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1 | INTRODUCTION

The rapid advancement in microwave and millimeter-
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Abstract

Printed VO, RF switch founds immense potential in RF reconfigurable appli-
cations. However, their generic electrical equivalent model is still intangible
that can be further integrated in CAD tools and utilize for simulation, analysis
and design of RF/microwave circuits and systems. The artificial neural net-
work (ANN) has been gaining popularity in modeling various types of RF com-
ponents. However, most of these works merely demonstrate the establishment
of the ANN-based RF model in the MATLAB environment without involving
significant optimization. Furthermore, the integration of such ANN-based RF
models in the EM and circuit simulator as well as the co-simulation between
the ANN-based model and conventional models have not been demonstrated
or validated. Therefore, the earlier reported models are still one step removed
from its real RF applications. In this work, by using the fully printed vanadium
dioxide (VO,) RF switch as the modeling example, a systematic hyper-
parameter optimization process has been conducted. Compared to the non-
optimized ANN model, a dramatic improvement in the model's accuracy has
been observed for the ANN model with fully optimized hyperparameters.
A correlation coefficient of more than 99.2% for broad frequency range demon-
strates the accuracy of the modeling technique. In addition, we have also
integrated the Python-backed ANN-based model into Advanced Design System
(ADS), where a reconfigurable T-resonator band stop filter is used as an
example to demonstrate the co-simulation between the ANN-based model and
the conventional lumped-based model.

KEYWORDS

artificial neural network (ANN), hyperparameter optimization, co-simulation, modeling,
vanadium dioxide (VO,) RF switch

variations, and even a small change in the devices' size
can result in a significant difference in the overall perfor-
mance. Typically, many simulation iterations are

wave technology has led to smaller components with
higher operating frequencies. It is well known that high-
frequency devices are quite sensitive to dimensional

required during the design stage to obtain the optimum
dimensions for high-frequency devices. Therefore, there
is a strong need to have highly accurate, dimensional-
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dependent, fast-simulation-speed, and simulator-
compatible models for high-frequency RF devices. Sev-
eral modeling techniques have been widely used for RF
devices, such as equivalent circuit models," ™ electromag-
netic (EM) physical models,™® and S-parameter models.””®
The equivalent circuit models are fast in the simulation
and are capable to include device size parameters and
therefore are ideal for parametric optimization. But the
accuracy of the equivalent circuit model degrades expo-
nentially as the operating frequency increases because a
large number of parasitic elements become prominent at
higher frequency ranges that are not included in the
model. The main reason is that such parasitic elements
are difficult and time-consuming to be characterized
accurately. Comparatively, the EM physical models are
generally very accurate even for very high frequency
ranges. However, they are very computationally expen-
sive and time-consuming. Therefore, they are not very
suitable for the parametric simulations, especially with
many dimensional variables needed to be tuned and opti-
mized. For the S-parameter model, while it has very high
simulation speed and accuracy, it does not include any
dimensional information. It is therefore safe to conclude
that the S-parameter model is not always appropriate for
the parametric optimization simulation.

In recent years, the concept of machine learning (ML),
which often occurs in the form of artificial neural networks
(ANN), has drawn increasing attention as an unconven-
tional modeling technique in the high-frequency RF device
field.”® Unlike the above-mentioned RF modeling tech-
niques, the ANN-based models need to be trained to achieve
the desired level of accuracy before utilization. During the
training process, a series of sufficient training datasets are
needed to be fed into the model so that the model can learn
the input-output pattern automatically, where the input
could be the device's dimensions and output could be the
S-parameters. Once it is well trained, the ANN-based model
is ready for use at EM-level accuracy and equivalent-circuit-
level speed. Moreover, the ANN-based model is also highly
scalable. Therefore, more input parameters can easily be
introduced into the existing models to make the model more
versatile and complex. Therefore, the ANN-based model is
an excellent option for high-frequency RF modeling as com-
pared to many other techniques.'”°

Several ANN-based RF modeling works have been
reported in the literature for different applications, such
as coplanar waveguide (CPW) components,”’ spiral
inductors,” HEMTs,?*?® amplifiers,”*~*' antennas,** and
filters.>* > However, some issues have yet to be solved to
enhance its usefulness in the real applications of high-
frequency circuit design. Firstly, the accuracy of the
ANN-based RF model is largely affected by its parameters
(hyperparameters), such as neuron numbers and

activation functions. However, most of the ANN-based
EM modeling works only use randomly selected hyper-
parameters without systematic optimization, leaving con-
siderable room for improvement in the model's accuracy.
Secondly, it has been determined that most literature
only demonstrates the establishment of ANN-based RF
models, where the compatibility and implementation of
ANN models in the EM simulator are never mentioned
and validated. While some studies have shown the inde-
pendent use of ANN models in a MATLAB environment
without the need for an EM simulator environment, it is
still highly desirable to have the co-simulation compati-
bility between the ANN models and the conventional
model in commercial EM simulators.*

