quantum

27

circuit. From circuit design perspective, qubits composing a quantum register can

be alternatively called wires. The Figure 2-2 shows an example of a single qubit

gates applied to 𝑎) |0⟩ and 𝑏) |1⟩ states. The Hadamard gate may be often used to

introduce entanglement to the quantum circuit [31]. In this work, the entanglement

might appear in case of two qubit interaction used in the circuit.

(a) (b)

Figure 2-2: Example of single qubit gates: a) quantum NOT gate, b) Hadamard gate

Alternatively, these single qubit gates could be represented in matrix form as it is

described in Equation (2.15)

𝑁𝑂𝑇 =

⎡⎣0 1

1 0

⎤⎦ , and 𝐻 =
1√
2

⎡⎣1 1

1 −1

⎤⎦ (2.15)

Multi-Qubit Gates

The quantum circuit design from quantum primitives is limited to use single and

two-qubit gates for implementing logic functions. In order to represent logic of higher

order the Kronecker product can be used. To build a multi qubit gate applied to a

multi qubit system, the Kronecker product should be applied to all single qubit logic

gates. If there is no logic applied to some wire, identity matrix of size two by two

should be used instead. The Equation (2.16) displays procedure of construction of

28

NOT gate matrix applied to second wire of three qubit quantum register.

𝑁𝑂𝑇2 =

⎡⎣1 0

0 1

⎤⎦⊗
⎡⎣0 1

1 0

⎤⎦⊗
⎡⎣1 0

0 1

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.16)

One of remarkable multi-qubit gates is the two-qubit 𝑆𝑊𝐴𝑃 gate. Basically, this

quantum gate swaps the information contained in these two wires. The Figure 2-3

demonstrates its function and matrix:

(a)

⎡⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ (2.17)

(b)

Figure 2-3: SWAP gate: a) the SWAP gate, b) the matrix of SWAP gate

Control Gates

In the multi-qubit systems, control gates can be defined as a special class of gates.

This type of gates implements a function that is applied to one wire only if the other

wires are set to some value, in case of reversible logic, the value of the control wires

should be equal 1. The Figure 2-4 displays one of the simplest possible control gates,

the Feynman gate and its function in matrix form. Feynman gate is alternatively

called Controlled Not gate, in short, 𝐶𝑁𝑂𝑇 .

The wire marked with dot is called control wire, the wire with 𝑁𝑂𝑇 gate displayed

on it is called target wire. The general behavior of this logic gate can be described

the following way: If the value on the control wire is one, then perform the operation

29

(a)

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦ (2.18)

(b)

Figure 2-4: Feynman Gate: a) the CNOT gate, b) the matrix of CNOT gate

specified on the target wire. There can be any arbitrary unitary gate in place of the

NOT gate.

One of the most important controlled gates is the Toffoli function, 𝐶𝐶𝑁𝑂𝑇 or

𝐶2𝑁𝑂𝑇 , which is Turing universal gate by itself. The Toffoli gate has AND and

NOT in its truth table, which allows to implement any classical circuit by building

cascades of Toffoli gates. The Figure 2.19 demonstrates its matrix representation.

(a)

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.19)

(b)

Figure 2-5: : The Toffoli Gate: a)the quantum gate, b) the function matrix

However the Toffoli gate itself is not sufficient for realization of an arbitrary quan-

tum logic gate. The properties of quantum computational space, the quantum phase

and entanglement require specific consideration because these properties are crucial

for quantum speedup and utilizing the full information hidden in a quantum register.

The Toffoli gate, realized on a quantum computer and thus, able to preserve quantum

information inside of circuit is displayed on the Figure 2-6

30

RX(π
2
)RY (π

2
)RZ(π)

RZ(
π
4
)

JZZ(
π
4
)

JZZ(
π
3
)

RY (π
2
)

JZZ(
π
2
)

JZZ(
π
2
)

RX(π
4
)

JZZ(
π
8
)

RZ(
π
2
)

Figure 2-6: Example of efficient realization quantum Toffoli gate extracted from [20]

2.2.2 Models for Quantum Circuit Design

The fourth of the above presented Di Vincenzo criteria implies that the bigger a

quantum circuit is, the more difficult it is to keep the system in the state appropriate

for performing a computation. This reinforces the need for designing optimal circuits.

In this context optimal means a circuit having the smaller quantum cost capable of

performing the desired computation. The quantum cost of a circuit can be defined as

a number of primitive gates required to build the desired function.

There are several possible models for quantum logic circuits design. The Figure 2-

7 demonstrates realization of a reversible logic gate, called Peres gate, in different

models varying by the gate set used:

(a) (b)

(c)

Figure 2-7: Realization of Peres gate in different models: a)Elementary Quantum
Gates [40], b) Multiple Controlled Toffoli [40], c) Ising model from [20]

Any model consists of primitive gates sufficiently complex such that the gate set

could be used to implement the target circuit. The target circuit is the circuit function

the synthesis is aiming to build. Some of important models are the 𝐶𝑁𝑂𝑇/𝐶𝑉/𝐶𝑉 †,

the Clifford-T or the CH/CZ or the Ising model. This research uses the Ising model

for circuit synthesis.

31

Ising Model

The Ising model had success at physical implementation of quantum computers [38]

performing Shor’s factoring and inverse Quantum Fourier Transform. The elemental

gate set for the Ising model consists of three single qubit gates representing rotations

around the X,Y,Z axes of the Bloch sphere (see Figure 2-1) and two qubit Z interaction

gate [17]. The next equations demonstrate the matrices of these gates:

∙ X direction

𝑅𝑥(𝜃) = 𝑒(
−𝑖𝜃𝑋

2) = 𝑐𝑜𝑠(
𝜃

2
)𝐼2 − 𝑖𝑠𝑖𝑛(

𝜃

2
)𝑋 =

⎡⎣ 𝑐𝑜𝑠 𝜃
2
−𝑖𝑠𝑖𝑛 𝜃

2

−𝑖𝑠𝑖𝑛 𝜃
2

𝑐𝑜𝑠 𝜃
2

⎤⎦ . (2.20)

∙ Y direction:

𝑅𝑦(𝜃) = 𝑒(
−𝑖𝜃𝑌

2) = 𝑐𝑜𝑠(
𝜃

2
)𝐼2 − 𝑖𝑠𝑖𝑛(

𝜃

2
)𝑌 =

⎡⎣𝑐𝑜𝑠 𝜃2 −𝑠𝑖𝑛 𝜃
2

𝑠𝑖𝑛 𝜃
2

𝑐𝑜𝑠 𝜃
2

⎤⎦ . (2.21)

