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Abstract

The main goal of this capstone project is to conduct the analysis of
the mathematical model which describes the transportation of the thyroid-
pituitary axis of the hormones within the endocrine system. The model is
constructed by a system of ordinary nonlinear differential equations that
represent the fluctuations of the levels of the concentration of thyroxine
hormone in the blood and illustrate its dependency on the concentration
of certain enzymes. This capstone project will assess the stability of the
system by applying the well-known Routh-Hurwitz criteria, conduct nu-
merical simulations, and use MATLAB with the purpose to visualize the
general behaviour of the system. The derivation of the analytical solution
separately for normal and degenerate states of the system is also presented
in the paper. Lastly, the phenomena of relaxation oscillations that was
noticed to take place during the derivation of the analytical solution will
be explained. The research has shown that there is a direct correlation
between the periodicity in the changes of the levels of thyroxine hormone
in the blood and the presence of the symptoms of the schizophrenia. The
current capstone project can be improved by modifying the model such
that it includes the discrete and distributed delay cases during the trans-
portation process.

1



1 Introduction

Currently, it has been discovered that unstable concentrations of the certain

endocrine hormones like thyroxine and thyroid in the blood stream of a person

are the main causes for some physical and psychological diseases [2], [4]. The

worst-case scenario caused by such hormonal dis-balance is the development

of the periodic catatonic schizophrenia. This mental disorder is cyclic in its

nature. In was noted by Danziger and Elmergreen in [13] that the periodic

changes in the concentrations of thyroid and thyroxine in the blood and the

cyclic occurrences of the schizophrenia’s symptoms are directly related. These

scientists constructed a first order model by a system of nonlinear ordinary

differential equations that reflect the concentrations of thyroxine and thyroid

in an organism [2]. This was done by the consideration of enzymes related to

these hormones. The primary attention was given to the study of the existence

of the periodic solutions to this system of NDEs [14]. The system is as follows:

dp

dt
= c− hθ − gp (for θ ≤ c

h
),

dp

dt
= −gp (for θ ≥ c

h
),

dE

dt
= mp− kE,

dθ

dt
= aE − bθ.

(1)

In table 1 the description of variables presented in the model (1) is given below:

Table 1. The variables and their description.

Variable Description of the variable
p The concentration of thyrotropin hormone at time, t
E The concentration of activated enzyme in blood at time, t
θ The concentration of thyroid hormone at time, t;
b, g and k Loss constants of the system

a, h and m
Constants that represent the sensitivity of the glands to
stimulation and/or inhibition

c
the rate of production of thyrotropin hormone in the ab-
sence of thyroid inhibition

The system (1) is the mathematical system suggested by Danziger and Elmer-

green in [13] to describe the transportation phenomena. The p(t), E(t), and
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θ(t) are the functions of time t that illustrate the concentrations of such hor-

mones as thyroid, thyrotropin, and enzyme, respectively [8]. The constants

g, a, c, b, k, h,m are said to take only strictly positive values [2].

The first equation of the model (1)

dp

dt
= c− hθ − gp (for θ ≤ c

h
),

reflects the situation when the concentration of thyroid hormone, which stands

for θ, is less than or equal to the control parameter c
h . The production rate

of the thyrotropin hormone, p, is expected to be equivalent to c − hθ. During

the increase in concentration of thyroid hormone, it is seen that the thyrotropin

hormone falls down and is destroyed at a rate that is proportional/equivalent

to its initial concentration. The notation for thyrotropin is p in the table (1).

The further detailed explanation is presented in [13] and [3].

The second equation of the model (1), that stands for

dp

dt
= −gp (for θ ≥ c

h
),

refers to the concentration of the thyroid enzyme, θ, when its concentration is

greater than or equal to the control parameter c
h . From the equation, it is noted

that the thyrotropin, p, is destroyed at a rate that is proportional to the initial

concentration, that is −gp [2].

The equation number three of the model (1), which is

dE

dt
= mp− kE,

provides the information about the concentration of enzyme E. It is produced

at a rate that is proportional to thyrotropin, p, and destroyed at a rate that is

equivalent to E, namely kE [8].

