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Abstract

Despite the fact that modern deep neural net-
works have the ability to memorize (almost)
the entire training set they generalize well to
unseen data, contradicting traditional learning
theory. This phenomenon — dubbed benign
overfitting — has been theoretically studied so
far in simplified settings only. At the same
time, ML practitioners (especially in NLP) fig-
ured out how to exploit this feature for more
efficient training: retrieval-augmented models
(e.g., kNN-LM, RETRO) explicitly store (part
of) the training sample in the storage and thus
try to (partially) remove a load of memorization
from the neural network. In this paper we link
these apparently separate threads of research,
and propose several possible research direc-
tions regarding benign overfitting in retrieval-
augmented models.

1 Introduction

In the classical learning theory (Valiant, 1984), gen-
eralizing ability and model complexity (Vapnik and
Chervonenkis, 1974) are usually opposed to each
other: the more complex the model,1 the worse
its generalizing ability on new data. This is well
illustrated by typical curves of test and training er-
rors as functions of the complexity of the model
being trained. The training error tends to decrease
whenever we increase the model complexity, that
is, whenever we fit the data harder. With too much
fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have
large test error).

However, modern machine learning models such
as deep neural networks (DNNs) break this prin-
ciple: they are usually complex enough to be able
to memorize the entire training set, and neverthe-
less show excellent generalization ability. This
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1By complexity of a model we mean its ability to fit an

arbitrary dataset.

phenomenon, called benign overfitting, was dis-
covered empirically by Zhang et al. (2017) and has
since attracted the attention of many minds in the
field of machine learning, both experimentalists
and theorists. We refer the reader to the survey of
Bartlett et al. (2021) and Belkin (2021) for a more
comprehensive overview of benign overfitting.

In Section 2 we link benign overfitting to two
causes: 1) when learning from natural data with a
so-called long tail, memorization of rare/atypical
examples is inevitable, and this requires learning
a complex model, 2) the gradient-based learner
is biased towards simplicity: it prefers to fit the
training set with the least complex models avail-
able. In Section 3, we discuss retrieval-augmented
models, which complement a model with ex-
plicit memory thus allowing to reduce its com-
plexity. This seems like a viable alternative to
[complex models + simplicity bias] to achieve be-
nign overfitting. Fig. 1 summarizes the argument
made in Sections 2&3. In Section 4, we express

Figure 1: Established chain of reasoning.

our concerns that the current theoretical studies of
benign overfitting ignore the fundamental factor of
long-tailedness of natural data, as well as RAMs.
Thus, we suggest possible research directions that,
in our opinion, may give us a better understanding
of the benign overfitting phenomenon.

2 Benign Overfitting

Our departure point is the long tail theory of Feld-
man (2020), which considers learning from natural
data (such as texts or images). The fact is that
such data, as a rule, has a distribution with the so-
called long tail, i.e. in such data, the proportion



Figure 2: SGD training on a 3-layer, width-100 dense neural network. The blue line corresponds to the decision
boundary of the neural network which becomes more “linear” in the initial stages before starting to overfit to the
label noise. Source: Kalimeris et al. (2019). Reproduced with permission.

of rare/atypical examples is significant. An exam-
ple of a long-tail distribution is the distribution of
words in a text corpus, which can be approximated
by the Zipf’s law. Now recall that in a language
modeling task the prediction is over the word given
its context, and therefore the word types are classes,
which means that the distribution over classes in
such setting is essentially long-tailed. Roughly
speaking, Feldman (2020) showed analytically that
if the class distribution has a long tail (as in lan-
guage modeling) or the distribution of subpopula-
tions within classes has a long tail, then to achieve
optimal performance, the learning algorithm needs
to memorize rare/atypical examples from the train-
ing set. Unfortunately, simple models such as linear
classifiers are not able to overfit (unless they are
trained in an overparameterized mode). Thus, for
achieving optimal performance one needs more
complex models, such as DNNs, that can perfectly
fit the training set. Therefore, Feldman’s theory
explains the need to use complex models for which
we can observe the phenomenon of benign overfit-
ting, but it remains unclear where this phenomenon
itself comes from.