To address the first issue, a systematical hyper-
parameter optimization procedure needs to be conducted.
In this study, the combination of a variety of the key
hyperparameters has been evaluated and the results com-
pared. The optimized hyperparameters can be identified
by comparing the results. A non-conventional ANN
structure is also used to allow more flexible control of the
model. In this paper, a very recent work of fully printed
vanadium dioxide (VO,) based RF switch***” has been
employed as a modeling example, in which five input
variables (switch length, switch width, switch thickness,
temperature, and frequency) are included in the model.
The results demonstrate that the accuracy for the opti-
mized ANN model is approximately two orders higher
than that for the non-optimized ANN model. Concerning
the second issue, an integration mechanism of the ANN
model in the Computer-Aided Design (CAD) tools must
be established. In this work, we have demonstrated the
co-simulation between the ANN-based VO, switch model
and a popular EM simulator-Advanced Design System
(ADS). As a proof of concept for the usefulness of the co-
simulation, an example of a reconfigurable bandstop fil-
ter is also provided.

The remainder of the article is organized as follows.
A brief introduction of the printed VO, RF switch is
covered in Section 2. Section 3 introduces the ANN struc-
tures and the necessary steps for data preparation. The
details of the hyperparameter optimization procedure are
provided in Section 4, while the results of the optimized
ANN-based model are discussed in Section 5. The co-
simulation between the ANN-based model and the conven-
tional model in ADS simulator is covered in Section 6.
Lastly, Section 7 provides the conclusion and future works.

2 | VO, RFSWITCH

In this work, the modeling of a fully printed vanadium
dioxide (VO,) based shunt RF switch is used as an
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example. The structure of the RF switch is shown in
Figure 1A,B, where the black color represents the printed
VO, film, the yellow color represents the substrate, and
the red color represents the printed conductive trace. The
printing process is illustrated in Figure 2. All the devices
are fully printed using the screen printer (AUREL
900PA) with the conductive silver ink (DuPont PE819)
and the customized VO, ink. The CPW line is first
printed using the conductive silver ink on the pre-cleaned
Sapphire substrate, as shown in Figure 2A. The thickness
of the 1-layer printed silver film is 4 pm, which is approx-
imately five times of the skin depth at 10 GHz. Therefore,
one pass of printing is sufficient to ensure the RF trans-
mission on the silver traces. The printed silver is
annealed at 200°C in a vacuum oven for 1 h to achieve
an electrical conductivity of 1.8 x 107 S/m. Next, the cus-
tomized VO, ink is screen printed on the silver traces at
the exact position for VO, switches, where the alignment
between the mask and the substrate is required, as shown
in Figure 2B. In the real mask, several alignment marks
on the corners have been designed along with the CPW
and VO, layout. Note that one printing layer of VO, film
is typically insufficient due to the inadequate thickness
and the poor film quality. Therefore, the printing of VO,
film is repeated until the desired quality and thickness is
achieved, as shown in Figure 2B. In this work, two thick-
nesses (44 and 88 pm, which corresponds to 6 layers and
12 layers, respectively) of VO, switches have been fabri-
cated, as is tabulated in Table 1. An ink drying process
between each pass of VO, printing is performed using
the hot gun. Once all the layers are printed, the sample is
transferred into the vacuum oven for 1 h of annealing to
achieve a better film quality. Afterward, the devices are
ready for measurement. The fabricated sample on a sap-
phire substrate is shown in Figure 1C.

COMPUTER-AIDED ENGINEERING

The VO, is a metal-insulator-transition (MIT) mate-
rial. At room temperature, the VO, is an insulator, and
the RF switch shown in Figure 1 (similar to a simple
CPW transmission line) indicates that the RF switch is in
ON condition. By increasing the temperature above its
transition temperature (68°C), the VO, becomes a

Precleaned
Sapphire
‘ =
Screen with
CPW layout —
Screen print Printed CPW line
J silver trace
Silver Ink (A)
Repeat the process
for desired thickness
B\ r—]
>— ~ =
Screen with
VO, layout
Screen print Printed VO,
Y, VO, film switch
VO, Ink
(B)
FIGURE 2 The printing process for the fully printed VO,

switch, including (A) printing CPW trace and (B) printing VO, film
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FIGURE 1 (A)2D (top view) and (B) 3D
view of the schematic printed VO, switch plot.
(C). Fabricated VO, switch samples
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TABLE 1 Input variables ranges (192 combinations - excluding
frequency)

