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Abstract
In model-free out-of-sample tests, we find that the optimal portfo-

lio of a utility maximizing investor trading in the S&P500 Index, cash,

and index options bought at ask and written at bid prices stochas-

tically dominates the optimal portfolio without options and yields

returns with higher mean and lower volatility in most months from

1990 to 2013. Unlike earlier claims of overpriced puts, our portfolios

includemostly short calls and are particularly profitable whenmatu-

rity is short and volatility is high. Similar results are obtainedwith the

CAC and DAX indices. Neither priced factors nor a nonmonotonic

stochastic discount factor explains the excess returns.

1 INTRODUCTION

Index option anomalies are mentioned for the first time in Rubinstein (1994) who documents the existence of the

implied volatility (IV) smile in S&P 500 Index options for the post-1987 crash data. Rubinstein (1994) advances several

conjectures regarding the sources of the smile and points out that out-of-themoney (OTM) put optionsmay have been

overpriced after the crash. Several subsequent studies claim overpricing in both OTM puts and at-the-money (ATM)

straddles. A parallel line of research, startingwith Jackwerth (2000), argues that the stochastic discount factor derived

from the observed equilibrium prices in both the underlying and optionmarkets is U-shaped and also leads to put mis-

pricing relative to monotonic stochastic discount factors. The parameters of the asset dynamics of the index yielding

the real distribution of the returns are derived by fitting specific models to the entire time series of index values. Fric-

tions, such as margins and bid–ask spreads, are ignored, put–call parity is assumed, and the prices of the in-the-money

(ITM) options are derived from themidpoint quotes of their OTM counterparts.1

These assumptions are unrealistic and their empirical impact is major for short-term options, as we discuss further

on in this section. Bates (2003) notes that attempts to relax them in a no-arbitrage model have not been particularly

successful. For this reason, we use a different methodology in this paper where we relax the assumptions of the fric-

tionless economy and apply model-free tests of the mispricing in the S&P 500 Index options. We apply a stochastic

c© 2019 Financial Management Association International

1An exception is Santa Clara and Saretto (2009) in which margins play a central role in explaining the observed mispricing. They also consider option bid–ask

spreads and find that they reduce, but do not eliminate, put overpricing. Their data, however, do not cover the 2008 financial crisis.
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dominance (SD) framework introduced byConstantinides and Perrakis (2002) and tested in sample by Constantinides,

Jackwerth, and Perrakis (2009) and out of sample by Constantinides, Czerwonko, Jackwerth, and Perrakis (2011).

In particular, we consider an investor who holds a risk-free bond and a fund tracking the S&P 500 Index, the lat-

ter subject to proportional transaction costs. The investor maximizes the expectation of their increasing and concave

utility function of cash wealth at the end of a horizon longer than the maturities of any traded options, which can be

infinite.2 We call this portfolio the “Index Trading” (IT) portfolio.We then consider overlaying a zero-net-cost portfolio

on this portfolio consisting of long and short positions in European-style call and put options of 28-, 14-, or 7-daymatu-

rities on the index.We call the IT portfolio, overlaid with the options portfolio, the “Option Trading” (OT) portfolio.We

account for transaction costs in the trading of options by buying options at their ask price and selling them at their bid

price. Unlike earlier SD studies, the OT portfolio does not consist of a single option and is not predetermined at port-

folio formation time. This generalization has a major impact on the empirical results, particularly for the shorter term

options.

We select the zero-net-cost option portfolio at the start of each 28-, 14-, or 7-daymaturity from the entire universe

of available options filtered by limits on moneyness and liquidity. In all cases, the options are kept until maturity and

the OT investor is not allowed to close positions. We develop a linear programming (LP) algorithm that identifies all of

the option portfolios such that the OT portfolio stochastically dominates (SD) the IT portfolio in the second degree if

both are liquidated at the options’ maturity. The SD conditions built into the LP indicate that the total excess payoff

of the OT portfolio over the IT portfolio is nonnegative at low values of the index support, intersects the support at a

single value, becomes nonpositive at high values, and has a positive expected payoff. We use only observables at the

time the portfolios are formed in order to ensure that our strategies can be executed by any option end user and that

any excess profits are anomalous. We find these portfolios for almost every month of our data for all three maturities

from 1990 to the end of 2012.

Once we identify the set of SD portfolios at each date, we select one from the set by optimizing a given criterion,

either the Sharpe ratio or a similar criterion.3 The resulting portfolios are of variable composition and contain both call

and put optionswith 28, 14, or 7 days tomaturity. Their realized excess returns over the IT holdings are very similar for

all of the optimization criteria. Using these realized returns, we then confirm with out-of-sample tests that irrespec-

tive of the selection criterion, the options portfolios would have increased, on average, the utility of any risk-averse IT

investor. The results are stronger for shortermaturity options than for their longer term counterparts in terms of both

profitability and the significance of the SD tests. Our results also hold in even stronger form if we assume that there is

no bid–ask spread and execute the OT option trades at the midpoint of the spread, but without distorting the data by

imposing put–call parity and eliminating ITM options. As a robustness check, we repeat our tests using options on the

CAC andDAX indices, as well as weekly options of the S&P 500 Index, and obtain similar results.

It is important to note that the out-of-sample SD test does not depend upon the portfolio selection criteria that

establish SD. The SD test compares two time series drawn from two different distributions and examines the null of

nondominance. The only requirement is that the observations be serially uncorrelated, a requirement that is verified

for all of the series used in our tests. Because the portfolios are chosen using only observables at every point of the

resulting time series, the out-of-sample test results identify a tradable anomaly insofar as an investor holding an index-

tracking tradable fund, such as SPDR, can increase their returns without incurring additional volatility risk or costs. In

fact, in all of the cases, the total volatility of the OT portfolios is lower than that of the volatility of the IT portfolios,

thereby precluding the possibility that the excess return is compensation for volatility risk. It is in this sense that we

claim that there exist mispriced index options.

Although most options in the OT portfolios are OTM, more than 37% of the portfolios contain ITM calls and more

than32%contain ITMputs. Theportfolios includemore thandouble thenumber of calls thanputs and the call positions

are overwhelmingly short positions, consistentwith thepractice ofwriting covered calls and contradicting the common

2For an infinite horizon under transaction costs, the IT investor maximizes the utility of the flow of consumption (Constantinides, 1986).

3Specific portfolio selection criteria are imposed as we havemany portfolios that satisfy our SD conditions.
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F IGURE 1 Median of proportional spreads around themidpoint price for ATM (K∕St = 1) andOTM (K∕St = 0.93)
puts with 28 and 7 days tomaturity [Color figure can be viewed at wileyonlinelibrary.com]
Note: Solid darker (lighter) lines correspond to 28-day ATM (OTM) options. Dashed darker (lighter) lines correspond to
7-day ATM (OTM) options.

belief that puts rather than calls are overvalued.4 An exception is the 2008–2009 period of the financial crisis when

there appears to be investor overreaction in the form of inflated put prices.

The potential errors implied by assuming away frictions are large. In Figure 1, we illustrate the observed bid–ask

spread, as a percentage of itsmidpoint, for selected put options for each year of our dataset. Thedata for this important

variable, widely used as an indicator of option market illiquidity, clearly show two effects, a moneyness effect and a

maturity effect, with OTM and 7-day maturity options as the least liquid. For the least liquid 7-day OTM options, the

spread rarely dips below 30% and can be as high as 60% of its midpoint. Furthermore, there are clear indications that

the spread has increased over time for all maturities and degrees of moneyness, as shown by the regressions of all

spreads data (not just the annual medians) for the four time series in Figure 1 against a constant and a time trend.