The fourth equation of the model (1)

dθ

dt
= aE − bθ,

describes the situation in which the thyroid enzyme, θ is made at a rate that

appears to be proportional to E and destroyed at a rate that is equivalent to θ
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as stated by J.Cronin [8]

The deeper investigation of the system was done by B.Mukhopadhyay and

R.Bhattacharyy in [2] and by J.Cronin in [8]. They, first, stated the assumption

about the thyrotropin hormone having an impact on the activation of a thyroid

enzyme, θ. Then, when the activation process is done, the thyroxine hormone

is produced. As it is seen from the model (1) the concentration of thyroxine is

directly dependent on the concentration of the corresponding enzyme, but the

dependency on the level of thyrotropin is shown to be indirect in its nature [2].

The main part of this capstone project consists of four sections, namely stability

analysis, derivation of analytical solution, comments on relaxation oscillations

and conduction of some numerical simulations. The main results are the deriva-

tion of the conditions for the stability of the system based on Routh-Hurwitz

criteria, analytical solution for both degenerate and normal states of the system

and some numerical simulations on the stability of the system.

2 Stability of the system

In order to conduct the stability analysis of the system (1) of ordinary NDEs

the general algorythim presented in [15] by L. Edelstein-Keshet will be followed.

The first step is to find the critical points which we label as Q0 = (p0, E0, θ0) [2].

Case 1: For θ ≤ c
h

First, the following system of equations is required to be solved to find the

critical points:

c− hθ − gp = 0,

mp− kE = 0,

aE − bθ = 0.

(2)

From the equation (2), the following is obtained

p =
hθ − c
−g

; E =
mhθ −mc
−kg

; θ =
amc

amh+ kgb
.
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Second, after conducting some simplifications we are left with the following

non-trivial equilibrium point, which is said to be Q0 = (p0, E0, θ0), where

p0 =
kbc

D

E0 =
mbc

D

θ0 =
amc

D

where D = amh+ kgb for convenience purposes.

Nest step is the construction of the Jacobian matrix

JQ =

∣∣∣∣∣∣
−g 0 −h
m −k 0
0 a −b

∣∣∣∣∣∣ .
Now, we construct the determinant |Jq − λI| in order to find and assess the

eigenvalues of the system, that is

|JQ − λI| =

∣∣∣∣∣∣
−g − λ 0 −h
m −k − λ 0
0 a −b− λ

∣∣∣∣∣∣ .
Next step is to construct the characteristic equation. Observe the following:

λ3 + (k + g + b)λ2 + (gk + bk + gb)λ+ (bgk +mha) = 0. (3)

It can be observed that the degree of the characteristic equation in (3) is n = 3.

Thus, solving directly for the roots can be a complicated issue. In order to

simplify the calculations, the Routh-Hurwitz criteria will be applied in this case.

The definition and algorithm by which this criteria will be used is elaborated

by Kaufman and DeJesus in [6]. First, consider the following Hurwitz matrix: k + g + b 1 0
bdk +mha gk + bk + gb k + g + b

0 0 bdk +mha

 . (4)

As it can be noted from the Hurwitz matrix, the principal diagonal minor 43

of (4) is defined as follows
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43 = a042,

such that a0 stands for the coefficient before the λ3 in (3). Now

43 =

∣∣∣∣ k + g + b 1
bdk +mha gk + bk + gb

∣∣∣∣
= (k + g + b)(gk + bk + gb)− bdk −mha

= k2(g + b) + g2(k + b) + b2(k + g) + 2bgk −mha.

According to the Routh-Hurwitz criteria [6], the roots of the characteristic equa-

tion (3) are expected to contain a negative real parts if and only if all the princi-

pal diagonal minors, namely (4n), of the above constructed Hurwitz matrix (4)

take positive values given that 43 > 0 as stated by by Kaufman and DeJesus in

their article [6] and in [15] by L. Edelstein-Keshet. The necessary condition is

that all coefficients of the characteristic equation need to be positive. Based on

the Routh-Hurwitz criteria elaborated and assessed by Kaufman and DeJesus

in [6], the system (1) will only be stable in case if

k2(g + b) + g2(k + b) + b2(k + g) + 2bgk > mha. (5)

and unstable is

k2(g + b) + g2(k + b) + b2(k + g) + 2bgk < mha. (6)

Case 2: For θ ≥ c
h

In this case when θ ≥ c
h , there exist another equilibrium point which stands for

Q0 = (P0, E0, θ0) = (0, 0, 0). This equilibrium point can be described as a trivial

one. If to further analyse the explanation of such result by MD.Kamrujjaman et

al. in their research concerning the stability of the systems of nonlinear differ-

ential equations described in [1] on page 98, the system will be fully not stable

when θ ≥ c
h .