∙ Z direction:

𝑅𝑧(𝜃) = 𝑒(
−𝑖𝜃𝑍

2) = 𝑐𝑜𝑠(
𝜃

2
)𝐼2 − 𝑖𝑠𝑖𝑛(

𝜃

2
)𝑍 =

⎡⎣𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2

⎤⎦ . (2.22)

The template for the two-qubit interaction is:

𝐽𝑖𝑗(𝜃) = 𝑒
−𝑖𝜃
2

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 𝑒𝜃 0 0

0 0 𝑒𝜃 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.23)

32

2.3 Logic Circuits Design

2.3.1 Problem of Logic Design

There are two main problems hindering the task of quantum or reversible logic circuits

design directly from quantum primitives. The first problem is: the optimal solution

for this task does not exist yet. The main cause is the complexity of the search for

circuits having a number of qubits bigger than two. The complexity growth is due the

nature imposed constraint for primitive logic gates: at most two-qubit gates can be

used to accomplish the task. This limitation enforces utilization of composite gates

with previously discovered physical realizations for logic implementation, which has

the second problem enclosed in it. This approach makes designing bigger quantum

and reversible logic susceptible to finding non-optimal solutions using quantum prim-

itives. In other words, the available methods of discovering quantum and reversible

logic circuits cannot guarantee finding of an optimal solution. The synthesis of re-

versible quantum gates such as gates from the 𝐶𝑛𝑈 family with 𝑈 being 𝑁𝑂𝑇 , or

𝑆𝑊𝐴𝑃 or unitary operations, has been solved in general for some sets of Turing

universal quantum gates and small number of qubits. For instance, the minimal re-

alization of 𝐶2𝑁𝑂𝑇 gate is known in the 𝐶𝑁𝑂𝑇/𝐶𝑉/𝐶𝑉 †, Clifford-T or CH/CZ

set of quantum gates. However, in the Ising model the Toffoli gate is not known

with certainty as the original specification was found by a stochastic algorithm [16]

while in [20] an improved realization was found. Additionally, this situation only gets

worse with larger logic gates, where synthesis is done by LUT (Look Up Tables) [36]

or replacement of large gates by a group of smaller gates already known [37]. Thus, a

synthesis method that designs larger quantum circuits directly using quantum gates

would benefit from better minimal cost but also would require faster computers.

33

2.3.2 Application of Evolutionary Computation to Circuit Syn-

thesis Problem

Evolutionary Computation is well suitable for problems having complicated search

space. The evolutionary algorithms is type of algorithms inspired by observing nat-

ural processes [13]. Genetic algorithms are one kind of evolutionary algorithms. To

perform evolutionary computation by means of genetic algorithm, the problem must

be represented as a population of genes and chromosomes. For circuit design, genes

may encode components of a circuit.

The circuit, constructed from multiple genes is used as a candidate for the solu-

tion. In terms of evolutionary computation, the composite circuit can be called an

individual, alternatively a chromosome. Multiple chromosomes form a population.

The population undergoes an evolution implementing the "survival of the fittest"

strategy. The evolution is a meta heuristic based on constantly reducing the search

space towards one of the optimal solutions, depending on the initial population as-

signment. The general flow of a genetic algorithm is described on Figure 2-8

Evaluation

Population

Initialization

Population

found or max gen.
reached

Solution

Selection

Crossover

Mutation

Exit

No

Yes

Figure 2-8: General evolutionary algorithm procedure

34

The Figure 2-8 describes the general flow of a classical evolutionary algorithm.

The more detailed explanation follows below:

1. The step of population initialization consists of mapping a problem to the pop-

ulation suitable for evolution. Next, the individuals are randomly initialized

following the constraints of the specified problem.

2. The population undergoes evaluation to calculate each candidates’ similarity to

the target solution. At that point, the fitness value is assigned to each of the

individuals. If the solution meeting the desired tolerance was obtained or the

maximum number of iterations is reached, the algorithm halts.

3. The next evolutionary operator is the selection. The purpose of this stage is

to identify the best and the worst individuals to be processed during the next

stage. The most famous approaches to the selection are Stochastic Universal

Sampling, Roulette Wheel Selection or Tournament Selection [1].

4. The crossover operation is an exchange of the individual’s genes. There exist

several possible strategies to perform crossover operation. One of them is to

combine and reorder the genes of two best candidates for the solution to con-

struct a new individual. Later, this new individual replaces the ones identified

during the selection stage.

5. The mutation operation prevents the population convergence to local maximum.

It is a stochastic process introducing random noise to the population

6. Steps 2 to 5 are repeated.

2.3.3 Quantum Evolutionary Computation

A lot of work has been done for solving the problem in classical paradigm using

different approaches and hardware, however the execution time is a limiting factor

even for the most optimal evolutionary and general algorithms [22] directly designing

quantum circuits. Thus Quantum and Quantum Inspired Algorithms were introduced

35

in order to reduce the computation time using principles of quantum mechanics. One

of the first evolutionary algorithms inspired by quantum computing was developed

in [29]. The most original idea was the extension of quantum inference crossover [29].

In [30] the first definition and requirements for evolutionary quantum algorithms have

been introduced. The most important and challenging requirements are listed below

for the clarity of understanding:

∙ A reasonable method of splitting the problem to sub-problems;

∙ "The number of universes required should be identified" [30], that is the number

of quantum registers should be well described;

∙ The computations should occur in parallel;

∙ "There must be some form of interaction between all of the universes. The

interference must either yield a solution, or new information for the universes

to utilize in locating a solution" [30].

Several further studies described the Quantum Genetic Algorithms for general pur-

poses [27] [24] such as for the knapsack problem. The problem of quantum circuits

synthesis was studied using Quantum Evolutionary Algorithm (QEA) in [7]. The

study [7] used integer representation of population, and demonstrated synthesis with

multiple controlled 𝑁𝑂𝑇 gates. In [23] the design of quantum circuits used qutrits

for individual encoding. This allowed for more advantageous usage of mutation and

ternary operators. In order to run these algorithms, most of the studies design spe-

cial quantum encoding and mapping of evolutionary operators that could potentially

allow to execute their algorithm on quantum computers.