Input variables  Values

RF switch width 0.2,04,0.6,0.8,1.0, 1.2 mm

RF switch length 100, 150 pm

RF switch 6 layers (44 pm), 12 layers (88 pm)

thickness
Temperature 20°C, 40°C, 50°C, 60°C, 70°C, 80°C, 90°C,
100°C
Frequency 10 MHz to 40 GHz with 5001 points

conductor and it shorts the central signal trace with the
ground traces, and thus blocks the RF signal transmis-
sion, which indicates the OFF state of the RF switch. The
ON-OFF transition is not abrupt because the conductiv-
ity of the VO, switch is continuously changing with the
temperature. Thus, the output S-parameter is a function
of the temperature. Similarly, the width, length, and
thickness of the RF switch also affect its S-parameter. To
achieve a more accurate mimicking of the behavior of
the fabricated VO, switch, the measurement results are
used as the raw data. Due to the constraints of the
printer's printability as well as the RF probe's measurabil-
ity, a total of 192 sets of raw data are collected with differ-
ent variable value combinations. Table 1 summarizes the
input variable ranges.

3 | ANNSTRUCTURES AND DATA
PROCESSING

The structure of a typical feed-forward fully connected
ANN is shown in Figure 3 (up),*® where multiple inputs
(X1,X2,---,Xn) and outputs (Y3,Y,,---,Yy) are con-
nected to the neural network. All the arrows in Figure 3
(up) indicate the data flow from the inputs to the outputs
through the blue circles. Each blue circle represents a
neuron whose structure is shown in Figure 3 (below). As
can be seen, the output y is a function f of the input
values (x1,X2,-,X,), the weights (wy,w,,---,w,) and the
bias value b. The mathematical relationship is also given
in Figure 3 (below). The output value y will be the input
value for the neurons in the subsequent layers until it
propagates to the output layer. There are several draw-
backs to the conventional ANN structure shown in
Figure 3(up). Firstly, all the outputs are affected by any
neuron in the hidden layer, which means that a small
adjustment to any neuron in the hidden layers would
affect all the output results. This is not desirable for the
case of only a few outputs needing improvement during

-0 00 0
-9 Q0 0

Q@ Q0 O

Input layer Hidden layers Output layer
X1 W1
X2 W2
: /e
w,
bh —
n
y=f E X; Xw;+b
i=1
FIGURE 3 Fully connected ANN structure with two hidden

layers (up), Functional structure diagram of an individual neuron
and its mathematical representation (below)

the model training stage because it can undermine the
accuracy of the other outputs. Secondly, with the knowl-
edge that the model complexity is proportional to the
number of hidden layers and number of neurons, it
becomes impossible for such a structure to increase
the complexity for only some of the outputs. Instead,
the complexity increases for all the outputs provided the
number of hidden layers or neurons increases. It results
in a significant increase in the overall ANN model
size and, thus, dramatically slows down the training
process.

To alleviate the above-mentioned drawbacks, a new
ANN structure, shown in Figure 4, is proposed and used
in this work. As demonstrated in the figure, every output
has its own set of neurons in the hidden layers (color-
coded), which are more independent from each other.
Therefore, it is more convenient to adjust individually for
each output on request, such as increasing the training
steps to a specific output or increasing the model com-
plexity to a specific output. It can be concluded that the
proposed ANN structure provides far more flexibility
than the conventional ANN structure does.

85U80|7 SUOWIW0D aA 11D 3[cedljdde au Aq pausenob aJe Saoife VO ‘8sn JO S9N 10§ A% 18Ul U A1\ UO (SUORIPUCO-PUB-SWLRY/LI0O" A3 1M AfeIq U1 |UO//SANY) SUORIPUOD pue swid | 841 88s *[£202/T0/LT] uo Ariqiiauliuo feim ‘Aisieniun rekeqrezeN Ad ZTOEZ@OWW/ZO0T OT/I0P/WOD A8 | IM Aeiq 1 Bul|uo//Sdny Woiy pepeoumod ‘€ ‘220z X.70660T



INTERNATIONAL JOURNAL OF

YANG e AL RF AND MICROWAV 5of14
COMPUTER-AIDED IENGINEERING_Wl LEY
o 0 ;3
120 -
X — > Y % 60 -
1 W e—@ s
J 60
X ' 120 -
o0
X, ’°\ 5 : Q - Y, g o 10GHz 20GHz 30GHz 40GHz
(/\A ) 1
. . . 2 24
: : i c |
o
OIS o
\\ |
X N”° : < i 0 ~ Yy ) OHz 10GHz 20GHz 30GHz 40GHz
" " Frequency
Input layer Hidden layers Output layer