In theabsenceof friction andmarket segmentation, put–call parity implies that ifOTMputs areoverpricedand short

positions are profitable after adjusting for risk, then ITM calls are also overpriced. Yet, Bondarenko (2014, table 1)

reports that long positions in ATM puts yield a negative and highly significant average monthly return of –0.39%,

whereas long positions in ATM calls yield a positive, but insignificant average monthly return of 0.04%. Many studies

present evidence that the option market is at least partially segmented. Chen, Joslin, and Ni (2019, figure 2) find that

calls and puts with the samemoneyness are not substitutes for each other. Constantinides and Lian (2018) report that

4In unreported results, we allow the OT portfolios to short an optimally chosen quantity of the underlying. Short puts appear in very few dates, while the

preponderance of short calls is maintained.
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F IGURE 2 Difference in the realized returns between theOT and IT 28-day portfolios [Color figure can be viewed
at wileyonlinelibrary.com]
Notes: The returns aremeasured in the 278 28-day and 14-day periods from January 1990 to February 2013 and
sorted by the contemporaneous S&P 500 returns. Bars in the graph correspond tomeans for 100 equally spaced S&P
returns. Consistent with the objective of constructing OT portfolios that stochastically dominate the IT portfolios, the
difference in returns is generally decreasing in the S&P 500 Index return.

from 1996 to 2016, public customers are net buyers of OTM and ATM puts with the intermediary market makers hav-

ing the opposite net positions, consistentwith the view that public customers buy puts as insurance andmarketmakers

write puts for profit. Finally, Czerwonko and Perrakis (2018) determine that public customers are net writers of calls.

The positive excess returns of short positions in OTM puts and straddles rely on specific option pricing models

in a frictionless economy and leave open the possibility that the overpricing is model specific. We illustrate these

distortions of the frictionless economy by applying our portfolio selection algorithm to the universe of frictionless

options as defined in most studies by using only the OTM call and put bid–ask spread midpoints. The OT portfolios

again stochastically dominate the IT portfolios and have significant excess returns. However, the short calls that used

to predominate are now a small fraction of the portfolios and are replaced by short puts combinedwith short positions

in the underlying index.

In robustness tests, we examine whether our OT portfolio results are explained by adopting the conventional

approach to option valuation by adding the options as an asset class to an existing portfolio. We find that a U-shaped

stochastic discount factor chosen from the observed index and option prices does not explain the excess returns in a

frictionless setting.

The literature on the pricing of options is voluminous. The ingenious idea behind the option pricing model of Black

and Scholes (1973) and Merton (1973) (BSM) is that, in the absence of arbitrage, the price of an option equals the

cost of setting up a judiciously managed portfolio with a payoff that replicates the option payoff. The central premise

of the BSM model supports the existence a self-financing dynamic trading policy of the stock and risk-free accounts

that renders the market dynamically complete. This requires that the market be complete and frictionless. Two

assumptions of the BSM model make the market complete. First, the price of the underlying security has continuous

sample paths at the exclusion of jumps. In addition, the stock return volatility is constant.5 Finally, the assumption of

the BSM model that renders the market frictionless is the absence of trading costs. In the BSM model, the volume of

trading over any finite time interval is infinite and the trading costs associated with the replicating dynamic trading

policy would be infinite.

Following the October 1987 stock market crash, limitations of the BSMmodel became evident. Rubinstein (1994)

finds the existence of the IV smile in S&P 500 Index options for the post-1987 crash data. In response, most of the

5In the BSMmodel, the volatility is constant. Markets are also complete if the volatility is solely a function of the stock price.
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ensuing literature recognizes that volatility is stochastic and/or price changes include jumps, but retains the assump-

tion of a frictionless market. Under these assumptions, the market is dynamically incomplete and a dynamic trading

strategy that replicates the payoff of an option no longer exists. Formally, the absence of arbitrage no longer deter-

mines the relation between the real and risk-neutral probability measures.

The most common approach is to exogenously set the prices of volatility and jump risks and estimate them from

the option market assuming that the options are correctly priced. Prominent examples include Bates (1991) and Hes-

ton (1993). An alternative approach that allows for stochastic volatility and jumps but maintains the assumption of a

frictionless market is to price options in an equilibrium model that introduces investors with specific utility functions.

Examples include Chen et al. (2019), Constantinides and Lian (2018), and Garleanu, Pedersen, and Poteshman (2009).

In a frictionlessmarket, several empirical studies of indexoptions find that options are incorrectly priced.Ait-Sahalia

and Lo (2000), Bakshi, Madan, and Panayotov (2010), Beare and Schmidt (2016), and Jackwerth (2000) estimate a

U-shaped stochastic discount factor from stock index option prices that challenges equilibrium asset pricing models

based on a risk-averse representative investor in which the index return is the only state variable. We discuss this

possibility in Section 8 and find that it cannot account for our results. Bollen andWhaley (2004), Bondarenko (2003),

Driessen and Maenhout (2007), Garleanu et al. (2009), Jones (2006), Santa Clara and Saretto (2009), and Chambers,

Foy, Liebner, and Lu (2014) find that strategies that involve writing put options on the S&P 500 Index offer very high

Sharpe ratios. Alternatively, Broadie, Chernov, and Johannes (2009) claim that these anomalous results are explained

by jump risk premia and estimation risk.

Levy (1985), Perrakis (1986, 1988, 2019), Perrakis and Ryan (1984), Ritchken (1985), and Ritchken and Kuo (1988)

replace the assumption that investors have specific utility functions with a weaker assumption that investors have

unspecified utility functions that are increasing and concave in wealth and apply the methods of SD to derive upper

and lower bounds on option prices. Oancea and Perrakis (2014) demonstrate that both bounds tend to the continuous

time limit of the BSM option price when there are no transaction costs and the underlying security follows a diffusion

process.

Constantinides and Zariphopoulou (1999, 2001), Davis, Panas, and Zariphopoulou (1993), and Hodges and Neu-

berger (1989) introduce proportional transaction costs in trading the underlying security and derive bid and ask prices

of options from the perspective of an investor maximizing a given utility function. Constantinides and Perrakis (2002,

2007) generalize this approach by replacing the assumption that investors have specific utility functions with the

assumption that investors have unspecified utility functions that are increasing and concave in wealth and applying

the methods of SD. They derive a tight upper bound on the reservation write price of a call and a tight lower bound on

the reservation purchase price of a put. Constantinides et al. (2009) test these bounds in sample and Constantinides

et al. (2011) test these bounds out of sample.

The theoretical contribution of the current paper over the results in Constantinides and Perrakis (2002, 2007) is to

allow the investor to include options of a different type, long and short calls and puts of different moneyness in a zero-

net-cost portfolio, not just one type of options.We identify a set of OT portfolios (zero-cost option portfolios added to

the IT portfolio) that stochastically dominate the IT portfolio. Recently, Post and Longarella (2018) provide a complete

characterization of the set of portfolios that stochastically dominate the index.

The first empirical contribution of the current paper over the results in Constantinides et al. (2009, 2011) is to iden-

tify the mispricing of options in almost every sample month, as opposed to the earlier results that identify mispricing

only in approximately one-third of the sample months. The second empirical contribution of the current paper is to

identify the characteristics of themost mispriced options.