In was discussed by B.Mukhopadhyay and R.Bhattacharyya in their article [2]

that when thyroxine hormone exceeds the value of control parameter c
h then the

functioning of pituitary axis in endocrine system will not be proper. As a result,

the production of thyroxine will rapidly fall below the value of the threshold of ch .
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Then the push-pull feedback mechanism will be turned on [2]. This, indeed, will

cause the symptoms of catatonic schizophrenia to activate periodically since the

concentration of thyroxine started to go up again. For this reason it is important

to keep the ratio of constant external input of thyroxine equivalent to the loss

rate not exceeding the threshold value of c
h [2].

3 Properties of the system and its solution

Before starting to derive the analytical solution, it is necessary to have some

background information about its properties. Our variables p,E, θ in (1) could

be referred to as the concentrations of hormones and enzymes in a system (1).

The main research interest is in the solutions of the form [p(t), E(t), θ(t)]. In

our case p(t), E(t), θ(t) are denoted as functions, which are non-negative in na-

ture such that all values of t are defined as positive [9]. The next theorem, the

proof of which is presented by J.Cronin in [9] and in [5] is of primary importance.

Theorem 1. If (p1, E1, θ1) appears to be a point in the Euclidean three-space

and the value of t is a real number, then there ∃ a solution of the form [p(t), E(t), θ(t)]

of (S) such that

[p(t), E(t), θ(t)] = (p1, E1, θ1)

This solution then is defined to be true for ∀ real values of t [9].

One of the requirements for the solutions of the form [p(t), E(t), θ(t)] is that

they are expected to be bounded. This is a necessary limitation because of the

control parameter c
h . The concentrations need to stay within the range of the

fixed bound. If not, then the patient may either pass away or end up receiving

a serious health damage caused by the above mentioned hormonal dis-function

[2], [5]. The nest important theorem is as follows:

Theorem 2. Let E(0) ≥ 0, p(0) ≥ 0, θ(0) ≥ 0 then the solution of the system

(1) is non-negative and is expected to have a bound.

Proof. It can be observed that dp
dt + gp ≥ 0. Therefore, p(t) ≥ 0 for all t ≥ 0.

Similarly we can expand for E(t) and θ(t) and we will, thus, obtain dE
dt −mp+

kE ≥ 0 and dθ
dt − aE + b ≥ 0. It follows then that E(t) ≥ 0 and θ(t) ≥ 0 for ∀

t ≥ 0. Consider that dp
dt +gp ≤ c, therefore, p(t) ≤ pmax, and pmax = max{0, cg}.
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Since we know that p(t), E(t), θ(t) depend on each other, as it is visible in (1), the

following appears to be true then: E(t) ≤ Emax, and Emax = max{0, mpmax

k }.
In addition, θ(t) ≤ θmax, and θmax = max{0, aEmax

b } for ∀ t ≥ 0. As a result, it

can be concluded that the solution of the system (1) does, indeed, have a bound

and appears to be non-negative [2]. �

The Theorem 2 (3) and its results are also supported by the practical clinical

evidences that are provided in details in [14]. If there is conducted a procedure

of removing the pituitary gland, then:

• c will approach to the zero value.

• p will fall following the exponential pattern as time passes.

• E will behave in a similar was as p while the parameter θ will behave

similar to the parameter E.

If there is the case when E is experiencing the dysfunction for the reason of

poisoning or issues with the transportation of the iodide enzymes then there is

expected a decrease in the production rate of the thyroid. It happens since the

concentration of p would be high but not enough to treat the poisoning [14].

4 Analytical solution of the system

Let us formulate a more convenient form of the equations in (1) by introduc-

ing the variable changes such that we will apply a dimensionless over-all gain

constant K to rewrite our system.

Table 2. The Variables and its description.