FIGURE 4 Proposed ANN structure with non-shareable
neurons for the outputs

Format Conversion

De-embedding

Averaging
Smoothing
Scaling

Shuffling

Processed
Data

FIGURE 5 Diagrams of preprocessing steps

An ANN model needs to be trained to achieve the
desired accuracy. In the training process, all the ANN
parameters (i.e., weights and bias) are updated using an
optimization algorithm. Sufficient input-output data
need to be fed into the ANN model for the model to learn
the input-output patterns. Once the training process is
completed and the ANN is well trained, the ANN model
can use and predict the output result accurately. How-
ever, in most cases, the input-output raw data are not
suitable for use directly in the training stage. Therefore,
some data preprocessing steps are required. In this VO,
switch example, six steps are required in the
preprocessing stage. The data preprocessing flow diagram
is shown in Figure 5.

The first step is to do the format conversion of the S-
parameter from dB/angle to real/imaginary. The abrupt

FIGURE 6 S, plot of a randomly picked measured raw data in
the form of phase and magnitude dB

value changes in the raw data can cause problems in
the ANN training stage. By performing the conversion,
the abrupt changes on the phase value are avoided, as
illustrated in Figures 6 and 7. Moreover, converting
the S-parameter from dB/angle to real/imaginary auto-
matic sets the value bound in the range of {1, 1}, which
is also beneficial as it avoids the potential saturation
problem in the model training stage. Following the con-
version, the derived data must undergo a de-embedding
process. During the de-embedding, the effect of the
unnecessary feeding lines shown in Figure 8 is removed
to ensure that the resultant S-parameter only represents
the RF switch itself, represented by matrix [B]. The
de-embedding equation is also provided in Figure 8.
The averaging step follows the de-embedding. The
VO, switch is a symmetrical passive device, whose
S-parameter could be reduced by half because S;; and
S,, are identical and S;, and S,; are identical. However,
due to the systematic and random error from the mea-
surement setup, S;; (or S;;) and S,, (or S,;) are not
identical, but they have a small difference. Therefore, in
the averaging step, the arithmetic average of S;; and S,,
will be taken as Sy, and the arithmetic average of S,;
and S;, will be taken as S,.

Since the raw data is collected by measurement, there
is some noise associated with the measured result. There-
fore, the smoothing is applied after step 3 on the raw data
using the Savitzky-Golay algorithm. After the smoothing,
all the raw data undergoes a down-scaling (standardiza-
tion) procedure to ensure the processed data follows a
Gaussian distribution, where the mean value x is equal to
0 and the standard deviation ¢ is equal to 1. This step is
helpful to avoid the saturation problem in the ANN train-
ing stage. The equations of downscaling and upscaling
are presented in (1).
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FIGURE 8 2D illustration of the VO, switch measurement and
de-embedding equation

X; —mean{x}
sta_dev{x} ’
Xi =Xi_stan X Sta_dev{x} + mean{x}, destandardization

1)

Xi_stan = standardization

The last step of preprocessing is data shuffling. Shuf-
fled data helps achieve a more generalized ANN model
and also speeds up the convergence. In this work, the
training dataset and the test dataset are randomly sam-
pled, meaning that there is no pattern of these datasets.

After finishing all the above-mentioned preprocessing
steps, the data is ready to be used for training the ANN
model. It is noted that not all the data are used for the
training purpose. A small portion of the data should be
left for the validation purpose. This study uses 70% of the
data for training (training dataset), and the remaining
30% of the data is used to evaluate the trained model
(testing dataset).

4 | HYPERPARAMETER
OPTIMIZATION

The accuracy of the ANN-based RF model is largely
affected by the hyperparameters, including the number
of layers and neurons, the activation and loss functions,
the optimizer, and the epochs. Most of these hyper-
parameters have a broad range of selections, which
results in a significant number of hyperparameter combi-
nations, and, thus, it is extremely computationally expen-
sive and time-consuming to perform all the
combinations. Therefore, a practicable design of experi-
ments (DoE) should be followed to reduce the number of
combinations as explained below.

4.1 | Number of layers

Typically, only one layer is sufficient for linear regres-
sion problems. But for non-linear regression problems,
such as this VO, switch modeling work, one layer is
insufficient to describe the non-linear relationship
between the inputs and outputs. Therefore, more than
one layer is needed in this study. The high degree of
complexity of ANN should be used for high non-linear
input and output. Either the number of layers or the
number of neurons can control the complexity of an
ANN. Typically, the shallow ANN with two or three
hidden layers is widely used for modeling studies,
whereas the deep neural networks (with more than
three hidden layers) are only used for other appli-
cations, such as speech recognition and computer
vision. Therefore, two hidden layers will be used in this
model and the model's complexity is solely controlled
by the number of neurons.