There is a close relation between the results of the current paper and the U-shaped stochastic discount factor esti-

mated by Ait-Sahalia and Lo (2000), Bakshi et al. (2010), Beare and Schmidt (2016), and Jackwerth (2000). A U-shaped

stochastic discount factor implies SD in a single period model in which the index return is the only state variable.

Christoffersen, Heston, and Jacobs (2013) note that a U-shaped stochastic discount factor can arise if volatility is a

second state variable. Note, however, that a U-shaped stochastic discount factor does not identify the particular

options that are responsible for the nonmonotonicity of the stochastic discount factor.
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The third empirical contribution of the current paper over these earlier results is to identify SD in the presence of

realistic trading costs, identify the characteristics of themostmispricedoptions, anddemonstrate the existenceof such

mispricing in almost every month of our sample. Specifically, the most mispriced options are calls and short maturity

options. Our last contribution is to demonstrate that other major index option markets exhibit patterns of mispricing

similar to themarket for S&P 500 options.

In the next section, we discuss the theoretical foundations of SD and present the portfolio selection algorithm. Sec-

tion 3 presents the data. We provide the methodology in Section 4 and the empirical results in Section 5. In Section 6,

we discuss the relation between SD and the smile. Section 7 describes the characteristics of the dominating portfo-

lios. In Section 8, we present evidence that risk factors do not explain the excess return of the option portfolio returns.

Section 9 presents the robustness tests, while Section 10 provides our conclusions.

2 STOCHASTICALLY DOMINATING PORTFOLIOS

We consider an investor who trades at discrete dates t = 0,1,… , T in an index portfolio and a risk-free asset (cash)

subject to proportional transaction costs for the index. We denote the index price at date t by St . At the terminal date,

T, the wealth is converted into cash, net of transaction costs. The investor maximizes the expectation of their utility

of terminal cash wealth. We assume that the utility function is von Neumann-Morgenstern, strictly increasing, and

concave.WedenotebyV(xt, yt, t) thevalue function (indirect utility) at date t, t ≤ T, where (xt, yt)denote theholdings in
the cash and index accounts, respectively.We assume that the equity premium is positive so that the investor optimally

invests a nonnegative amount in the index portfolio at each date.

Constantinides (1979) addresses this problem under general conditions and proves two properties that are useful

for the problem at hand. First, he proves that V(xt, yt, t) is strictly increasing and concave in (xt, yt). This implies that the

marginal utility of the value function with respect to the index account, Vy(xt, yt, t), is monotone decreasing in yt at any

date t, t ≤ T. In addition, he proves that there exists a region of no-transactions such that the investor refrains from

transacting at date t if the portfolio holdings lie in it. In the special case of constant relative risk aversion, this region is

a conewith no transactions if 𝜆t ≤ yt∕xt ≤ 𝜆t . Constantinides (1986) finds that the no-transactions region is wide, even

for a very small transactions cost rate, and the investor refrains from trading most of the time in the sense that the

utility losses from not adjusting the portfolio to its frictionless optimal proportions are low for all realistic parameter

values.

For our purposes, we do not make the limiting assumption that the relative risk aversion is constant or that the

dynamics are limited to diffusion. Nevertheless, we assume that an investor who starts at the beginning of the month,

somewhere in themiddle of the no-transactions region, optimally refrains from trading in the short time span of 28, 14,

or 7 days until option maturity assumed shorter than T. Even if the investor refrains from trading for longer periods,

such as several months, our results remain approximately correct as the width of the no-transactions region stipulates

little trading.6 Combinedwith the first result thatVy(xt, yt, t) ismonotone decreasing in yt and the fact that the investor

has a positive investment in the index, we conclude that Vy(xt+1, yt+1, t + 1) is monotone decreasing in the stock price,

St+1. Hereafter, we assumewithout loss of generality that the options mature at date t+1.
Let A(St+1) denote the payoff of the zero-net-cost portfolio at date t + 1, where the net cash flow from the option

exercise is converted into units of the index account, net of transaction costs. If:

Et
[
A(St+1)Vy

(
xt+1 , yt+1, t + 1

)]
> 0, (1)

6We verify this using the numerical approach of Czerwonko and Perrakis (2016) that assumes a constant relative risk aversion investor, jump diffusion asset

dynamics, and a finite fixed horizon. The observed intermediate trading in numerical simulations under all realistic parameter values is insignificant even for a

2-year horizon.
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then the investor increases their expected utility by overlaying this zero-net-cost portfolio over their original invest-

ment in the index and the risk-free asset. The following Lemma provides sufficient conditions for Equation (1) to hold.

Lemma. A sufficient condition for Equation (1) to hold is that (a) Et[A(St+1)] ≥ 0 and (b) there exists a number Ŝ such that

A(St+1) > 0 for St+1 ≤ Ŝ and A(St+1) ≤ 0 for St+1 > Ŝ.

To see this, note that Conditions (a) and (b) imply:

Et
[
A(St+1)Vy

(
xt+1, yt+1, t + 1

)]
> Et

[
A(St+1)]

]
E
[{
Vy

(
xt+1, yt+1, t + 1

)}
St+1=Ŝ

]
(becauseVy

(
xt+1, yt+1, t + 1

)
is decreasing in St+1 andA(St+1) > (≤) 0 as St+1 ≤ (>) Ŝ)

>0.

This completes the proof.7 Note that for an investor with linear utility, Vy(xt+1 , yt+1, t + 1) is a positive constant and
Inequality (1) implies that Et[A(St+1)] ≥ 0 . The Lemma states that when A(St+1) has the shape indicated by Condition
(b), then Condition (a) is necessary for SD. Intuitively, for the chosen shape ofA(St+1), an increase in the utility of the

risk neutral investor implies an increase in the utility of all risk-averse investors.

We denote by OT the investor who holds the same portfolio as the IT plus the zero-net-cost option portfolio with

payoff A(St+1) at maturity. Our empirical methodology involves two steps. In the first step, for each maturity, we con-

struct zero-net-cost portfolios at dates on which we have options with suchmaturity. In the second step, we verify out

of sample SDof theOT investor’s terminalwealth relative to the IT investor’s terminalwealth by applying SD tests over

the entire sample period. Based on the Lemma, the IT and OT comparisons are done on the basis of the time series of

the corresponding index values in their portfolios at the option expiration dates. Both steps are independent of any

assumptions about the IT investor.

The IT investor is an index fund holding an unspecified number of index units. We present our method for a scale of

trading of one option per unit index. The actual scale of trading will depend upon the depths of the quotes of individual

options that will determine the IT wealth for comparison with OT.

At time t, we build a grid of feasible values of Ŝ, Ŝ > 0 that allows us to find a zero-net-cost portfolio from the uni-

verse of options such that the payoff A(St+1) at maturityt+ 1 is as follows: A(St+1) > 0 for 0.6St ≤ St+1 ≤ Ŝ; A(St+1) ≤ 0

for St+1 > Ŝ; and Et[A(St+1)] > 0. For each value of Ŝ, we choose the portfolio of options that maximize the expected

payoff, Et[A(St+1)], subject to the conditionsA(St+1) > 0 for 0.6St ≤ St+1 ≤ Ŝ andA(St+1) ≤ 0 for St+1 > Ŝ. Thus, we form

a setΩ(Ŝ) of OT portfolios that ex ante stochastically dominate their IT counterparts.