Variable Description of the variable
x = ( gh )p A new variable that is proportional to p

y = ( gkhm )E A new variable that is proportional to E

C = c
h A controlling parameter

K = (ahmbgk ) A dimensionless over-all gain constant

T1 = 1
g , T2 = 1

k , T3 = 1
b System time constants

Now, let us consider the new form of the model (1) when we substitute out new
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variables in:

T1(
dx

dt
) + x = C − θ (for θ ≤ C),

T1(
dx

dt
) + x = 0 (for θ ≥ C),

T2(
dy

dt
) + y = x,

T3(
dθ

dt
) + θ = Ky.

(7)

The beginning step in analysing the solution of our rewritten set of equations in

(7) is to evaluate the steady-states of the above shown dependent variables, as

shown in [14]. To do so, the general algorithm requires to equate the derivatives

in (7) to zero and solve [15], [16]:

dx

dt
=
C − θ − x

T1
= 0 (for θ ≤ C),

dy

dt
=
x− y
T2

= 0,

dθ

dt
=
Ky − θ
T3

= 0.

Solving the system simultaneously we find out that the steady states are as

follows:

xs =
C

1 +K
,

ys = xs,

θs =
CK

1 +K
.

(8)

Since ys = xs we can omit ys and focus only at two steady-states, namely

xs =
C

1 +K

θs =
CK

1 +K

From the above it is seen that C = c
h is the one which heavily controlling the

steady-state levels of the steady-state solutions of such hormones as thyrotropin

and thyroid almost equivalently, as elaborated in details in the work of Danziger
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and Elmergreen in [14] and in [10] by Pandiyan et al. On the other hand, it can

be observed that K = amh
bgk is influencing significantly the xs state and has not

so much impact on the θs because of the properties of the fraction. The further

investigation of the steady-state levels shows that usually the values that the

gain constant K takes are sufficiently high so that it is possible to conduct the

following approximation for the convenience purposes [14]:

K

1 +K
= 1,

∴ θs ∼= C =
c

h
.

(9)

This means that the control parameter C is congruent to the level of thyroid

hormone, shows how much weak it is as a parameter and makes further consid-

erations of the system and its solution easier.

These above steps illustrate that when the thyroid gland is regulating normally

the steady-state level of θ is actually dependent on the values of the following

constants c and h [13]. When K takes greater values, then the effects of other

constants a, m, b, g, and k are destroyed by the properties of the push-pull

feedback mechanism [14], [10].

Let us now consider the situation when a in initial model (1) is expected to

be zero. This will imply that the value of K will end up being zero too. Thus,

the values of steady-states in (8) will become:

xs = C,

θs = 0.
(10)

Thus, this is a mathematical explanation of the fact that conducting an opera-

tion on taking away the thyroid gland (thyroidectomy) will lower the concentra-

tion of thyroid hormone (θ) but will double the level of thyrotropin (p). Hence,

it will not be enough to conduct only the thyroidectomy but inject the thyroid

hormone artificially as well [14].

Let us now move on into the derivation of analytical solution and conducts

a general procedure of eliminating the x and y from the system in (7). This is

a standard procedure described in [15]. We will obtain the following expression

for y in terms of θ and its derivative:
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y =
T3(dθdt + θ)

K
,

dy

dt
= (

T3
K

)(
d2θ

dt2
) + (

1

K
)(
dθ

dt
).

For x and its derivative we, in turn, obtain the following:

x = (
T2T3
K

)(
d2θ

dt2
) + (

T2 + T3
K

)(
dθ

dt
) +

θ

K
,

dx

dt
= (

T2T3
K

)(
d3θ

dt3
) + (

T2 + T3
K

)(
d2θ

dt2
) + (

1

K
)(
dθ

dt
).

By substituting these equations into rewriten model (7) we obtain the following

third-order linear differential equations:

(
T1T2T3
K

)(
d3θ

dt3
) + (

T1T2 + T1T3 + T2T3
K

)(
d2θ

dt2
) + (

T1 + T2 + T3
K

)(
dθ

dt
) +

θ

K
= C − θ (for θ < C),

(
T1T2T3
K

)(
d3θ

dt3
) + (

T1T2 + T1T3 + T2T3
K

)(
d2θ

dt2
) + (

T1 + T2 + T3
K

)(
dθ

dt
) +

θ

K
= 0 (for θ > C).