36

Chapter 3

Quantum Evolutionary Algorithm for

Design of Quantum Circuits

3.1 Quantum Encoded Quantum Evolutionary Algo-

rithm

Our Quantum Evolutionary Algorithm for Quantum Circuit Synthesis was named

Quantum Encoded Quantum Evolutionary Algorithm because it does not fit directly

to any classification of existing algorithms and is not fully quantum per se. There

are some parts that require classical control over quantum encoded population and

operators. This chapter is dedicated to the description of the proposed algorithm,

selected restrictions and optimization strategies used to overcome the raising difficulty

of the search. The proposed approach features the following characteristics:

∙ population of solution candidates encoded using qubits and qutrits;

∙ adaptive mutation as the main driving force of the evolution;

∙ templates for building interaction gates;

∙ use of position in the memory to encode circuit information;

∙ synthesis on a level of single qubit rotations and interaction gates;

37

∙ predefined templates of interaction matrices for simplification of the search;

∙ ensemble-quantum computer inspired set of evolutionary operators;

∙ measurement based quantum gate and quantum circuit creation.

The general flow of the proposed algorithm is depicted in Figure 3-1. The QE-

QEA does not evolve circuits directly; instead a set of quantum gates (segments)

are evolved as a population. The circuits are obtained by random selection of gates

from the population. Each gate is encoded by several quantum parameters and uses

measurement procedure for circuit construction.

j1

1 j

circuits of
Sample k

length j

I1 I2 In
Population

segments
of n

Evaluate circuits and assign fitness
to each segment based on circuit
and on location within circuit

Mutate the segments

Figure 3-1: High level flow of the quantum evolutionary algorithm

3.2 Quantum Gates Representation

The QEQEA is constructed to synthesize gates in Ising model. Despite the fact this

model is considered impractical due to difficulties growing with the quantum register

size. The synthesis of logic gates using the Ising model is considered one of the most

complex tasks in quantum logic synthesis. Thus, generating results in this model is

38

an indicator of the performance of the applied algorithm and this is the main cause

for chosing this model to be explored in this research. The primitive gate set is

single-qubit rotation gates and two qubit gates. Construction of each circuit segment

requires a qubit and, for rotation gate qutrit with our proposed encoding.

3.2.1 Rotation gates

The single qubit gates (𝑅𝑋(𝜃), 𝑅𝑌 (𝜃) and 𝑅𝑍(𝜃)) are encoded using one qubit and

one qutrit. The angle of rotation 𝜃 is represented by the qubit parameter specifying

its complex amplitudes: 𝑒−𝑖𝜋𝜃. The axis of rotation is obtained by measuring the state

of the qutrit. We repeat the measurement process multiple times to approximate the

state of the qutrit, without eliminating uncertainty. For qutrit state 𝜓⟩ = 𝛼|0⟩ +
𝛽|1⟩ + 𝛾|2⟩ the qutrit states: {|0⟩, |1⟩, |2⟩} correspond to rotations around {𝑥, 𝑦, 𝑧}
axis, respectively. The Figure 3-2 demonstrates the pseudo code for the measurement

procedure:

𝑟 ← 𝑟𝑎𝑛𝑑𝑜𝑚[0, 1]
𝑎𝑥𝑖𝑠← 𝑧
if 𝑟 ≤ |𝛼|2 then

𝑎𝑥𝑖𝑠← 𝑦
else if 𝑟 ≤ |𝛼|2 + |𝛽|2 then

𝑎𝑥𝑖𝑠← 𝑥
end if

(a) (b)

Figure 3-2: Measurement simulation: a) pseudo code for measurement simulation, b)
parallel axis decoding from qutrits

3.2.2 Interaction gates and templates

The second type of quantum gate we use is the two-qubit interaction. The interaction

gate is equivalent to two parameterized single-qubit 𝑍 gates applied simultaneously

to two qubits [16]. In the GPGPU version of an algorithm, the number of parameters

required to encode interaction gate was three: two indexes on which the gate operates

39

and the 𝜃 parameter. By introducing interaction matrices templates, we reduced

the number of parameters required to construct the interaction gate to one. The

parameter 𝜃 obtained by copying qubit value similar to the case of single qubit gates

construction. The other two parameters, the indexes, are encoded in position within

the memory. There are
(︀
𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑊𝑖𝑟𝑒𝑠

2

)︀
distinct templates possible for circuit with

input size 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑊𝑖𝑟𝑒𝑠. Utilization of the templates allows to exclude 𝑆𝑊𝐴𝑃

gates that were used to simulate interaction gates between non-neighboring qubits in

GPGPU version [20] during process of evolution.

≡ ≡

RZ(θ)

RZ(θ)

RZ(θ)

RZ(θ)
IZZ(θ)

Figure 3-3: Construction of templates for interactions between non-neighboring qubits

The interaction gate can be expressed in form of term-wise exponent of scalar

multiple of gate parameter value and special diagonal matrix, template. The template

is a diagonal matrix which diagonal entries are are +1 and −1 depending on the wires
on which the interaction is applied. Notice that the number of possible interaction

gates with respect to wires of their application grows slowly considering the size of

the problem. The algorithm for creation of the templates and construction of gates

from them can be implemented in three stages:

1. During the preparation stage of the algorithm, the template matrices for non-

neighboring qubits are constructed as it follows from the Figure 3-3 .

2. When an interaction gate is to be inserted in a quantum circuit, the template

should be multiplied by qubit value.

3. Parallel exponent of elements of diagonal matrix should be calculated.

This optimization potentially allows synthesize more optimal circuits by removing

redundant swap gates.

40

3.3 Population Initialization

The qubits and qutrits are undergoing evolutionary process in the proposed Quantum

Encoded Quantum Evolutionary algorithm. These qubits and qutrits are used to

encode quantum gates that in turn are sampled to form multiple quantum circuits.

The GPGPU version of the algorithm has the wire on which the logic gate should

operate as a parameter. To eliminate this parameter in QEQEA, the position of the

segment in the population fulfills the role. In essence, the population size is increased

proportionally to the problem size to account for gate on each possible wire.