We find the setΩ(Ŝ) by solving the following linear program. Let wi ≥ 0, i = 1,… ,2n denote the number of options

Ci (both calls and puts) entering into the OT portfolio from the n available options in a given cross-section ordered in

ascending strike price.We treat long and short option positions as separate options allowing us to linearly restrict the

total option position. Also, letΠ denote the initial value of theOT portfolio.We have:

0 ≤

2n∑
1

wi ≤ 1, Π =
2n∑
1

wiCi. (2)

Then, if gi(St+1) denotes the payoff of the ith option, the total payoff at option expiration equals −ΠR +
∑2n

1 wigi(St+1).
Then,

A
(
St+1

)
= −ΠR +

2n∑
1
wigi(St+1)∕ (1 + k) , St+1 ≤ Ŝ

= −ΠR +
2n∑
1
wigi(St+1)∕ (1 − k) , St+1 > Ŝ.

(3)

7The Lemma depends upon the condition that the trader’s wealth at the end of each period is weakly monotone increasing in the index return. This condition

is trivially satisfied under the position limits we apply later on.
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Observe thatA (St+1) is piecewise linearwith a constant slope
𝜕A

𝜕St+1
within any interval [Kj, Kj+1)of two successive strike

prices Kj, j = 1,… , n of the available strike prices in the option cross-section.We add the fundamental SD constraints:

A
(
St+1

)
> 0 for 0.6St ≤ St+1 ≤ Ŝ; A

(
St+1

)
≤ 0 for St+1 > Ŝ; and Et

[
A
(
St+1

)]
≥ 0. (4)

These constraints need only be verified at the strike prices to the left of Ŝ, while at the right, we simplify the search

by adding the constraint that the payoff be nonincreasing. Finally, we find theOT portfolio by solving the following LP:

maxwi
Et[A(St+1)] given Ŝ, (5)

subject to Equations (2)–(4). If this program is feasible, then the set of optimal weights and corresponding options

{w∗
i
≠ 0, C∗

i
} belongs to the ex-ante stochastically dominant setΩ(Ŝ) of OT portfolios.8

In our search, we vary Ŝ until the LP becomes infeasible for some maximum value of St+1 = Ŝ, arbitrarily restricted

to 1.15 × St . We restrict our search to the segment [St, 1.15St]. Once this maximum feasible value for Ŝ is found, we

partition the segment [St, Ŝ] and maximize the excess return to OT for each value of this partition to find the complete

setΩ(Ŝ). Finally, the optimal portfolio is defined as the one for which a given selection criterion reaches its supremum.

We try several alternative criteria to choose from the set Ω(Ŝ) the “best” portfolio and find broadly consistent

results in terms of the composition of this portfolio. As our base case criterion, we select the portfolio that maximizes

the Sharpe ratio Et[St+1 + A(St+1) − StR]∕stdt(St+1 + A(St+1)). In robustness tests, we replace the maximization of the

Sharpe ratio with the maximization of the gain/loss ratio, Et[A(St+1)
+]∕Et[−A(St+1)

−], the maximization of the Sortino

ratio, Et[A(St+1)]∕stdt([St+1 + A(St+1)]
−), or simply choose themaximum feasible Ŝ.

We stress that the restriction 0.6St ≤ St+1 ≤ Ŝ is imposed on the construction of the portfolios, but is not imposed

on the realized prices St+1. In unreported robustness tests, we also consider the case where we allow the index to

become worthless in 1 month, by replacing this restriction with St+1 ≤ Ŝ, and obtain similar results. We also consider

time-varying volatility following well-known daily GARCH processes. These are discussed in our robustness checks.

The construction of these portfolios relies on information that is available at the beginning of the 28-day (or 14- or

7-day) maturity period.

3 DESCRIPTION OF THE DATA

Themainempirical results arebasedonmonthly andweeklyoptionson theS&P500 Index.Weobtainpricesofmonthly

S&P 500 European puts and calls 28, 14, and 7 days to maturity from the Chicago Board Options Exchange (CBOE)

tape with intraday quotes from January 1990 to February 2013 yielding 278 dates.9 The prices of the 14-day options

are the prices of the same 28-day options with respect to moneyness and expiration date, but observed 14 days to

expiration. The prices of the 7-day options are the prices of the same 28-day options with respect to moneyness and

expiration date, but observed 7 days to expiration. We also present the results over the shorter time period in which

weekly options are traded. For robustness, we replicate our results on the French CAC and German DAX indices for

which we useOptionMetrics data with end-of-day prices for their European options.10

We delete obvious data entry errors, such as multiple or missing data or bid prices exceeding ask prices. We filter

the data by checking that the put–call parity and convexity with respect to the strike price under transaction costs in

the index and bid–ask prices of options hold. We conservatively use 10 basis points as a one-way transactions cost

8Because the LP has a trivial solution of all zero weights, we constrain the sum of weights in the first constraint of (2) to be above some low threshold, 10-4.

9Unreported results for 21-day options are generally similar to the ones for 28-day options.

10Other optioned indices, such as EUROSTOXX50 and FTSE, are eliminated either because of lack of data or settlement terms thatmake the results noncom-

parable to our base case.
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rate for index trades.11 We also apply liquidity filters to guarantee that only options that can be traded under realistic

conditions enter our choice set. We include call prices with bid prices of at least $0.15 and moneyness within $0.96–

$1.08. For put options, we discard all options more than 4% in the money, but admit all options with bid prices of at

least $0.15. This asymmetry in admitting put options is justified by the relatively higher liquidity of OTM puts. Finally,

we only admit quotes updated within the past 15 min. After applying our filters, we exclude four dates on which we

cannot find at least three call options and three put options available for selection in our portfolios.

In Table 1, we display statistics on the average number of 28-, 14-, and 7-day S&P 500 options that pass the filters

eachmonth and are available for inclusion in the zero-net-cost portfolios. In general, themarket for puts is more liquid

than the market for calls. Thus, the number of puts that pass the filters exceeds the number of calls. In the years 2000

and 2004, the CBOE increased the quote update frequency and the number of strikes at which options are traded gen-

erally increased with the index level given a relatively constant increment among pairs of adjacent strikes. As a result,

the average number of options that pass the filters doubles after 2004. We take these changes into account when we

report the results on the SD tests andwhenwe describe the characteristics of the options that are frequently included

in the zero-net-cost portfolios. The table also describes the average number of options included in these portfolios.

We build the zero-net-cost portfolios at 3:00 p.m. SET, 1 hr before market closing, thus avoiding possible distor-

tions of the closing market inherent in end-of-day prices. We execute the trades 15 min later for these same options

that are found to be optimal to include in the portfolio, readjusting their weights with the same objective as at the 3

p.m. portfolio derivation time for the data observed 1 min before the actual trade. For a limited number of options in

the optimal portfolios, this additional derivation takes a few hundredths of a second leading to little if any distortion

due to the additional trade execution time. Because SPXoptions are exercised at the opening price of the terminal date,

we collect the exercise proceedsbyusing theopening valueof the index andascribe theproceeds to the endingposition

of the index.

We derive the index price from the cost-of-carry relation between the observed spot index and its nearest-to-

maturity futures contract as follows.We use a data set from Tick Data.We estimate the implied index price by record-

ing the implicit cost-of-carry coefficients from the observed spot futures pairs for 1 hr before our estimation or trade

time in 1-min intervals. We then use the median value of this coefficient to convert the most recent futures value into

the implied spot index price. Note that as of 2006, the increased quality of reporting of the index price renders the dif-

ference between the cash index and its derived price negligible. We derive the dividend yield by using cash daily pay-

outs obtained fromStandard andPoor. For the interest rate, we use the 3-month constantmaturity T-bill rate obtained

from the Federal Reserve Economic Data. Finally, we assume a one-way transaction costs rate of 0.25%.