Thus, by simplifying, we obtain the following result:

r3(
d3θ

dt3
) + r2(

d2θ

dt2
) + r1(

dθ

dt
) + (1 +K)θ = KC (for θ < C),

r3(
d3θ

dt3
) + r2(

d2θ

dt2
) + r1(

dθ

dt
) + θ = 0 (for θ > C).

(11)

where the constants represent positive real numbers such that

r1 = T1T2T3,

r2 = T1T2 + T1T3 + T2T3,

r3 = T1 + T2 + T3.

The next step will be to find out what is the characteristic equation of this

system. If to investigate both equations, it becomes clear that for both cases in

(11) the characteristic equation will be:

r3D
3 + r2D

2 + r1D + r0 = 0. (12)
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where

D = d
dt ;

r0 = (1 +K) for the case where θ < C;

r0 = 1 for the case where θ > C.

The next step is to simplify and factor the characteristic equation in (12):

(D − q)((D − z)2 + w2). (13)

where q, z and w are presented as the functions of the coefficients. Thus, the

roots of the characteristic equation in (13) appear to be

D1 = q,

D2,3 = z ± iw.

where w is either real or imaginary.

The general solution will be then as follows:

θ = θs + Seqt +Meztsin(wt+ φ). (14)

where S,M, φ vary depending on the initial conditions.

Worth noting that all the constants depending on the conditions put on the

value of θ differ for the solution (14):

θs for the case θ < C will be as shown in 8 θs = CK
1+K ;

θs for the case θ > C will be as shown in 10 θs = 0;

r0 as well differs for both θ > C and θ < C cases because q, z, w will have

different values;

Due to stability concerns regarding the system in general, it is also required

lim θ as t goes to infinity needs to approach θs [14].

5 Relaxation Oscillations and Periodicity

Let us rewrite our model (1) as shown below:
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dp

dt
+ gp = c− hθ (for θ ≤ c

h
),

dp

dt
+ gp = 0 (for θ ≥ c

h
),

dE

dt
+ kE = mp,

dθ

dt
+ bθ = aE.

(15)

Before we move on, it is necessary to introduce two definition of degenerate state

of the model [1], which will be referred to frequently.

Definition 1 Degeneration of the model is presented in a form of a so-called

piece-wise linear comprising of a system of linear equations, what is observed in

[1]. These equations are expected to unstable in the normal state and stable in

the other - degenerate state, as introduced in their paper [12] by Danziger and

Elmergreen.

In other words we can separate our initial model (1) into two different systems,

where the normal system set will be:

dp

dt
+ gp = c− hθ (for θ ≤ c

h
),

dE

dt
+ kE = mp,

dθ

dt
+ bθ = aE.

(16)

and the degenerate system set will be:

dp

dt
+ gp = 0 (for θ ≥ c

h
),

dE

dt
+ kE = mp,

dθ

dt
+ bθ = aE.

(17)
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We are interested in the periodic and oscillatory solutions. Further we will pro-

ceed with finding the solution for two states, normal and degenerate separately.

Before it is done, let us introduce the criteria for the condition that we will need

to consider in order to ensure that we will have a sustained oscillations for the

systems of order n > 2 taken from the paper [12]:

1. at least one or more of the roots for the normal state of the system (16) are

expected to have a positive real part [12], [7];

2. all the roots for the degenerate state of the system (17) are expected to have

negative real parts [12];

3. the steady-state concentrations for the degenerate system (17) are lower than

the concentrations of the degeneration; [12], [7].

In this (16) state of the system, the roots fulfilling the first criteria above would

push the system to enter an unstable phase. Then the concentrations of p,E, θ

are going to increase. This would take place until the system would enter the

stable degenerate phase [12].

Then, in this (17) state the system would fulfill the second criteria above. As a

result, the concentrations are going to decrease until the system will again enter

an unstable normal state [7].

Now, consider the following characteristic equation for the normal state (16):∣∣∣∣∣∣
(D + g) 0 h
−m (D + k) 0

0 −a (D + b)

∣∣∣∣∣∣ = 0 (18)

According to the criteria for the existence of the oscillatory behaviour in a

system, we need to have, as it is stated in the first criteria, at least one root

that has a positive real part [12], [17]. Recall that our characteristic equation

will look like this:

R0D
3 +R1D

2 +R2D +R3 = 0 (19)

According to the Routh-Hurwitz criteria that we stated in the Stability Analy-

sis section 2, this will be true only if the coefficients R0R3 > R1R2, see [6] and
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section 2 for the application of the Routh-Hurwitz criteria.