4.2 | Number of neurons

Typically, the number of neurons is larger than the num-
ber of input variables. There are five input variables for
the VO, RF switch modeling, so the number of neurons
should be greater than five. In this study, eight different
values of neuron numbers are assessed, which are 5, 10,
15, 20, 25, 30, 35, and 40.

4.3 | Activation function (AF)

The AF is the transfer function used in every neuron.
Selecting the AF appropriately is crucial because it not
only affects the nature of the ANN but it also signifi-
cantly affects the training speed. For example, linear AF
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FIGURE 9 The plots and equations of four selected AFs

is only useful for linear problems, and it is incompetent
for nonlinear problems. Some of the AFs are more suit-
able for classification problems, such as sigmoid and
tanh, while other AFs are best used for regression prob-
lems, such as elu and relu However, most ANN-based
RF modeling studies did not select the AF properly
because most of them use sigmoid as the AF in their
work. Since most RF modeling works are typical regres-
sion problems including this VO, RF switch, the regres-
sion problem-oriented AFs should be used. In this
study, four different AFs are evaluated and the results
are compared, which are elu, relu, softplus, and exp.
The plots and the equations for these four AFs are pro-
vided in Figure 9.

44 | Loss function

The loss functions define the method for evaluating the
neural network. Typical percentage-based loss functions
are the mean absolute percentage error (MAPE) and
mean squared logarithmic error (MSLE). However, both
MAPE and MSLE are not suitable for our VO, switch
modeling because the percentage error is not of interest.
Instead, the absolute difference between the predicted S-
parameter and the actual S-parameter is more important
and represents the actual model's accuracy. Therefore,
two commonly used loss functions left for selection are
the mean absolute error (MAE) and mean squared error
(MSE).* The expression for both loss functions are given
in (2)-(3), where y; is the true value and yf) is the
predicted value.

4.5 | Optimizer

The optimizer is the training algorithm of the ANN
model. Different optimizers have different methods to
update the ANN model, that is, the weights and biases.
There is a wide range of useable optimizers. However,
some second-order methods and their variations suffer
from the slow computation because they need to com-
pute the second derivative in every iteration. Therefore,
they are not widely used in any practical applications. In
this work, four optimizers (i.e., adam, adadelta, adagrad,
and rmsprop) are selected for evaluation.

4.6 | Epoch

All the training data will be fed into the ANN model mul-
tiple times during the training stage. Every iteration is
referred to as one epoch. Typically, more epochs lead to a
more accurate model. However, too many epochs can
result in the loss of generality of the ANN model; in other
words, it becomes very accurate for the training data but
become worst for the testing data. In this study,
200 epochs are conducted to ensure enough training iter-
ations during the training stage.

4.7 | Batch size

The batch size defines the number of data points to be
fed in every update. The batch size can be set to be equal
to the training datapoint, which means that only one
parameter (weights and biases) update per epoch.
However, it results in a very slow training speed. Typically,
a batch size of 50 to 10000 is used, depending on the
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application. A large batch size slows down the update but
it is more stable, and a small batch size can speed up the
update but it is more likely to become unstable. In this
work, five different batch sizes are tested (i.e., 50 010,
5001, 500, 50). To conclude, there are a total of 512 combi-
nations of parameters, which are summarized in Table 2.
The aim is to find the optimum value for each hyper-
parameter by comparing the error values for each combi-
nation. In every epoch for a single combination, a total of
10 output error results are generated, which are listed in
Table 3.

Note that there are 10 outputs for every combination
during the training process, which are summarized in
Table 3. The first four results are the errors for training
data. The fifth result (marked as “Loss”) is the summed
value of these four error results, which is used to monitor
overall loss trend. These error results reflect the model's
accuracy only for the training data. To assess the model's
generalization, we must evaluate it according to the new
data that is not “seen” by the model. Therefore, the error
results for the testing data are more representative to
reflect the accuracy of the model. Therefore, the four out-
put error values (val_Sxx_Re_loss, val_Sxx_Im_loss,
val_Sxy_Re_loss, val_Sxy_Im_loss), together with the
summed value (val_Loss) shown in Table 3 are used for
the comparison. It is known that every combination con-
tains 200 epochs, and every epoch generates 10 output
results. It is, therefore, very time consuming to conduct
all 512 combinations on a standard computer and com-
pare all the data together.