The qubits population can be divided into two parts: the qubits encoding rota-

tion gates and the qubits encoding the two-qubit interaction gates. The following

parameters define the population:

∙ 𝑠𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 defines the length of the circuit in terms of number of gates

(segments)

∙ 𝑠𝑖𝑧𝑒𝑂𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 sets the number of individuals in the population. This pa-

rameter increases the number of segments in population to:

𝑠𝑖𝑧𝑒𝑂𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 * 𝑠𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 (3.1)

∙ 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑊𝑖𝑟𝑒𝑠 affects multiple aspects of the algorithm. As it was described

before in Section 3.2.2, it defines the 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟. Thus, the

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑊𝑖𝑟𝑒𝑠 affects the segments count in the population to

(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠𝐶ℎ𝑜𝑠𝑒+ 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑊𝑖𝑟𝑒𝑠)

* 𝑠𝑖𝑧𝑒𝑂𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 * 𝑠𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 (3.2)

Since the qutrits are required only to encode axes of rotation for single-qubit gates,

the number of qutrits is fixed at

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑊𝑖𝑟𝑒𝑠 * 𝑠𝑖𝑧𝑒𝑂𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 * 𝑠𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 (3.3)

41

The number of individuals in the population raises the amount of initial informa-

tion to explore. It also significantly increases the computational complexity. However,

the tasks required to synthesize one individual may be executed in parallel and we

aim to get most benefit of highly effective parallel capabilities of quantum computers

at that stage of the algorithm.

Note that the implementation of the encoding is aimed to on one hand exploit

quantum parallelism and direct encoding of quantum circuits directly on qubits and on

the other hand is targeted to be accelerated with current classical parallel technologies.

The proposed encoding is intended for ensemble quantum computers such as using

the NMR approach or one-way quantum computer where many of the same qubits

exists and thus, many samples can be obtained.

Figure 3-4: Segments layout with 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑊𝑖𝑟𝑒𝑠 = 3, 𝑠𝑖𝑧𝑒𝑂𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 2 and
𝑠𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 4

Figure 3-4 describes an example population that would have two individuals, tar-

geting to synthesize the circuit consisting of four gates applied to three input qubits

(wires). The first eight qubits encoding the circuit segments correspond to rotation

applied on the first input wire (labeled "wire 1" in Figure 3-4). There are exactly

eight qubits in this particular case because the population consists of two individuals

of size four. Similarly, the next eight qubits correspond to rotation on the second wire

(labeled "wire 2" in Figure 3-4). Same rules apply to the third set of eight qubits.

The remaining twenty-four qubits do not have qutrits allocated for them because they

42

belong to interaction region and use precalculated templates instead of measured axis

(labeled "Interactions" in Figure 3-4). The Figure does not contain qutrits in it, the

qutrits are described on the Figure 3-7.

3.4 Circuit Construction

3.4.1 Circuit Segments

Previous research in design of circuits using the Ising model [19] suggests using circuit

segments for simplification of synthesis task. Listed without changes to preserve the

original meaning, the circuit segment was defined in [19] as:

"A Segment of Quantum Circuit is another Quantum Circuit or a Quantum Gate

of width n, such that it is built only by using Kronecker product between its component

gates".

In our research, we do synthesis using circuit segments. Additionally, we restrict

circuit segment having only one logic gate expanded to full circuit width. This re-

striction makes size of the circuit become sort of measure of quantum cost (special

account should be done for two-qubit logic gates). Figure 3-5 helps illustrating the

definition of a circuit segment:

(a) (b)

Figure 3-5: Possible logic layout within a quantum circuit: a) circuit split to seg-
ments, b) segments are not enforced

43

3.4.2 Segments Construction

Since the "one logic gate per circuit segment" approach was successful in the GPGPU

algorithm [20], our algorithm performs same operation. To build such segments from

the population of qubits and qutrits, it has to undergo multiple steps, including expan-

sion by Kronecker product. The procedure for parallel Kronecker product expansion

was first described in [20], however it was not utilized to apply the procedure to all

individuals simultaneously. In the QEQEA, the logic gates were laid out in memory

in a way to fully exploit parallel acceleration of this complex task. The Figure 3-

6 demonstrates difference between classical single threaded approach with parallel

version of algorithm, the arrows represent simultaneous threads.

Figure 3-6: Classical and Parallel procedure of Kronecker product

The full segment construction requires performing four steps which are illustrated

in Figure 3-7.

∙ Step 1: Obtain array of axes by performing measurement of qutrits

∙ Step 2: Insert qubit values to corresponding templates (rotations or interac-

tions)

∙ Step 3: Prepare the memory for application of Kronecker product and apply

the procedure

44

∙ Step 4: Construct interaction matrices in a way it was described in Section 3.2.2

and put next to segments obtained from rotation matrices

Figure 3-7: The procedure of segments construction prior circuit building stage

3.4.3 Circuit construction

The proposed quantum circuit design method is a form of evolutionary algorithm

heavily altered in order to allow some of its components to be directly mapped into

a quantum computer. Additionally, the proposed algorithm is also intended to be

efficiently implementable on a highly parallel device such as GPGPU.

For the circuit of length of 𝑠𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 we launch 𝑠𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 parallel

threads each indexed by 𝑖𝑛𝑑𝑒𝑥𝑡ℎ𝑟𝑒𝑎𝑑. Each thread generates two random numbers:

∙ 𝑤ℎ𝑖𝑐ℎ𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 from range 0..𝑠𝑖𝑧𝑒𝑂𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

45

∙ 𝑤ℎ𝑖𝑐ℎ𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑂𝑟𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 from the range

0..𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑊𝑖𝑟𝑒𝑠+ 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟

These values are later used to calculate the index of segment to be plugged in the

circuit:

𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 = 𝑤ℎ𝑖𝑐ℎ𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑂𝑟𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

* 𝑠𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 * 𝑠𝑖𝑧𝑒𝑂𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

+ 𝑤ℎ𝑖𝑐ℎ𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 * 𝑠𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 + 𝑖𝑛𝑑𝑒𝑥𝑡ℎ𝑟𝑒𝑎𝑑 (3.4)

The result of calculation is stored as reference to a segment in population for 𝑖𝑛𝑑𝑒𝑥𝑡ℎ𝑟𝑒𝑎𝑑

position in the circuit. An example of process is shown in the Figure 3-8. We repeat

Figure 3-8: Building a circuit of length three affecting two qubits having two indi-
viduals in the population

this process 𝑠𝑖𝑧𝑒𝑂𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 times to generate 𝑠𝑖𝑧𝑒𝑂𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 circuits each

iteration.