For the degenerate system (17) we need all roots to have negative real pars,

as stated in the second criteria [12]. Note that it is, indeed, true, since the

degenerate case differs from normal only in a part where c−hθ = 0. Therefore,

c = h = 0. Thus, by considering the new characteristic equation it becomes evi-

dent that roots will have negative real parts, namely r1 = −g, r2 = −k, r3 = −b.

As we discussed previously, the characteristic equation will be as [12]. The

factored form will be as in [13]. Now, let us rewrite two solutions for θ derived

earlier differently.

Thus, for normal case, our solution will become:

θnorm = θs + c31e
qt + ezt[c32e

iwt + c33e
−iwt]. (20)

and for the degenerate case:

θdeg = c′31e
−gt + c′32e

−kt + c′33e
−bt. (21)

Here, the relaxation oscillations would take place and the solutions are going

to alternate with each other. Let us introduce the definition of the relaxation

oscillation first, which was eloborated in details by J.Grasman in [7] and by B.

Van der Pol in [17].

Definition 2 Relaxation Oscillation can be described as a limit cycle of some

singularly perturbed system that is dynamical. It is a system of NDE, where

within the occurrence of a cycle at least one of the system leaves and comes

back to the some agreed manifold M (ε) [17], [7].

Let us apply this definition to our case and explain why relaxation oscillation

will take place in the solution of our model:

• At case when θ < c/h he pair of complex roots of the solution for the

normal state cause a formation of a periodic term that has an amplitude

which is following positive exponential path;
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• Then θ would eventually hit the concentration value of our control param-

eter c/h;

• Then the rate of change of θ will be in a positive range and will continue

increasing until it reaches certain maximum that is bigger than the control

parameter c/h;

• As θ > c/h the degenerate solution would take place and θ would decrease

and reach zero steady state until the value of control parameter, namely

c/h is achieved;

• The rate of change of θ will be in a negative range and will keep decreasing

until it will reach some minimum that is lower than the control parameter
c
h ;

• When the θ < c/h again the solution for normal state will apply and all

the steps above would again repeat;

6 Numerical Results and Discussions

The MATLAB programming platform has been used for the visualization of

the results using some numerical techniques. Two cases, stable and unstable,

of the model (1) considering θ ≤ c
h and θ ≥ c

h were assessed. The results are

summarised in the following figures 1, 2, and 3.

First, the behaviour of the system when the condition of (5) was satisfied were

considered. All necessary values for the parameters of the model (1) including

the values for initial conditions, and some loss and gain constants were used

from the data presented in [2]. On the Figure 1 there are depicted the graphs of

p(t), E(t), θ(t) vs time such that k2(g+ b) + g2(k+ b) + b2(k+ g) + 2bgk > mha.

It can be noted on the Figure 1, the trend of all hormones and enzymes is stable,

as we expect them to be.

Next step is to consider this criteria of stability (5). The only adjustment that

was made was to alter the values of m and a such that m = 8 and a = 0.6

Assessing the results from Figure 2, it can can be observed that it illustrates

the functions of p(t), E(t), and θ(t) vs time for the system (1) such that θ ≤ c
h

having the (5) criteria being met. The production rates and concentrations of
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Figure 1: The graphs of p(t), E(t), and θ(t) vs. time for the system of ODE (1)
when θ ≤ c

h given the (5) is met. Parameter values were taken from [2]: c =
100; h = 1; g = 1.29; m = 8; a = 0.6; k = 0.97; b = 1.39. Initial conditions are
(p0, E0, θ0) = (15, 158, 80).

hormones and enzymes are not stable here. There can be noted some oscilla-

tions being present and they appear to be periodic in their nature. Thus, it can

be concluded that these cycles, indeed, reflect the behaviour of the symptoms

of the catatonic schizophrenia [2].

Looking at the Figure 3 we can see that it represents the graphs of p(t), E(t),

and θ(t) vs time for the system (1) with θ ≥ c
h when the (6) condition is met.

As we can observe from the section that discusses the stability criteria for both

θ ≤ c
h and θ ≥ c

h cases, the numerical results meet our expectations.