The more viable solution is to conduct the experiment
by only varying a few hyperparameters while adjusting
the values for other hyperparameters. The best hyper-
parameter value is then identified by comparing the error
results, and it will be used in the next comparison phase
to identify an optimum value for another hyper-
parameter. Eventually, the optimum values for all the
hyperparameters will be determined. However, the order
of hyperparameter optimization is very important. In this
work, there are five hyperparameters needed to be opti-
mized, which are the AF, optimizer, number of neurons,
epochs, and batch size. The selection of AF has a signifi-
cant impact on the efficiency of the optimizer and, thus,

TABLE 2 Summary of the hyperparameter combinations

Hyperparameters Values

Number of neurons 5, 10, 15, 20, 25, 30, 35, 40

Batch size 50 010, 5001, 500, 50
AF elu, relu, softplus, exponential
Optimizer Adam, adadelta, adagrad, rmsprop

Total number of combinations: 512

TABLE 3 Summary of output error results
Name of
output Comments
Sxx_Re_loss Loss values of Sxx real (training data)

Sxx_Im_loss Loss values of Sxx imaginary (training

data)
Sxy_Re_loss Loss values of Sxy real (training data)
Sxy_Im_loss Loss values of Sxy imaginary (training
data)
Loss Summed loss (training data)

val_Sxx_Re_loss Loss values of Sxx real (testing data)

val_Sxx_Im_loss Loss values of Sxx imaginary (testing data)

val_Sxy Re_loss Loss values of Sxy real (testing data)

val_Sxy Im_loss  Loss values of Sxy imaginary (testing data)

val_Loss Summed loss (testing data)

the training efficiency and model accuracy, and other
hyperparameters do not affect the AF and optimizer.
Therefore, the AF and optimizer should be optimized
before other hyperparameters. Once the AF and opti-
mizer are determined, the optimization of batch size
should be followed as relates more to AF and optimizer
than the other hyperparameters (i.e., number of layers
and epoch). The third optimization step is for the number
of neurons as it determines the model's complexity.
Lastly, the number of epochs are to be optimized.

Since the value assignment of other hyperparameters
does not largely affect the determination of the best selec-
tion of AF and optimizer, the batch size of 50 and neuron
number of 5 are used in the first optimization stage.
According to Table 2, there are four optimizers and four
AFs, resulting a total of 16 sets of error results, where the
6 best sets of the result are tabulated and shown in
Table 4. This table demonstrates that the best combina-
tion (softplus 4+ adam) gives the lowest error value of 10~
131 (or 0.049), where the worst combination (relu
-+ rmsprop) in Table 4 gives the highest error value (10~
063 or 0.234). However, the other three combinations
(elu + adam, elu + rmsprop, elu + softplus) also pro-
duce similar levels of error results. Therefore, for refer-
ence purposes, all these four combinations are used in
the next comparison.

As demonstrated in Table 2, four different batch size
values are evaluated following the AF and optimizer opti-
mization step. Figure 10 shows the total error result for
the training dataset and testing dataset for these four
combinations. Four blocks are identified on the x-axis
that correspond to four different batch sizes, where each
block contains four segments that represent the four
color-coded AF-optimizer combinations. The y-axis
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TABLE 4 Comparison between
different AFs and optimizers

COMPUTER-AIDED ENGINEERING

adam rmsprop
Log value (linear value) elu relu softplus elu relu softplus
val_Loss —1.18 —0.81 —1.31 —-1.22 —-0.63 —-1.13

0.066)  (0.155)  (0.049) (0.06)  (0.234)  (0.074)
val_Sxx_Re_loss —-3.11 —2.59 —3.46 —-3.02 261 —3.47
val_Sxx_Im_loss -1.75 —1.37 —1.82 -1.76 —1.21 -1.62
val_Sxy_Re_loss —4.34 —4.12 —4.46 —-4.77 =313 —4.31
val_Sxy_Im_loss —2.59 —2.39 —2.74 274 214 —2.54

elu+adam
elu+rmsprop
softplus+adam

softplus+rmsprop

Batch=50 Batch=500 Batch=5001 Batch=50010

Comparison between different batch sizes for four different AF-optimizer combinations
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represents the loss values of the model. The log scale has
been used on the y-axis because the error value becomes
very small during the training process, and it becomes
indistinguishable and incomparable if they are plotted in
a linear scale. The black curves indicate the loss changes
for the training dataset, and the red curves indicate the
loss changes for the testing dataset. Therefore, the red
curve is more indicative of the accuracy of the model.
Figure 10 shows that the error value decreases by
decreasing the batch size, and it is gradually saturated
when the batch size equals 50. If the batch is equal to
50, the AF-optimizer combination of softplus+adam
gives the lowest error value among all other combina-
tions, which is also highlighted with the red arrow. This
also confirms the result derived from Table 4 and is fur-
ther proof that the AF-optimizer hyperparameters should
be optimized first. Another observation is that the error
for the training dataset (black curves) is always higher
than that for the testing dataset (red curves). This is also
expected and commonly seen in other ANN modeling
works.