One of the ways to answering this question is
the so-called simplicity bias of stochastic gradi-
ent descent (SGD), the default algorithm for train-
ing DNNs. As the experiments of Kalimeris et al.
(2019) showed, although a neural net with 3 hid-
den layers can malignantly overfit a training set
shown in Fig. 3 using a complex decision boundary
(Fig. 4), this does not happen in practice. When
initialized randomly, the SGD algorithm starts to
fit using a simple, almost linear, classifier (Fig. 2).
And only if there are some examples that do not
fall under the simple classification pattern, the SGD
uses the available capacity of the neural network
to fit such rare/atypical examples. At the same
time, the simple part of the model is preserved to a

Figure 3: Training sample.
Source: Kalimeris et al.
(2019)

Figure 4: Malignant
overfit with a 3-layer
width-100 dense network.
Source: Kalimeris et al.
(2019).

certain extent, which generalizes well to new data.
Even though simplicity bias explains benign

overfitting, where does this bias come from? There
are empirical and theoretical studies on this. For
example, Mingard et al. (2021) argue that SGD is
essentially a Bayesian sampler that randomly se-
lects the minimum of the loss function, and that
in the space of functions representable by a neural
network and consistent with the training sample,
simple functions occupy a much larger volume than
complex functions. At the same time, there are sev-
eral theoretical works that prove the simplicity bias
of the SGD, though in more simplified setups than
those in which this bias is observed in practice.
Here we present the seminal result of Soudry et al.
(2018).
Theorem 1 (Soudry et al. (2018)). For a linearly
separable training sample and for a small enough
step-size of the gradient descent, we have

w

∥w∥
= lim

t→∞

v(t)

∥v(t)∥
where w is the direction of the max-margin linear
classifier, and v(t) is the direction of the linear
classifier learnt by the gradient descent at step t
when minimizing the logistic loss.



Notice that the simplicity bias is characterized
as margin maximization. This result was later ex-
tended to the cases of nonseparable data (Ji and
Telgarsky, 2019) and one-hidden-layer neural net-
works (Lyu et al., 2021).

3 Retrieval-Augmented Models

Machine Learning practitioners came up with
a viable alternative to [complex models +
simplicity bias] to achieve benign overfitting with
[not so complex models + retrieval mechanism].
In this approach, the neural network, instead of
trying to memorize rare/atypical examples in the
wilds of its parameters, explicitly writes them to
the storage and then retrieves them on the inference
when necessary.

Figure 5: RAM overview. Source: Zamani et al. (2022)

Retrieval-augmented models (RAMs) refer to
models composed of two coupled components
(Fig. 5): one model that makes predictions by com-
municating with another model mediating access
to a repository of information or knowledge. Za-
mani et al. (2022) define RAM as fθ(x;Rω). The
model fθ parameterized by θ is called the predic-
tion model and Rω denotes the information access
model parameterized by ω. Thus, to produce ŷ, the
prediction model can interface with the information
access model. Rω includes a collection or reposi-
tory C that is available—through an information
access model—to the prediction model. C reflects
a large set of parameters available to the model that
can be leveraged ad hoc.

RAMs implementations for the language model-
ing problem turned out to be particularly success-
ful, since natural language text is long-tailed data
and, accordingly, memorizing part of the training
set is inevitable for optimal generalization to new
data. For example, REALM of Guu et al. (2020)
combines a masked language model with a differen-
tiable retriever, which allows the model to retrieve
and attend over documents from a large corpus such

as Wikipedia, used during pre-training, fine-tuning
and inference. The effectiveness of REALM was
demonstrated by fine-tuning on an open-domain
question answering task. Khandelwal et al. (2020)
introduced kNN-LM, where a retrieval mechanism
is used to find the nearest neighbor tokens given
the prefix as query. kNN-LM linearly interpolates
the predicted distribution for the next token using
distance information from the retrieval mechanism.
This idea has also been extended to machine trans-
lation (Khandelwal et al., 2021). It was shown that
retrieval augmentation improves domain adaptation
by using a domain-specific datastore for retrieval.
The recently introduced RETRO model (Borgeaud
et al., 2022) combines a frozen BERT (Devlin et al.,
2019) retriever, a differentiable encoder and a chun-
ked cross-attention mechanism to predict tokens
based on a 2 trillion token database. RETRO ob-
tains comparable performance to GPT-3 (Brown
et al., 2020), despite using 25× fewer parameters.
After fine-tuning, RETRO performance translates
to downstream knowledge-intensive tasks such as
question answering.

4 Proposed Research Directions

Currently learning theorists prove benign overfit-
ting as an implication of margin maximization and
light-tailedness of data distributions within classes
under assumptions like those from Theorem 1. For
example, Chatterji and Long (2021) showed that
an over-parameterized max-margin linear classi-
fier trained on a linearly separable-with-noise data
can perfectly fit the training sample, yet generalize
nearly optimally. A similar result was shown by
Shamir (2022), and extensions to neural networks
with one hidden dense layer and one hidden con-
volutional layer were recently given by Frei et al.
(2022) and Cao et al. (2022) respectively.