We expect in a degenerate mode the creation of thyroxine hormone will go down

[2], [12], [14]. Since our numerical simulation does not incorporate in this case

the alternating solution of the normal state, the system will just reach the value

of zero [2]. The further numerical simulations incorporating both normal and

degenerate states’ solution can be further developed in the future projects.
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Figure 2: The graphs of p(t), E(t), and θ(t) vs. time for the system of ODE (1)
when θ ≤ c

h when the (6) is satisfied. Parameter values were taken from [2]: c=
100; h = 1; g = 1.29; m = 12; a = 1.2; k = 0.97; b = 1.39. Initial conditions
are (p0, E0, θ0) = (15, 158, 80).

Algorithm 1 MATLAB script for the DEdeffe.m file

function[Ddv]=DEdeffe(I,D)

% IV, I, IVsolt - Independent variables
% DV, D, Dvsolt - Dependent variables

c=100; %defining the parameters
h=1;
g=1.29;
m=12;
a=1.2d;
k=0.97;
b=1.39;

p=D(1);
E=D(2);
q=D(3);

%derivatives of dependent variable w.r.t independent variables

Ddv =[c-h*q-g*p;
m*p-k*E;
a*E-b*q];
end
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Figure 3: The graphs of p(t), E(t), and θ(t) vs. time for the system of ODE (1)
when θ ≥ c

h when the (6) is satisfied. Parameter values were taken from [2]: c=
100; h = 1; g = 1.29; m = 12; a = 1.2; k = 0.97; b = 1.39. Initial conditions
are (p0, E0, θ0) = (15, 158, 80).

Algorithm 2 MATLAB script for the DEdefRun.m file

domain=[0 100];
IC1=15; %defining the Initial Conditions
IC2=158;
IC3=80;

IC=[IC1 IC2 IC3];

[IVsolt, DVsolt] = ode23(’DEdeffe’, domain, IC);

%plotting the graphs of the solutions

plot(IVsolt, DVsolt(:,1), ’k’)
hold on
plot(IVsolt, DVsolt(:,2), ’r’)
plot(IVsolt, DVsolt(:,3), ’b’)
legend(’Thyrotropin’,’Enzyme’,’Thyroxine’)
xlabel(’Time’)
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This system of ordinary NDEs (1) is not the most efficient and precise one but

rather represent a simpler version of a transportation of hormones in endocrine

system. It can be improved by considering the possible discrete and distributed

delays during the transportation and adjusted accordingly.

7 Conclusions and Outlooks

This capstone project focused on the mathematical analysis of the thyroid-

pituitary axis in the hormonal transportation within the push-pull feedback

mechanism presented in the model (1). During the study of this topic, it was

found that there exist a direct correlation between the symptoms of the cata-

tonic schizophrenia and concentrations of thyroid, thyroxine, and thyrotropin

hormones and enzymes in the blood stream of a patient [9]. Based on the sta-

bility analysis conducted in section (2), if the values of such constants as m and

a that stand for some activated enzymes are high then the system enters an

unstable phase [2]. The deeper investigation of the stability of the system was

conducted by applying a well-known Routh-Hurwitz criteria when considering

two cases where θ was taking greater or lower values than the threshhold c
h .

The results showed that it is required for hormones no to exceed the value of a

control parameter in order to avoid a fatal end of a patient that could be caused

by a serioud hormonal dysfunction [8].There were conducted several numerical

simulations to visualise the behaviour of a system (1) during the stable and

unstable phases. The role of the parameters m and a has been proven to be

crucial in maintaining the push-pull feedback mechanism of the hormone trans-

portation stable for both cases of normal and degenerate states of the initial

fourth order system of ordinary NDEs. The analytical solution for both normal

and degenerate cases have been derived using the reduction techniques so that

our nonlinear system was reduced to the set of two linear third order differential

equations. Further investigation and research showed that both solutions of the

system alternate with each other causing the relaxation oscillation to occur. The

current model can be improved by incorporating the phenomena of the discrete

and distributed delays during the transportation that may take place because

of other hormones and enzymes [2], [11].