3.5 Fitness Evaluation

The fitness value reflects the proximity of the synthesized circuit matrix 𝑆, to the

target circuit matrix 𝑇 . The possible values of selected function are ranging from

0 to 1, where 1 represents identical matrices and 0 being the opposite. The fitness

function used in [20] was initially used for driving the evolution. The error was

accumulated by the sum of term-wise squared difference between circuit matrix and

46

target function matrix, shown on Equation (3.6):

𝑒𝑟𝑟𝑜𝑟 =
4𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑊𝑖𝑟𝑒𝑠−1∑︁

𝑗=0

[𝑎𝑏𝑠(|𝑆|)2 − 𝑎𝑏𝑠(|𝑇 |)2] (3.5)

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑉 𝑎𝑙𝑢𝑒(𝑆) =
1

1 + 𝑒𝑟𝑟𝑜𝑟
(3.6)

Another approach that is more suitable for quantum computers is based on prop-

erty of unitary matrices that 𝑈 † * 𝑈 = 𝐼. The Equation 3.7 displays the Quantum

fitness function:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑉 𝑎𝑙𝑢𝑒(𝑆) = 1−
√︂
𝑠𝑖𝑧𝑒− |𝑡𝑟(𝑆†𝑇)|

𝑠𝑖𝑧𝑒
(3.7)

In this expression, the || operator denotes absolute value. The 𝑡𝑟 operation repre-

sents calculation of the sum of diagonal elements of the matrix. The 𝑠𝑖𝑧𝑒 is normal-

ization constant and is taken to be equal to 2𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑊𝑖𝑟𝑒𝑠.

The classical fitness function from Equation (3.6) is targeted to reduce the error

between the terms of the matrix, however it does not differentiate between elements

of the matrix having complex terms in it. Thus, Classical fitness function should be

used only for reversible and classical logic synthesis.

3.5.1 Segment Fitness

Each segment used during circuit construction stage (Section 3.4.3) is assigned with

a fitness value. The fitness value assigned to each segment is the same as the fitness

value of the circuit it was used to construct.

Additionally, an elitist approach was implemented: if the new fitness value of a

segment is better than the previous best value, the states of the qubits and qutrits

are preserved, otherwise they get discarded.

Finally, each segments fitness is tied to a particular position in a given circuit.

That is, the same segment will be represented by various fitness values depending on

the position where it was located within the synthesized circuit.

47

3.6 Evolutionary Search

The main distinguishing characteristic of QEQEA compared to GPUGA is the crossover

operation was left out. Because of that, the main source of changes in QEQEA is

the mutation operation. We use adaptive mutation inspired from the evolutionary

strategies approach [2]. The adaptive mutation approach sets the changes in individ-

uals (qubits in qutrits) to account with the fitness value. The fitness value assigned

to segments is responsible to changes applied to population to qubits and qutrits.

For example, 1− 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 coefficient may serve the purpose of implementing

adaptive mutation approach. In other words, better individuals undergo less signif-

icant changes [13]. This approach is argued to be more effective than the mutation

with constant probability and mutation range [25]. To strengthen the control over

the population, the elitism strategy was implemented in the process of evolution. The

elitism implies copying the segments that were best in the iteration and save it to the

next generation. The application of this strategy is determined by parameter.

Each individual undergoes change per iteration of our algorithm with

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑂𝑓𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛. Every time the mutation is to be performed, there are two

equiprobable operations that may happen: qubits or qutrits mutation.

∙ The qubits mutation is a process of modifying the parameter representing qubit

inversely proportional to the segment fitness value. Similar to our previous

research, we use the 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑛𝑔𝑒 parameter that determines the maximum

possible change to parameter. In our algorithm, it is taken to be fraction of 𝜋.

The final formula to calculate the mutation value is shown in Equation (3.8)

±(1− 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝐹 𝑖𝑡𝑛𝑒𝑠𝑠) *𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑛𝑔𝑒. (3.8)

The qubit parameters are assumed to stay within [0, 2 * 𝜋] range, so after the

mutation the resulting parameter is readjusted modulo 2 * 𝜋

∙ The qutrits mutation is performed by applying the arbitrary SU(3) rotations

on a qutrit [39]. Such matrix can be generated using eight parameters: three

48

⎡⎣ 𝑒𝑖𝜑1𝑐1𝑐2 𝑒𝑖𝜑3𝑠1 𝑒𝑖𝜑4𝑐1𝑠2
𝑒−𝑖𝜑4−𝑖𝜑5𝑠2𝑠3 − 𝑒𝑖𝜑1+𝑖𝜑2−𝑖𝜑3𝑠1𝑐2𝑐3 𝑒𝑖𝜑2𝑐1𝑐3 −𝑒−𝑖𝜑1−𝑖𝜑5𝑐2𝑠3 − 𝑒𝑖𝜑2−𝑖𝜑3+𝑖𝜑4𝑠1𝑠2𝑐3
−𝑒−𝑖𝜑2−𝑖𝜑4𝑠2𝑐3 − 𝑒𝑖𝜑1−𝑖𝜑3+𝑖𝜑5𝑠1𝑐2𝑠3 𝑒𝑖𝜑5𝑐1𝑠3 𝑒−𝑖𝜑1−𝑖𝜑2𝑐2𝑐3 − 𝑒−𝑖𝜑3+𝑖𝜑4+𝑖𝜑5𝑠1𝑠2𝑠3

⎤⎦
(3.9)

Figure 3-9: SU3 matrix construction, where 𝑐𝑘 = 𝑐𝑜𝑠𝜃𝑘 and 𝑠𝑘 = 𝑠𝑖𝑛𝜃𝑘, from [39]

rotation angles 𝜃1, 𝜃2, 𝜃3 from range 0 < 𝜃 < 𝜋/2 and five phases 𝜑1, 𝜑2, 𝜑3, 𝜑4, 𝜑5

from range 0 < 𝜑 < 2 * 𝜋. We construct the matrix using template described

in Figure 3-9.

During one step of mutation, one of these nine parameters is generated randomly

from a domain of its possible values multiplied by 1 − 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝐹 𝑖𝑡𝑛𝑒𝑠𝑠. After the

rotation matrix is constructed, it is applied to vector representing qutrit to produce

an updated qutrit value.

49

50

Chapter 4

Results and discussion

4.1 Results

4.1.1 Evaluation of QEQEA

To verify the QEQEA algorithm we tested it on several quantum gates: Worst Case

(3_17) [41] , Miller gate [41], 𝐶2𝑁𝑂𝑇 , Peres and 𝐶𝑁𝑂𝑇 . Table 4.1 shows the results

of the search for the 𝐶𝑁𝑂𝑇 gate.