For our base case results, wemodel the index price as lognormally distributed with an average cum dividend return

equal to 4%, plus the annualized risk-free rate, as per the long-term historical average. In the online Table A1, we use

2% and 6%, plus the annualized risk-free rate, as the cum dividend index return. We obtain virtually identical results

implying that our portfolios are insensitive to the choice of this parameter for all realistic values.We forecast the index

return volatility until the expiration date by using the CBOE VIX volatility adjusted by the mean forecast difference

between the VIX and the realized volatility from 1986 to the current date. Both the VIX and the realized volatility of

daily returns are measured in 4-week intervals without overlap, with the latter quantity defined as the square root of

252 times the mean squared daily return.12 The amount by which the VIX exceeds the realized volatility (the nega-

tive volatility risk premium) is provided in Figure A1 of our online appendix. The figure indicates that our estimate of

the average volatility risk premium is relatively stable over time at about 4.5%–4.8%. Further, in unreported results,

11Note that the lower this rate, themore arbitrage violations found.Withno transaction costs for the index andwith trading in options at thebid–askmidpoint,

virtually all options prices are rejected due to arbitrage violations (Ioffe & Prisman, 2013).

12Due to the importance of the measurement of this gap in identifying in-sample mispricing, we use two additional variants of the VIX forecast, both in terms

of the logarithm of the squared VIX. In the first variant, we measure the average difference between this quantity and a similar quantity for realized returns

as above. In the second variant, we regress this quantity for realized returns against a similar one for VIX and, at the trading date, we apply our estimates

to the previous day closing value of VIX to form a forecast. In this last variant, we also vary the length of the rolling window used to estimate the regression

coefficients.
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we verify the VIX as an estimate of the risk neutral volatility of the returns over the path to option expiration for our

three maturities by using the Heston (1993) stochastic volatility model with the parameter estimates of Bakshi, Cao,

andChen (1997). The observed VIX is approximately equal to the expected risk neutral path volatility, and this relation

is relatively insensitive to themean reversion speedparameter.We conclude that our volatility estimationmethodpro-

duces unbiased projections of the realized volatility over the path to maturity of the options. In our robustness checks

section, we also use GARCH-based volatility estimates and find similar anomalous out-of-sample results. Recall also

that the out-of-sample tests are independent of the index return volatility choice and all of the choices produce very

similar out-of-sample results.

There are fewer options available for our robustness checkswith the CAC andDAX indices. Although closing prices

are available from January 2002 for DAX and April 2004 for CAC, bid and ask option prices for both indices exist only

since 2006.We use the dataset that contains bid and ask prices to construct the trades and both datasets to construct

the volatility projections. In constructing our portfolios, we use the data from January 2006 to February 2013, with

the latter date corresponding to the end of our S&P 500 data. This results in 86 potential dates for options maturing

on the third Friday of each month, reduced to about 80 dates due to data availability and our requirement of choosing

from at least three call and put options after deletions due to violations of the no arbitrage conditions. For the latter,

we use the same approach and a0.1% transaction cost rate as in the S&P500options. Because the resulting sample has

less than one-third of the 278 dates available for the full sample of S&P 500 options, we also present results with the

January 2006–February 2013 S&P500 data tomaintain comparability among indices. The data selection and volatility

projections, which differ from the S&P 500 options, are described in detail in part C of our online appendix.

4 METHODOLOGY

We denote by IT (index trader) the investor who holds an optimal portfolio of the index and cash and by OT (option

trader) the investorwho holds the same portfolio as the IT plus the zero-net-cost portfolio with payoffA(St+1) atmatu-

rity. Our empiricalmethodology involves two steps. In the first step, for the portfolioswith options 28 days tomaturity,

we construct in-sample zero-net-cost portfolios at dates on which we have options with 28 days to maturity by apply-

ing Equations (2)–(5). This step is independent of any assumptions about the IT investor.We follow a similar procedure

to construct portfolioswith options 14 and7days tomaturity. In the second step,we verify out-of-sample the SDof the

OT investor’s terminal wealth relative to the IT investor’s terminal wealth by applying SD tests over the entire sample

period. Based on the Lemma stated in Section 2, the IT and OT comparisons are done on the basis of the time series of

the corresponding index values in their portfolios at the option expiration dates. The procedure is described in detail in

Section 2 and is only summarized here.

In our base case, the IT investor is an index fund holding 100,000 index units corresponding to approximately

$150 million in index holdings in our sample period. In this case, we consider the scale of trading in one option per

unit index as realistic. For instance, writing 0.5 calls with strike K1 and buying 0.5 calls or puts with strike K2 per unit

index exhaust our limit.13

At the beginning of the 28-day (or 14- or 7-day) period, t, we build a grid of feasible values of Ŝ, Ŝ > 0 that allows

us to find a zero-net-cost portfolio from among the universe of 28-day (or 14- or 7-day) options such that the payoff

A(St+1) in 28days (or 14days or 7 days) satisfies the conditions described in Equation (4) for an interval of values of St ≤
Ŝ ≤ 1.15St. For each such value of Ŝ, we choose the portfolio of options that maximizes the expected payoff, Et[A(St+1)]
as in Equation (5), subject to the Conditions (4). Thus, we form a set Ω(Ŝ) of OT portfolios that ex ante stochastically

dominate their IT counterparts. The procedure follows the LP formulation described in detail in Section 2. Finally, we

choose from the setΩ(Ŝ) the “best” portfolio according to a given criterion as described in Section 2.

13In unreported results, we also consider trade sizes not easily available, even for investors with large holdings, allowing trading for up to 1,000 options per

unit index. In this case, the expected return of theOT investor is higher.
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The search for the potentially mispriced portfolios takes place on a subset of the available options within the mon-

eyness range of the options that has already been limited by liquidity considerations according to the criteria specified

in Section 2. Essentially, our choice of portfolios incorporates the conditions of the Lemma at every single point of an

appropriately defined lower range of the support and imposes themaximization of the expected payoff. Specifically, we

assume lesser support for the index generally independent of the span of a given discrete return space. In the last step,

we select the portfolio corresponding to the value Ŝ that maximizes the given criterion, the Sharpe ratio in the base

case.

We carefully distinguish the period of the financial crisis, which we define as the 12 months after October 2008.

In the 1-month period before mid-October 2008, the index lost some 25% of its value that resulted in several unusual

opportunities in the options market in the followingmonths.

In the second phase, we compare the IT and OT portfolios at the option maturity and generate two time series of

realized returns. We compare the performance of the IT and OT portfolios in several ways. First, we derive bootstrap

p-values for a negative mean excess return. In addition, we apply the Davidson-Duclos (2013) (DD) test for restricted

second-order SD. This test is based on the null hypothesis of nondominance as opposed to several other tests where

the null is dominance andwould provide relativelyweak evidence, by finding a high p-value for the null because, by con-

struction, they do not reject anything. DDdemonstrates that the null of nondominance cannot, in principle, be rejected

over the entire joint support for the two examined prospects even if it exists in the population. Therefore, some points

in the tails of this joint support are removed from the search for theminimal t-stat that forms the basis of the bootstrap

procedure in the DD test.14

As noted in the introduction, the out-of-sample DD tests do not depend upon the portfolio selection criteria that

establish in-sample SD, namely, the VIX, themean index return, or the lognormality assumption. The only requirement

for the null of nondominance tests is that the two time series of observations be serially uncorrelated, a requirement

that is verified for all of the series used in our DD tests. For our base case with the Sharpe selection criterion, the 28-

day IT andOT portfolio returns and their difference have first-order autocorrelations of –0.039 (p-value .515), –0.062

(p-value .301), and –0.051 (p-value .396), respectively. The autocorrelations for the 14- and 7-day portfolios and for

the CAC andDAX indices are also statistically insignificant.