The third optimization is for the number of neurons.
According to Table 2, the error values of ANN with eight
different neuron numbers are compared and Figure 11
shows the results. There are five sub-plots in the
Figure 11, where the first sub-plot is the total error result,
and the remaining four sub-plots are the error results of
the four individual outputs. The error results are color-
coded in eight different segments, which represent eight
different numbers of neurons. By observing the red curve
that represents the errors for testing dataset, a clear trend
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TABLE 5 Optimized hyperparameters value

Parameters/Metrics
Number of layers
Number of neurons in each layer
Batch size
AF
optimizer
Loss function
epochs
Percentage of training data

Percentage of testing data

Value
2
30
50
Softplus
Adam
Mse
40
70%
30%

TABLE 6 Model metrics with optimized hyperparameters

Item Log of error value
Total —2.908
Sxx_Re —4.906
Sxx_Im —3.348
Sxy_Re —6.433
Sxy_Im —4.566
ANN

Switch Iength Standardization
S T T e

r value
N.A.
0.994
0.978
0.998
0.992

Switch width Standardization o
Destandardization
. . Standardization
Switch thickness > Destandardization

Temperature Standardization

Frequency _Standardization |

of the total loss reduction can be identified from neuron
numbers increasing from 5 to 20. With neuron numbers
above 25, the performances start fluctuating and even
deteriorating, which can also be observed in the four
individual sub-plots. By observing the first sub-plot, the
lowest total error value is identified as —3 when the num-
ber of neurons is 30. Interestingly, all the lowest values
for the four individual results shown in Figure 11 are
with the neuron number of 30, which are all marked
with the white dashed lines in the figure. It indicates that
the optimized neuron number for all four individual out-
puts is 30, which is just a coincidence. Although the opti-
mum numbers of neurons are confirmed as 30, Figure 11
indicates that the loss value does not decrease monotoni-
cally. The loss values reach the minimum after several
epochs and then deflect upward. The critical number of
epochs is 40 because the value starts to increase after
40 epochs, which indicates the beginning of overfitting.
Therefore, the training should stop at 40 epochs. In other
words, the optimum number of epochs is 40.

The optimization of the parameters is thus completed.
The optimized parameters are summarized in Table 5
and some error results metrics are tabulated in Table 6.
In Table 6, the Pearson correlation coefficient r is also
calculated as another measure of how well the model

FIGURE 12 The standardization-
destandardization diagram
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performs. An r value that is close enough to 1 indicates
an accurate model. From Table 6, we know that the
summed error value is 107>°%® after the optimization.
When compared with the error values (worst case 107°%%)
for un-optimized cases shown in Table 4, it is readily
observed that there is a more than 100-fold improvement
in the model's accuracy.

Sxx_Re_méasured
—— Sxx_Re_predicted | ... 4

Sxx_Im_measured
k|— Sxx_Im_predicted
1R | S,

0. :
& Sxy_Im_measured

—— Sxy_Im_predicted

Sxy_Re_measured
Sxy_Re_predicted
0 10 20 30 40 10 20 30 40

Frequency Frequency

FIGURE 14 The measured and predicted S-parameters with
Width = 1 mm, Length = 0.15 mm, Thickness = 6 layers,
Temperature = 80°C

COMPUTER-AIDED ENGINEERING

5 | DEVELOPED ANN MODEL
EVALUATION

In this section, the well-trained ANN model is used to
predict some results that will be compared with the mea-
sured results. To accurately evaluate the model, all the
input combinations used for the training purpose will not
be used again for the comparison in this section. When
using the ANN model, the input values need to perform a
de-standardization using the same scaling factor before
feeding into the model. Moreover, the output S-
parameter results also need to be de-standardized before
use. The diagram is shown in Figure 12.

Three different input combinations have been tested
and the comparison results are plotted in Figures 13-15.
It is noted that all these plots are in real-imaginary for-
mat because the S-parameter outputs of the ANN model
are in real-imaginary format. As can be seen from these
figures, the predicted results almost overlap the actual
measurement results at all frequency points in various
VO,-based RF switch conditions. This is expected
because the total error value is only 0.0012 (107>°%%), as
listed in Table 6. While there are some discrepancies at
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some frequency points, the difference are very small and,
thus, negligible.