The Table 4.1 presents the outputs from the algorithm obtained in the process of

synthesizing a CNOT gate. This gate was the only type of gate we were able to find

exact representation. Each row in the table from top to the bottom represent encoded

circuit segments in the order they appear in the synthesized circuit. Each row of the

table contains all information required to decode information about circuit segment.

The first column contains the parameter value 𝜃 representing the rotation. The

second column determines whether the parameter 𝜃 should be plugged to rotation or

interaction template. The third column of the table contains the states of the qutrit,

which after measurement indicate the direction of the rotation gate. The value of

this column should be ignored if the segment is a two-qubit interaction. The fourth

column indicates the axis of rotation obtained as a result of measurement.

Thus, Table 4.1 represents a CNOT circuit constructed using the following se-

quence of gates:𝑅1𝑦(𝜃 = 1.570796)𝐽12(𝜃 = 4.712389)𝑅1𝑥(𝜃 = 4.712389).

51

Table 4.1: Result of CNOT gate synthesis (𝑠𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙=3,
𝑠𝑖𝑧𝑒𝑂𝑓𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1)

Parameter 𝜃 Index in memory Qutrit states Axis

𝜋/2 0 -0.43 - 0.16𝑖; 0.85 + 0.08𝑖; 0.03 - 0.24𝑖 y
3𝜋/2 7 Interaction template between 1 and 2
3𝜋/2 2 0.39 - 0.66𝑖; -0.43 + 0.43𝑖; 0.16 - 0.14𝑖 x

Equation (4.1) shows the resulting matrix of the obtained 𝐶2𝑁𝑂𝑇 gate with the

length of 16 segments. Some terms of the matrix have differences from original Toffoli

gate therefore the circuit obtained is not exact, however on average the error per term

is ≈ 0.02.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.894 0.000 0.004 0.000 0.101 0.000 0.000 0.000

0.000 0.916 0.000 0.001 0.000 0.080 0.000 0.004

0.004 0.000 0.967 0.000 0.000 0.000 0.029 0.000

0.000 0.004 0.000 0.121 0.000 0.000 0.000 0.875

0.101 0.000 0.000 0.000 0.894 0.000 0.004 0.000

0.000 0.080 0.000 0.004 0.000 0.916 0.000 0.001

0.000 0.000 0.029 0.000 0.004 0.000 0.967 0.000

0.000 0.000 0.000 0.875 0.000 0.004 0.000 0.121

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.1)

4.1.2 Experiments Description

The final version of described algorithm was tested by executing the software multiple

times. Two types of results were gathered: one for fitness function described by

Equation (3.6), denoted as "Classical Fitness function" in the Table 4.2. The other

result is for fitness function labeled as "Quantum distance measure" and is described

by Equation (3.7).

The contents of the table reflect multiple outcomes of QEQEA

1. Fitness function: The change from was enforced by the original idea of making

the implementation more quantum compatible. The quantum fitness function

seems to create less evolutionary pressure and loosened control over the popu-

52

Table 4.2: Experiments results

Algorithm Classical Fitness function Quantum distance measure

Quantum implementable worse better
Number of runs 21 8
Average fitness 0.697 0.5634

Exact three-qubits gates 0 0
Elitism enabled 10 0

lation, evaluating received results.

2. Number of Runs: From 116 experiment conducted, only 30 were selected. The

other results are excluded because there were circumstances affecting the purity

of experiments. Significant (≈ 70) number of samples was rejected because the

used approach was significantly different from the one presented in this work.

Either there were bugs in implementation or the optimization strategy was

considered negatively affecting the algorithm. The dominance of experiments

with Classical Fitness Function is because the change of function happened on

relatively late stage of work.

3. Average fitness: The big difference in average fitness might be based on dif-

ference in sample size. Another possible reason is that there was no specific

parameters tuning applied after Quantum Fitness function was introduced.

4. Exact three-qubits gates synthesized: Very disappointing aspect of results,

but the QEQEA was never able to repeat success of GPGPU and find a gate

with 100% accuracy. We assume, this is due to lack of tools of population

control available.

5. Elitism enabled: The elitist approach is prone to convergence to local maxima

which appears in all our experiments. After several experiments this option was

disabled and never turned on again. Another reasoning, elitist approach would

requires classical control added to quantum computer running the algorithm.

53

4.2 Comparing QEQEA and GPUGA

The QEQEA was built as an extension for the algorithm from [20]. The main purpose

for construction of this algorithm was to test whether quantum operators could be

successfully implemented on classical hardware and to evaluate usefulness of this

approach. In order to do that, several optimizations outlined above were implemented

on GPU. The non-quantum GPUGA algorithm was used for comparison because there

is common algorithmic and acceleration basis. The main features of GPUGA are:

∙ Representation: same mapping from memory to individual was implemented.

The representation of quantum gate (segment) was performed using a set of real

and complex coefficients.

∙ The Evolutionary operators: two point crossover was used and the mutation

was a random small alterations of the gate parameters.

∙ Selection was using the Stochastic Universal Sampling (SUS).

∙ Evolution occurred on the level of level of circuits, not on the individual gates

(segments).

∙ In the GPUGA no qutrits were used; we introduced the qutrits in QEQEA

in order to avoid allocating extra memory for each type of the rotation gates

(x,y,z) direction. This evolution of qutrits could possible reduce computation

time required for each population step.

The GPU acceleration and parallelism makes the two algorithms alike. The ad-

vantages and disadvantages of the new algorithm are outlined below:

∙ Improvements the QEQEA introduced:

– Full utilization of Kronecker product;

– The interaction matrices construction using templates.

∙ Drawbacks due to constraints and limitations:

54

– Qutrits measurement introduced huge computation overhead compared to

the GPGPU algorithml

– Lack of crossover operation significantly affects the convergence of the al-

gorithm in negative manner.

∙ Changes with complex effect:

– Mutation operation for each individual became easier due to reduced num-

ber of parameters required to encode gate;

– Procedure of circuit construction became simpler for each iteration and

is just random numbers without control, however less control may be the

cause of slower convergence rate to the solution;

– Fitness function change affected convergence of algorithm, but due to in-

sufficient number of results collected, the statistics can not be built to say

which one.