5 EMPIRICAL RESULTS ON SD

In Table 2, we present the results over the entire sample period from January 1990 to February 2013 for four different

portfolio selection criteria: (a) the Sharpe ratio, (b) the gain/loss ratio, (c) the Sortino ratio, and (d) the maximization

of Ŝ. 𝜇 is themean and 𝜎OT−IT is the volatility of the difference in the annualized percentage return between theOT and

IT portfolios. In the top panel, we present the results for the portfolios constructed 28 days prior to the options’ matu-

rity. Of the 278 dates, there are 270 dates with feasible portfolios. In the middle panel, we report the results for the

portfolios constructed 14 days prior to the options’ maturity. Of the 278 dates, there are 272 dates with feasible port-

folios. The results are provided in the bottom panel for the portfolios constructed 7 days prior to the options’ maturity.

Of the 278 dates, there are 272 dates with feasible portfolios. Statistical tests are performed based on the total num-

ber of dates. The p-values for the difference in means are derived via bootstrap with 10,000 draws. For the DD test,

10% trimming (deleting the sequentially lowest outcomes in either return set) in the left tail is uniformly performed,

while similar trimming in the right tail is as shown. The results of the DD tests without trimming in the right tail are not

provided as they are qualitatively the same as the p-values for the difference inmeans.

14The DD test considers a minimal t-stat in the restricted support. If there is no restriction in the left tail, a minimal t-stat is equal to one by construction.

Without any restriction in the right tail, the minimal t-stat in cases like ours will usually correspond to the difference in means whose statistical significance

is too strong a condition for SD. See Constantinides, Czerwonko, Jackwerth, and Perrakis (2011) where the application of the DD test in a similar situation is

described in detail and for evidence that the test is conservative in rejecting a false null.
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TABLE 2 Portfolio returns and stochastic dominance tests: January 1990–February 2013

DD test p-value
Portfolio selection
criterion 𝝁

p-Value for
𝝁 ≤ 0 𝝈OT 𝝈OT – IT 5% Trim 10%Trim

28-Day options

Sharpe ratio 0.50 .112 15.89 1.97 .039 0

Gain/loss ratio 0.92 .029 15.81 2.19 .008 0

Sortino ratio 0.45 .128 15.90 1.97 .045 0

max Ŝ 0.66 .057 15.92 1.89 .008 0

14-Day options

Sharpe ratio 2.07 .062 15.68 3.99 0 0

Gain/loss ratio 2.55 .026 15.64 3.79 0 0

Sortino ratio 1.82 .041 15.71 3.88 0 0

max Ŝ 2.15 .051 15.76 3.73 0 0

7-Day options

Sharpe ratio 1.90 .062 17.43 2.79 0 0

Gain/loss ratio 2.72 .008 17.36 2.49 0 0

Sortino ratio 2.24 .038 17.45 2.82 0 0

max Ŝ 2.22 .007 17.61 2.06 0 0

Notes: The table presents the results for four different portfolio selection criteria: (a) the Sharpe ratio, (b) the gain/loss ratio,
(c) the Sortino ratio, and (d) the maximization of Ŝ. 𝜇 is the mean and 𝜎OT – IT is the volatility of the difference of the annualized
percentage return between theOT and IT portfolios. In the top panel we present the results for portfolios constructed 28 days
to the optionmaturity. Of the 278 dates, there are 272 dateswith feasible portfolios. In themiddle panel, we report the results
for portfolios constructed 14 days to the optionmaturity. Of the 278 dates, there are 270 dates with feasible portfolios. In the
bottom panel, we provide the results for portfolios constructed 7 days to the option maturity. Of the 278 dates, there are 270
dateswith feasible portfolios. The volatility of the return of the 28-, 14-, and 7-day IT portfolios is 16.48%, 17.15%, and18.12%,
respectively. Statistical tests are performed on the basis of the total number of dates. The p-values for the difference in means
are derived under via bootstrapwith 10,000 draws. For theDD test, 10% trimming (deleting the sequentially lowest outcomes
in either return set) in the left tail is uniformly performed, while similar trimming in the right tail is as shown. The results of the
DD tests without trimming in the right tail are not shown as they are qualitatively the same as the p-values for the difference
inmeans.

For the portfolios constructed 28 days prior to the options’ maturity and for all of the selection criteria, the annu-

alized mean return of the OT portfolio exceeds the mean return of the IT portfolio by about 0.5%. With the exception

of the gain/loss ratio criterion, this difference is not statistically significant at conventional levels as we conservatively

restrict the scale of the zero-net-cost portfolio. The volatility of the annualized return of the IT portfolio is 16.48% and

is higher than the volatility of the OT portfolios. In Figure 2, we present the difference in returns between the OT and

IT portfolios as a function of the S&P 500 Index return for 28- and 14-day options. Consistent with the objective of

constructing OT portfolios that stochastically dominate the IT portfolios, the difference in returns is positive for the

low values of the index return and negative for the high values.

For the portfolios constructed 14 days prior to the options’ maturity and for all of the selection criteria, the annual-

ized mean return of the OT portfolio exceeds the mean return of the IT portfolio by well over 1% and this difference is

statistically significant at conventional levels for all of the portfolio selection criteria with the exception of the Sharpe

ratio. It is especially largeand significantunder thegain/loss ratio and themaximizationof Ŝ criteria. Thevolatility of the

annualized return of the IT portfolio is 17.15% and is higher than the corresponding volatility of theOT portfolios. This

improvement in performance for the 14-day options occurs in spite of higher proportional transaction costs with the

bid–ask spread at 8.7%, on average, for the ATM options compared to 6.5% for the 28-day options for similar average

levels forATM IV for bothmaturities.We look at possible drivers of this difference in trading results in the next section.
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For the portfolios constructed 7 days prior to the options’ maturity and for all of the selection criteria, the annu-

alized mean return of the OT portfolio exceeds the mean return of the IT portfolio by well over 1%. This difference is

statistically significant at conventional levels for all of the portfolio selection criteria. It is especially large and signif-

icant under the gain/loss ratio and the maximization of Ŝ. The volatility of the annualized return of the IT portfolio is

18.12% and is higher than the corresponding volatility of the OT portfolios. This improvement in performance for 7-

day options occurs in spite of the 9.8% average ATM proportional spreads for the 7-day options. We look at possible

drivers of this difference in trading results in the next section.

In unreported tests, we relax the assumption of lognormality used to derive the OT portfolios. For the underlying

distribution, we use an Edgeworth tree as in Rubinstein (1998) with the excess kurtosis and skewness set at 0.5 and

–0.5, respectively, roughly corresponding to the long-term empirical quantities for the S&P 500 Index. The increased

accuracy in approximating the underlying distribution of the index improves, as expected, the results in comparison to

the ones in Table 2, but the improvement in profitability is limited to about 0.3% per annum in the most extreme case

of the 7-day options. For these reasons, wemaintain lognormality as our base case.

The formal tests of SD resoundingly reject the null hypothesis of nondominance for the28-, 14-, and7-dayportfolios

and for all of theportfolio selection criteriawith theweakest results for the28-dayoptions forwhich thenull is rejected

only at 5% significance for 5% trimming in the right tail. In the 28-day option portfolios, the dominance is achieved by

keeping the samemean as IT, but reducing risk by shifting weight to the low return states. In most of the 14- and 7-day

portfolios, themean return significantly increases as well.