6 | CO-SIMULATION EXAMPLE

The ANN-based RF model has proved accurate in the
previous section. However, to make it more usable for
the real RF applications, the model must be compatible
with simulators. To the authors’ best knowledge, the inte-
gration and co-simulation of the ANN-based RF model
into a simulator has never been demonstrated. This is
mainly because the ANN-based models are inherently
incompatible with most simulators. In this study, we
have demonstrated the co-simulation of our ANN model
in a popular simulator Advanced Design System (ADS)
with the aid of Datalink (ADS programming interface
protocol). It is noted that our ANN-based RF model is
built and executed only under Python programing

T-section

CPW
Section2
L=20 mm

VO, switch
model

CPW
Section1
L=60 mm

TermG
TermG2
Num=2
Z=50 Ohm

TermG
TermG1 CPW CPW
Num=1 TransmissionLine1 TransmissionLine2
Z=50 Ohm

FIGURE 17
switch model

Schematic view of filter employing ANN-based

language, which is different from the ADS simulator
environment. The Datalink connects the ADS environ-
ment and the Python environment. The detailed design
flow of the working principle is shown in Figure 16. As
the first step, the ANN-based model is represented as a
block in the ADS, which is also a part of the system. The
variable values, such as length and width, which are
associated with the ANN model are then sent to the
Python environment through the Datalink protocol. The
Python environment will plug the variable values into
the previously trained ANN model and then generate the
corresponding S-parameters. The ADS environment then
receives the S-parameter to complete the co-simulation.
Based on the quality of the simulation, new variable
values may be assigned to the ANN model and, thus, a
new cycle of co-simulation may continue.

A design example is also provided to demonstrate the
co-simulation. A T-resonator-based bandstop filter model
is simulated together with the ANN-based VO, RF switch
model in the ADS environment. The schematic view of
the bandstop filter together with the ANN-based RF
switch model is shown in Figure 17. By turning the
switch on or off, the operating frequency should change
accordingly. We have attempted to assign two different
sets of input variables into the ANN-based model, and
the co-simulation results are plotted in Figure 18. In this
particular example, the width, length, and thickness are
identical for these two sets of input variables, which are
1.2, 0.1 mm, and 14 layers, respectively. The only differ-
ence is the temperature: 20°C in the one set and 80°C in
the other set. These two sets of input variables represent
two switch conditions (i.e., ON condition and OFF condi-
tion), which are plotted as the solid black curve and solid
red curve, respectively.

Apparently, the stopband frequencies are different for
these two sets of input variables. While some difference is
noted between the co-simulated result and the result of
ideal cases, it is expected because the ANN switch model is
not a model for an ideal RF switch. Nevertheless, the results
shown in Figure 18 proves the success of the co-simulation
of the ANN-based model in a commercial simulator.

/= = =Ideal_ON
l= = = |deal_OFF"
N
E E . .
b =) FIGURE 18 The co-simulation results
& 3 for two sets of input variables. 1).
A [ = =Ideal_ON width = 1.2 mm, length = 0.1 mm,
' L. -g':al OFF thickness = 14 layers, temperature = 20°C.
s ——OFF _ Representing “OFF”. 2). width = 1.2 mm,
-400_5 08 10 13 15 “05 08 13 15 length = 0.1 mm, thickness = 14 layers,

Frequency (GHz)

Frequen-cy (GHz)

temperature = 80°C. Representing “ON”
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7 | CONCLUSION

In this article, a more versatile ANN structure has been
introduced for the development of RF device modeling.
With the help of a fully printed VO, based RF switch as
an example, a series of systematic hyperparameter opti-
mization processes have been explored, which has never
been presented in other literatures. It has been shown
that the use of the optimum hyperparameter on ANN-
based model can improve the model's accuracy by more
than two orders. Furthermore, for the first time, this
work also demonstrated the co-simulation between the
ANN model and the commercial circuit and EM simula-
tor. The practical utilization of this ANN-based model in
ADS has been verified through a band stop filter design
example. In general, the hyperparameter optimization
technique together with the co-simulation platform has
the potential to bring a paradigm shift in the modeling of
high-frequency devices and hence in the design and
development of RF circuits, components and systems. In
addition, although the printed VO2 switches have been
used as an example, other types of printed RF devices,
such as printed diodes, printed antennas, and printed
transistors, could be modeled using the same optimiza-
tion procedure. Furthermore, the co-simulation between
the commercial simulator and a number of optimized
ANN models representing various RF devices could be
very interesting to develop, which is left for future works.
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