The Table 4.3 shows the differences of speed in obtaining the various gates for

which we tested both algorithms. First column, labeled "Accuracy" presents the

similarity of obtained circuit matrix with target circuit matrix. Notice that in all

cases the classical algorithm was faster than the QEQEA algorithm (iteration of

QEQEA takes significantly more time). Thus, even if the iteration number is smaller

in QEQEA, the GPUGA is faster in real time and was able to converge to better

results. The reason is the fact that the QEQEA is evolving gates rather than whole

circuits while the classical GA evolves whole circuits. Additionally, the QEQEA

generates solutions from a single set of encoding qubits and qutrits. As such there is

no crossover because there is only one individual of qubits and qutrits. Consequently,

because the main evolution mechanisms are selection and mutation, the proposed

QEQEA is more related to evolutionary strategies rather than to genetic algorithm.

The first and the third columns of Table 4.3 display the accuracy of best results

achieved by each algorithm. The iterations number could also serve as a measure for

performance comparison, however for the QEQEA this data is only partially available.

55

Table 4.3: Comparison of Results and performance between the QEQEA and a
classical GPGPU

Function
QEQEA GPGPU

Accyracy No. Generations Accuracy No. Generations

CNOT 1.0000 400 1.0000 200
Toffoli 0.7047 13000 0.9663 34500

CCCNOT 0.6464 limit 0.7539 650970
Peres 0.5693 limit 0.9443 2M

The reason for that is the search of CCCNOT and Peres gates reached the maximum

iterations limit of ten million iterations. However, this fact also means the result

could be possibly improved if the higher limit for iterations was set.

4.3 Discussion and Future Work Suggestion

The main problem with the proposed algorithm as we put it is lack of control over

the population. This problem appears from the original design choice that was in-

vestigated. Nevertheless, the control could still be executed by means of adaptive

mutation as we tried to explain.

∙ First point to improve, SU(3) rotations applied to modify qutrits encoding ac-

tions requires careful investigation. Alternatively, the population memory can

be increased three times in size to disregard the mutation, measurement and

the SU(3) mutations completely.

∙ Second point to investigate is to account more with the periodicity of change of

the single-qubit gates to improve the rotation gates change. In particular, the

limits for 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑛𝑔𝑒 parameters should be set depending on the problem

size as it was in GPGPU algorithm.

∙ Introducing penalty for interaction gates gives room for improvement, because

classical circuit built exclusively from interaction gates is a local maxima for

big number of control gates. At the same time, it is just an identity gate.

56

∙ Since the proposed algorithm implements evolutionary strategies, it is said to

converge to solution in limited amount of time. So another suggestion is to

perform more rigorous testing after verifying algorithm once again.

∙ As an important extension of the algorithm may be restarting synthesis after

convergence to local maxima achieved. The extension should target to find the

𝑇𝑎𝑟𝑔𝑒𝑡⊕𝑅𝑒𝑠𝑢𝑙𝑡 which later can be used to find better results

∙ The algorithm could significantly benefit from an extension that would allow

preserving the sequences of segments. Now the segments are tied to position

in the circuit but grouping them up and calculate fitness of group of segments

might help.

4.4 Conclusion

An attempt to discover new algorithmic optimizations from quantum paradigm and

feasibility of implementing of QEQEA was made by means of comparison with a ver-

sion of classical GA. The QEQEA features certain components being a possible target

for implementation in a quantum computer but in order to keep the implementation

computationally tractable several design choices were applied that made it impossible

to port directly to a quantum computer.

The work on the proposed problem led to obtaining two positive and two negative

results. The results can be briefly summarized as:

∙ The algorithm encoded in terms of quantum units of information can find non-

exact circuit realizations for known gates;

∙ The algorithm performance does not benefit from selecting more quantum com-

pliant evolutionary operators;

∙ Several techniques described in this work can be adapted for improvements in

other existing algorithms;

57

∙ The quantum evolutionary algorithm converges slower than the classical genetic

algorithm.

In other words, even if all components of the algorithm were made quantum-

implementation compatible, many components would remain classic. In particular

this means, that even if QEQEA evolutionary components are mapped to a quan-

tum computer, fitness function values, circuit information, algorithm flow control

and other parameters require to be kept in a classical memory. The comparison

with the classical GPUGA showed that the quantum evolutionary model shows worse

performance than the classical evolution. The inferior performance is due to many

constraints included in the QEQEA that resulted in strong simplification of the evo-

lutionary process. Consequently the main result is that the evolutionary process for

computation as originally proposed in [12] seems to be most efficient when imple-

mented in classical computer. In a quantum computer, an efficient implementation

requires exploitation of the entanglement property that would made the search much

more efficient. However, simulating such system on classical computer requires high

computational resources and cannot easily be compared to a classical GA.

58

Appendix A

Brief Software Package Description

The software package contains GPU accelerated version of QEQEA that can be used

on any GPU device having compute capability 3.0 and above. The execution was

performed on Tesla K40 GPU accelerator. The software can perform synthesis of

gates specified in .pla format [40]. The synthesis can only be performed for gates

without don’t cares.

In addition to the QEQEA the package contains MATLAB scripts enabling verifi-

cation of results achieved from compiled GPU code and means of verification of gates

built in MATLAB.

The code repository is hosted on bitbucket.org website and can be sent out upon

request.

59

60

Bibliography

[1] Firas Alabsi and Reyadh Naoum. Comparison of selection methods and crossover
operations using steady state genetic based intrusion detection system. 2012.

[2] Anne Auger. Convergence results for the (1, 𝜆)-sa-es-irreducible markov chains.
Theoretical Computer Science, 334(1-3):35–69, apr 2005.

[3] P. Benioff. Quantum mechanical Hamiltonian models of Turing machines. Jour-
nal of Statistical Physics, 29(3):515–546, 1982.

[4] C. Bennet. Logical reversibility of computation. IBM Journal of Research and
Development, -:525–532, 1973.

[5] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan
Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195–202,
sep 2017.

[6] Eli Biham, Gilles Brassard, Dan Kenigsberg, and Tal Mor. Quantum computing
without entanglement. 2003.

[7] Shengchao Ding, Zhi Jin, and Qing Yang. Evolving quantum circuits at the gate
level with a hybrid quantum-inspired evolutionary algorithm. Soft Computing,
12(11):1059–1072, Sep 2008.

[8] David P. DiVincenzo and IBM. The physical implementation of quantum com-
putation. 2000.

[9] Jérôme Durand-Lose. Computing inside the billiard ball model. In Collision-
Based Computing, pages 135–160. Springer London, 2002.