Note that the flexibility in portfolio choice achieved by the approach used in this paper finds dominating portfolios

for almost all cross-sections. In contrast, Constantinides et al. (2011) identify OT dominance in only about one-third to

one-half of the samplemonths.We conclude that the 28-, 14-, and 7-dayOT portfolios stochastically dominate their IT

counterparts. Furthermore, this conclusion is robust to all of the portfolio selection criteria.

These results remain unchanged when we drop the restriction on the maximal loss and allow the index to become

worthless at its lowest support. In unreported results, we find that the realized returns significantly increase for all

decision criteria for the 28-day options and become significant at the 5% level or better for all but the gain/loss ratio.

Exactly the opposite takes occurs for the 14- and 7-day options for which the results worsen and become nonsignif-

icant for all but the max Ŝ criterion. The realized returns remain essentially unchanged in terms of the SD tests and

demonstrate OT dominance in all cases.

An indicator of the mispricing of each option cross-section is the Sharpe ratio of the OT portfolio. In Panel A of

Figure 2, we present the time series of the Sharpe ratio of the OT portfolio for both the 28- and 14-day options in

the case where we maximize the Sharpe ratio. The Sharpe ratio is persistent and follows the same pattern for both

maturities. The similarities of the two graphs are remarkable given that they are derived 2 weeks apart and suggest

that SD opportunities in the S&P 500 options are persistent.

Another indicator of the mispricing of each option cross-section is the annualized expected gain, Et[A(St+1)
+]. In

Panel B of Figure 3, we present the time series of the expected gain for both the 28- and 14-day options in the case

where wemaximize the Sharpe ratio. The expected gain is evidently less persistent and is higher for the shorter matu-

rity portfolios.

In the online Table A.2, we divide the option portfolios into terciles based on the expected gain, Et[A(St+1)
+]. The

table demonstrates that the difference in the realized return between theOT and the IT portfolios is highest and SD is

most prevalent when the expected gain is the highest.

6 RELATION BETWEEN SD AND THE SMILE

In the online Tables A3–A5, we consider separately the SD tests for the low and high terciles of a given smile charac-

teristic (ATM IV, left skew, and right skew) for 28-, 14-, and 7-day options, respectively. Overall, the power of the tests
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Notes: The figure displays the time series for expected Sharpe ratio and the corresponding expected gain. The solid
lighter line corresponds to 28-day options, while the dashed darker line corresponds to 14-day options.

is diminished by the fact that we have only 92 observations in each tercile instead of 278 observations for the main

results in Table 2.

For all maturity options, themean difference of the annualized percentage return between theOT and IT portfolios

(𝜇) is significantly higherwhen theATMIV is in thehigh tercile of theATMIV. The formal tests of SD resoundingly reject

the null hypothesis of nondominance for all maturity options and for all of the portfolio selection criteria.We conclude

that SD is prevalent when the ATM IV is high. Similarly, we conclude that SD is prevalent when the right skew is low.

Alternatively, the classification of portfolios according to the steepness of the left skew does not provide consistent

results.

These results motivate our examination of the characteristics of the options that are included in the dominating

portfolios. We find that most of the trading occurs in call options, consistent with the above conclusion that the right

skew, but not the left one, influences our results.

7 CHARACTERISTICS OF THE DOMINATING PORTFOLIOS

7.1 Characteristics of the options in the zero-net-cost portfolios

In Table 3, we describe the composition of the zero-net-cost portfolios. The total number of contracts in each category

is the sum of the absolute values of the number of long and short contracts.We present the results for the entire avail-

able sampleperiodandbefore, during, andafter the financial crisis.Weprovide the results for theSharpe ratio portfolio

selection criterion, defined in Section 4, as the unreported results for the other criteria are qualitatively similar.

For the 28-, 14-, and 7-day options over the whole sample period and in the subperiod before the financial crisis,

the total number of call contracts is more than double the number of put contracts. In the subperiod after the financial

crisis, the total number of call contracts ismore than double the number of put contracts for the 14- and 7-day options,

but the total number of call contracts is about the same as the number of put contracts for the 28-day options.

For the 28-, 14-, and 7-day options over thewhole sample period and in the subperiods before and after the financial

crisis, the call positions are overwhelmingly short positions. Thus, the OT investor creates the dominating portfolio

by primarily writing calls, consistent with the observation that portfolio managers often write covered calls. The put

positions are evenly divided between the long and short positions before the crisis and are primarily short positions
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TABLE 3 Composition of option portfolios

Option
maturity
(days)

Total number of
call contracts

Number of
short call
contracts

Number of
long call
contracts

Total number
of put
contracts

Number of
short put
contracts

Number of
long put
contracts

January 1990–February 2013 (N= 278)

28 0.72 0.60 0.12 0.27 0.17 0.10

14 0.79 0.69 0.10 0.18 0.10 0.08

7 0.86 0.72 0.13 0.12 0.06 0.06

January 1990–October 2008 (N= 220)

28 0.79 0.65 0.14 0.21 0.11 0.10

14 0.81 0.70 0.11 0.17 0.09 0.08

7 0.87 0.73 0.14 0.12 0.06 0.06

November 2008–October 2009 (N= 12)

28 0.28 0.25 0.03 0.72 0.67 0.05

14 0.47 0.41 0.06 0.44 0.36 0.09

7 0.73 0.65 0.09 0.17 0.12 0.05

November 2009–February 2013 (N= 46)

28 0.50 0.46 0.04 0.44 0.32 0.12

14 0.78 0.69 0.09 0.15 0.08 0.08

7 0.83 0.71 0.12 0.08 0.04 0.04

Notes: We present results for the entire available sample period and before, after, and during the financial crisis. The total
number of contracts in each category is the sum of the absolute values of the number of long and short contracts. We present
the results when the selection criterion is the Sharpe ratio.

after the crisis. Thus, calls are more overpriced than puts despite the steep IV skew and consistent with the earlier

findings in Constantinides et al. (2009, 2011).

The 12-month period fromNovember 2008 to October 2009 of the financial crisis is different. The total number of

put positions is double the number of call positions. Furthermore, the put positions are overwhelmingly short positions.

Our interpretation is that during the crisis, prices overreacted to the prospect of a financial disaster and the slope of

the skew steepened to the point that it became attractive to theOT investor to write overpriced puts rather than calls.

For the 14- and 7-day options, we observe a gradual decrease in put trading as the maturity gets shorter. This

decrease is especially pronounced during the period of the financial crisis when we observe the majority of trading

in put options for 28 days to maturity, about equal trading in calls and puts for 14 days to maturity, and only a small

fraction of trading in put options for 7 days to maturity. We also find a gradual increase in short call positions as the

maturity gets shorter. OT put usage goes down sharply withmaturity, especially during the crisis. Becausewe keep the

lowest support at 0.6 for allmaturities, it is obvious that going down that far is going to bemuch less probable in shorter

time resulting in lower priced protective puts.

In Table 4, we present the percentage of the months out of the total number of sample months in which zero, one,

two, or three types of 28-day options are included in the optimal zero-net-cost portfolios. For example, in the first row

of the table, noOTM short calls are included in 11.7% of the samplemonths. OTM short calls with two different strike-

to-price ratios are included in 5.5% of the sample months. ATM calls are included in the category of ITM calls and ATM

puts are included in the category of ITM puts. We present the results when the selection criterion is the Sharpe ratio.