20



8 Acknowledgement

I would like to express my sincere gratitude to my supervisor, Professor Piotr

Sebastian Skrzypacz, for all the help, support, and guidance during the comple-

tion of this capstone project and the second reader Professor Alejandro J. Castro

Castilla for all the useful feedback and comments. I would also like to thank

capstone course coordinators, Professor Achenef Tesfahun and Professor Adilet

Otemissov, for thought-provoking questions, suggestion, and useful comments

during the weekly capstone sessions. In addition, I wish to acknowledge the

contribution of all the mathematicians, scientists, and scholars, whose works

I referenced and who have studied and developed this topic in their research

work.

21



References

[1] MD.Kamrujjaman et al. “Stability analysis and numerical solutions of
a competition model with the effects of distribution parameters.” In:
Bangladesh Academy of Sciences 43.1 (2019), pp. 95–106.

[2] B.Mukhopadhyay and R.Bhattacharyya. “A mathematical model describ-
ing the thyroid-pituitary axis with time delays in hormone transporta-
tion”. In: Applications of Mathematics 51.6 (2006), pp. 549–564.

[3] James R. Brannan and William E. Boyce. Differential Equations. An In-
troduction to Modern Methods and Applications. Third Edition. Laurie
Rosatone, 2015.

[4] J. Cronin. “Biomathematical Models of Schizophrenia”. In: A Journal
of Progress in Neurosurgery, Neurology and Neurosciences: Neurological
Research 1.1 (2016), pp. 87–99.

[5] J. Cronin. “Mathematical Aspects of Periodic Catatonic Schizophrenia”.
In: Bulletin of Mathematical Biology 39.2 (1977), pp. 187–199.

[6] E.X.DeJesus and C.Kaufman. “Routh-Hurwitz Criterion in the Examina-
tion of Eigenvalues of a System of Nonlinear Ordinary Differential Equa-
tions.” In: Physical Review A 35.12 (1987), pp. 5288–5290.

[7] J. Grasman. “Relaxation Oscillations”. In: Meyers R. (eds) Mathematics
of Complexity and Dynamical Systems. Springer 3.10 (2012), pp. 1475–
1488.

[8] J.Cronin. “A mathematical model for catatonic schizophrenia.” In: Bul-
letin of Mathematical Biophysics 36.11 (1976), pp. 706–714.

[9] J.Cronin. “The Danziger-Elmergreen theory of periodic catatonic schizophre-
nia.” In: Bulletin of Mathematical Biophysics 35.11 (1973), pp. 689–707.

[10] Balamurugan K. Pandiyan. “A patient-specific model of the negative-
feedback control of the hypothalamus–pituitary–thyroid (HPT) axis in
autoimmune (Hashimoto’s) thyroiditis”. In: Mathematical medicine and
biology: a journal of the IMA 31.3 (2014), pp. 226–258.

[11] L. Kenneth L. Cooke and Z. Grossman. “Discrete delay, distributed delay
and stability switches”. In: Journal of mathematical analysis and applica-
tions 86.2 (1982), pp. 592–627.

[12] L.Danziger and G.L.Elmergreen. “Mathematical Models of Endocrine Sys-
tems”. In: Bulletin of Mathematical Biophysics 19.13 (1957), pp. 9–18.

[13] L.Danziger and G.L.Elmergreen. “Mathematical theory of periodic relaps-
ing catatonia.” In: Bulletin of Mathematical Biophysics 16 (1954), pp. 15–
21.

[14] L.Danziger and G.L.Elmergreen. “The Thyroid-Pituitary Homeostatic Mech-
anism.” In: Bulletin of Mathematical Biophysics 18 (1956), pp. 1–13.

[15] L.Edelstein-Keshet. Mathematical Models in Biology. First Edition. Ran-
dom House, New York, 2005. isbn: 978-0-89871-554-5.

22



[16] H. DeSai M. Mulla. “Solution of a Mathematical Model Describing the
Change of Hormone Level in Thyroid Using the Laplace Transform”. In:
Mathematical Journal of Interdisciplinary Sciences 2.1 (2013), pp. 99–108.

[17] B. Van der Pol. “LXXXVIII. On Relaxation-Oscillations”. In: The Lon-
don, Edinburgh, and Dublin Philosophical Magazine and Journal of Sci-
ence 2.11 (1926), pp. 978–992.

23


	Introduction
	Stability of the system
	Properties of the system and its solution
	Analytical solution of the system
	Relaxation Oscillations and Periodicity
	Numerical Results and Discussions
	Conclusions and Outlooks
	Acknowledgement