[10] M H. Devoret, Andreas Wallraff, and J.M. Martinis. Superconducting qubits: A
short review. 12 2004.

[11] S. M. Hamdi, S. T. Zuhori, F. Mahmud, and B. Pal. A compare between shor’s
quantum factoring algorithm and general number field sieve. In 2014 Inter-
national Conference on Electrical Engineering and Information Communication
Technology, pages 1–6, April 2014.

[12] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge, MA, USA, 1992.

61

[13] Libin Hong, John H. Drake, and Ender Özcan. A step size based self-adaptive
mutation operator for evolutionary programming. In Proceedings of the Com-
panion Publication of the 2014 Annual Conference on Genetic and Evolutionary
Computation, GECCO Comp ’14, pages 1381–1388, New York, NY, USA, 2014.
ACM.

[14] R. W. Keyes. Fundamental limits of silicon technology. Proceedings of the IEEE,
89(3):227–239, Mar 2001.

[15] R. Landauer. Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development, 5:183–191, 1961.

[16] S. Lee, S. J. Lee, T. Kim, J. S. Lee, J. Biamonte, and M. Perkowski. The cost of
quantum gate primitives. Journal of Multiple-Valued Logic and Soft Computing,
5-6(12), 2006.

[17] S. Lee, S.J. Lee, T. Kim, J.S. Lee, J. Biamonte, and M. Perkowski. The cost of
quantum gate primitives. Journal of Multiple-Valued Logic and Soft Computing,
12(5-6):561–574, 2006.

[18] Ming Li and Paul VitÃąnyi. Reversibility and adiabatic computation: trading
time and space for energy. PROC ROYAL SOCIETY OF LONDON, SERIES
A, pages 769–789, 1997.

[19] M. Lukac. Quantum Logic Synthesis and Inductive Machine Learning. PhD
thesis, Portland State University, 2009.

[20] M. Lukac and G. Krylov. Study of gpu acceleration in genetic algorithms for
quantum circuit synthesis. In 2017 IEEE 47th International Symposium on
Multiple-Valued Logic (ISMVL), pages 213–218, 2017.

[21] M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, C. H. Yu, K. Chung, H. Jee,
B-G. Kim, and Y-D. Kim. Evolutionary approach to quantum and reversible
circuits synthesis. In Artificial Intelligence in Logic Design, pages 201 – 257.
Kluwer Academic Publisher, 2004.

[22] M. Lukac, M. Perkowski, and M. Kameyama. Quantum finite state machines
- a circuit based approach. International Journal of Unconvetional Computing,
9(3-4):267–301, 2013.

[23] Martin Lukac, Marek Perkowski, and Michitaka Kameyama. Evolutionary quan-
tum logic synthesis of boolean reversible logic circuits embedded in ternary quan-
tum space using heuristics, 2011.

[24] A. Malossini, E. Blanzieri, and T. Calarco. Quantum genetic optimization. IEEE
Transactions on Evolutionary Computation, 12(2):231–241, April 2008.

[25] S. Marsili Libelli and P. Alba. Adaptive mutation in genetic algorithms. Soft
Computing, 4(2):76–80, Jul 2000.

62

[26] Rodney Van Meter, Kohei M. Itoh, and Thaddeus D. Ladd. Architecture-
dependent execution time of shor’s algorithm. 2005.

[27] A. M. Mohammed, N. A. Elhefnawy, M. M. El-Sherbiny, and M. M. Hadhoud.
Quantum crossover based quantum genetic algorithm for solving non-linear pro-
gramming. In 2012 8th International Conference on Informatics and Systems
(INFOS), pages BIO–145–BIO–153, May 2012.

[28] G.E. Moore. Cramming more components onto integrated circuits. In Electron-
ics, April 19, 1965.

[29] Mark Moore and Ajit Narayanan. Quantum-inspired computing. 12 1995.

[30] A. Narayanan and M. Moore. Quantum-inspired genetic algorithms. In Pro-
ceedings of IEEE International Conference on Evolutionary Computation, pages
61–66, May 1996.

[31] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Informa-
tion. Cambridge University Press, 2000.

[32] Jeremy L. O’Brien. Optical quantum computing. Science, 318(5856):1567–1570,
2007.

[33] A. Peres. Reversible logic and quantum computers. Phys. Rev. A, 32(6):3266–
3276, 1985.

[34] Trailokya Nath Sasamal, Ashutosh Kumar Singh, and Anand Mohan. Reversible
logic circuit synthesis and optimization using adaptive genetic algorithm. Pro-
cedia Computer Science, 70:407–413, 2015.

[35] Philipp Schindler, Daniel Nigg, Thomas Monz, Julio T. Barreiro, Esteban Mar-
tinez, Shannon X. Wang, Stephan Quint, Matthias F. Brandl, Volckmar Neben-
dahl, Christian F. Roos, Michael Chwalla, Markus Hennrich, and Rainer Blatt.
A quantum information processor with trapped ions. 2013.

[36] Mathias Soeken, Martin Roetteler, Nathan Wiebe, and Giovanni De Micheli. Hi-
erarchical reversible logic synthesis using luts. In Proceedings of the 54th Annual
Design Automation Conference 2017, DAC ’17, pages 78:1–78:6, New York, NY,
USA, 2017. ACM.

[37] M. Szyprowski and P. Kerntopf. An approach to quantum cost optimization in
reversible circuits. In 2011 11th IEEE International Conference on Nanotech-
nology, pages 1521–1526, Aug 2011.

[38] Lieven M. K. Vandersypen, Matthias Steffen, Gregory Breyta, Costantino S.
Yannoni, Mark H. Sherwood, and Isaac L. Chuang. Experimental realization of
shors quantum factoring algorithm using nuclear magnetic resonance. Nature,
414(6866):883–887, dec 2001.

63

[39] Nikolay V. Vitanov. Synthesis of arbitrary su(3) transformations of atomic
qutrits. Phys. Rev. A, 85:032331, Mar 2012.

[40] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib:
An online resource for reversible functions and reversible circuits. In Int’l
Symp. on Multi-Valued Logic, pages 220–225, 2008. RevLib is available at
http://www.revlib.org.

[41] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib:
An online resource for reversible functions and reversible circuits. In Int’l
Symp. on Multi-Valued Logic, pages 220–225, 2008. RevLib is available at
http://www.revlib.org.

64