4.1 Questions on Long-Tailedness

We are mainly concerned with the assumptions
made in these works: the setup of binary classifi-
cation with light-tailed distributions within classes
is very different from what Feldman (2020) sug-
gested in his long tail theory. Recall that the key
point in Feldman’s theory is the huge number of
classes with long-tailed frequency distribution over
classes (or the huge number of long-tailed subpopu-
lations within few classes). According to Feldman
(2020), in this case, memorization of some train-
ing examples is necessary for optimal performance



on test data. However, for those setups where be-
nign overfitting is now being proven, there are non-
overfitting models that generalize just as well. Ac-
cordingly, it is not clear why benign overfitting is
needed in the first place. Thus, one of the research
directions can be as follows.

Question 1. Develop a mathematical framework
for the analysis of gradient-based learning algo-
rithms that aligns with Feldman (2020)’s long tail
theory. Prove the simplicity bias of SGD and be-
nign overfitting of overparametrized neural net-
works within such a framework. Show that over-
parameterization is necessary to achieve optimal
performance.

The recent work by Bubeck and Sellke (2021)
is a first possible step towards solving Task 1. In
it, the authors show that when learning parameter-
ized classes, overparametrization is necessary for
smooth interpolation of the training set. However,
it remains unclear whether smooth interpolation
gives the optimal generalizing ability, i.e. whether
there is benign overfitting. Moreover, the prob-
lem of regression, not classification, is considered,
and therefore it is not entirely clear how Feldman’s
assumptions about the nature of the data can be
integrated into this framework.

4.2 Questions on RAMs
Another concern with the existing analyzes of the
benign overfitting is that too much emphasis is
placed on pure neural networks, while ignoring
RAMs as more efficient way of achieving benign
overfitting. Empirically, RAMs have lower general-
ization error than baseline models without retrieval.
At the same time, RAMs memorize (a compressed
version of) the training sample in the storage. This
brings us to the next

Question 2. Study benign overfitting for RAMs
within the framework established in Question 1.
Study their generalization error bounds and
computational complexity compared to models
without retrieval.

We emphasize that the study of benign over-
fitting and the generalizing ability of retrieval-
augmented learning should be carried out under the
assumptions of Feldman (2020)’s long tail theory.
We suspect that the empirical success of RAMs is
precisely based on this property, which is inherent
in natural data. We hypothesize that in simplified
setups (for example, in the case of light-tailed dis-
tribution of data), the gain of RAMs compared

to models without a retrieval will be minimal or
even zero. This conjecture is based on the fact that
RAMs are more efficient when there is a need for
memorization, which in turn naturally arises from
the long tail assumption in Feldman’s theory.

After building a mathematical framework and an-
alyzing RAMs, it would be desirable to apply the
gained knowledge to improve their performance
and/or interpretability. In this regard, we note that
in RAMs, the prediction model is usually a deep
neural net and as such it still has enough capacity
to partially memorize the training sample. If we
already have an explicit memory in the form of the
information access model can we decrease mem-
orization capacity of the prediction model? This
leads us to the following

Question 3. How can we explicitly control the
memorization capacity of the prediction model in
RAMs and force it to focus on generalization while
shifting memorization to the information access
model?

One way to do this experimentally is to penal-
ize the prediction model when it tries to memo-
rize examples from the training set. In this case,
the penalty term should be based on the degree
to which the neural network memorizes training
examples.

A successful solution of Question 3 will give
a control over memorization in prediction part
of RAMs. Potentially such control could have
applications such as integrating domain-specific
(say medical) knowledge into a general model
(say neural machine translation, NMT), isolating a
generic language-independent part from a multilin-
gual NMT, etc.

Moreover such control would make it possible to
ask the following question: can we control RAM’s
runtime at inference by controlling its complex-
ity and storage size as in the work of Latifi et al.
(2022)?

5 Conclusion

As far as we know, our work is the first attempt
to establish the chain of reasoning illustrated in
Fig. 1. Moreover, Questions 1–3 we propose are
novel and relevant. Their solution will provide a
better understanding of the mechanics of retrieval-
augmented models, and potentially motivate learn-
ing theorists to shift their focus towards more effi-
cient approaches for benign overfitting, which ML
practitioners currently use in applied problems.



Limitations

We identify two main limitations of our work:

1. This is an opinion paper. As such, some of
the hypotheses have not yet been validated.
For example, after Question 2, we argue that
the advantage of RAMs over non-retrieval
models will be minimal or even zero on light-
tailed data. However, this assertion has not
yet been supported by empirical evidence, be-
cause RAMs are usually trained and evaluated
on natural data with a long tail, and as far as
we know, they have not yet been evaluated on
data with a light tail.

2. Due to page limitations, we were unable to
provide a more comprehensive overview of
the work on benign overfitting, simplicity bias,
long-tail theory, and RAMs. However, we
believe we have been able to touch on the
most influential work in each of these areas.
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