We obtain similar results whenwe use the other selection criteria.

Over the entire sample period and in the subperiods before and after the financial crisis, most of the calls and puts

in the optimal zero-net-cost portfolios are OTM options as opposed to ITM options (with ATM options included in the
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TABLE 4 Frequency of 28-day options in theOT portfolios

Option type 0 1 2 3 >0

January 1990–February 2013 (N= 278)

Short calls OTM 11.7 82.8 5.5 0.0 88.3

Short calls ITM 69.2 28.6 2.2 0.0 30.8

Long calls OTM 43.2 41.4 15.4 0.0 56.8

Long calls ITM 93.4 6.6 0.0 0.0 6.6

Short puts OTM 34.4 59.0 6.6 0.0 65.6

Short puts ITM 89.7 9.9 0.4 0.0 10.3

Long puts OTM 31.5 57.9 10.3 0.4 68.5

Long puts ITM 78.0 21.6 0.4 0.0 22.0

January 1990–October 2008 (N= 220)

Short calls OTM 7.0 87.4 5.6 0.0 93.0

Short calls ITM 71.6 26.0 2.3 0.0 28.4

Long calls OTM 35.3 46.5 18.1 0.0 64.7

Long calls ITM 91.6 8.4 0.0 0.0 8.4

Short puts OTM 40.9 57.7 1.4 0.0 59.1

Short puts ITM 87.4 12.1 0.5 0.0 12.6

Long puts OTM 36.7 53.5 9.3 0.5 63.3

Long puts ITM 80.9 18.6 0.5 0.0 19.1

November 2008–October 2009 (N= 12)

Short calls OTM 22.2 71.1 6.7 0.0 77.8

Short calls ITM 55.6 42.2 2.2 0.0 44.4

Long calls OTM 71.1 24.4 4.4 0.0 28.9

Long calls ITM 100.0 0.0 0.0 0.0 0.0

Short puts OTM 13.3 68.9 17.8 0.0 86.7

Short puts ITM 97.8 2.2 0.0 0.0 2.2

Long puts OTM 13.3 73.3 13.3 2.2 88.9

Long puts ITM 77.8 22.2 0.0 0.0 22.2

November 2009–February 2013 (N= 46)

Short calls OTM 58.3 41.7 0.0 0.0 41.7

Short calls ITM 75.0 25.0 0.0 0.0 25.0

Long calls OTM 83.3 8.3 8.3 0.0 16.7

Long calls ITM 100.0 0.0 0.0 0.0 0.0

Short puts OTM 0.0 41.7 58.3 0.0 100.0

Short puts ITM 100.0 0.0 0.0 0.0 0.0

Long puts OTM 40.0 55.6 2.2 4.4 62.2

Long puts ITM 77.8 22.2 0.0 0.0 22.2

Notes: We present the percentage of the months out of the total number of sample months in which zero, one, two, or three
types of options are included in the optimal zero-net-cost portfolio. For example, in the first row of the table, OTM short calls
with twodifferent strike-to-price ratios are included in5.1%of the samplemonths.ATMcalls (puts) are included in the category
of ITM calls (puts).We present the results when the selection criterion is the Sharpe ratio.
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category of ITM options). This is consistent with the observation that OTM options are more liquid than ITM options

and the volume of trading in OTMoptions are higher than the volume of ITM options.

Over the whole sample period and in the subperiods before and after the financial crisis, the OT investor primarily

transfers payoffs from the high market return states to the low market return states by writing OTM calls. In most

months, the OT investor writes only one and, at most, two types of OTM calls. In the subperiod before the financial

crisis, second in frequency of options included in the optimal zero-net-cost portfolios are long positions in OTM puts

and calls. In the subperiod after the financial crisis, second in frequency of options included in the optimal zero-net-

cost portfolio are long positions in OTM calls and long and short positions in OTM puts. Here, again, most often only

one type of option in each category is included in the portfolio. Of interest is also the observation that long and short

positions in OTM puts are approximately equal in size implying that the net OTM put position is hedged at the left tail

of the index support as required for SD. The put options appear to be aimed primarily at achieving a desirable payoff

pattern at low and intermediate parts of the support.

As we observed earlier, the period of the financial crisis is different. The OT investor primarily writes OTM puts.

Second in frequency of options included in the optimal zero-net-cost portfolio are short ITM and OTM calls and long

OTMputs. The long puts, both OTM and ITM, combine with the OTMputs to establish the net nonnegative position at

the left tail.

Over the entire sample period and in all of the subperiods, the option portfolios are parsimonious. For example, over

the whole sample period, OTM short calls of only one strike-to-price ratio appear in 82.8% of the sample months, but

only in 5.5% of the sample months do OTM short calls with two or more different strike-to-price ratios appear in the

option portfolios. The sameobservation applies to all of the other categories of options, ITMshort calls,OTM long calls,

and so on. The results for the 14- and 7-day options are similar to the results reported in Table 4 for the 28-day options

and are not shown.

In unreported results, we allow the OT portfolio to include a long or short position in the index, over and above the

initial position of one index unit, and include it as part of the payoffA(St+1) at optionmaturity. A priori, we do not expect

this variant of the program to result in additional acquisitions of the index as it would increase the left tail risk, contrary

to the objectives of SD. It may, however, potentially increase the attractiveness of writing puts.15 This relaxation of our

program brings in fact little change in the OT portfolio composition. Depending upon the portfolio selection criterion,

the OT portfolio does include a short position in the index at one or two dates in our sample with these dates corre-

sponding to the period of the financial crisis. We also estimate the portfolios after eliminating the 0.25% transaction

cost in the index. The main result is that the OT portfolios now contain positions in short index units that are about

10%–13%, on average, which allow some increase in the number of puts. The latter remain, however, much lower than

the calls in the OT composition. Otherwise, the excess returns of the OT portfolios remain approximately the same

even though their standard errors decrease and they become significantly positive everywhere.

7.2 Option characteristics in relation to the IV Smile

In Table 5, we present the characteristics of calls in relation to the ATM IV, left skew, and right skew from January 1990

to February 2013 period. We present the results for the Sharpe ratio portfolio selection criterion. Left (right) skew is

5%OTM IV (5% ITM IV) net of the ATM IV for a given cross-section. The total number of contracts in each category is

the sum of the absolute values of the number of long and short contracts. Each tercile for a given smile characteristic

corresponds to 92 observations.

In Table 4, we demonstrated that most of the calls in the optimal zero-net-cost portfolios are short contracts as

opposed to long ones. In Table 5, we establish that this conclusion is robust to the ATM IV and the size of the left and

right skew. The number of short calls is higher when the ATM IV is low and/or the right skew is high. Furthermore, the

15In principle, an increased quantity of the underlyingmay increase the attractiveness of writing calls. However, with our restriction of at most one call, there

is no need to carrymore of the underlying to arrive at the stochastically dominating payoff.
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TABLE 5 Characteristics of calls in relation to the smile: January 1990–February 2013

Lowest tercile Highest tercile

Option
maturity
(days)

Total number
of contracts

Number of
short
contracts

Number of
long contracts

Total number
of contracts

Number of
short
contracts

Number of
long contracts

ATM IV

28 0.92 0.72 0.20 0.44 0.40 0.04

14 0.90 0.78 0.12 0.64 0.57 0.06

7 0.88 0.74 0.14 0.83 0.71 0.12

Left skew

28 0.79 0.65 0.14 0.64 0.52 0.11

14 0.78 0.69 0.09 0.76 0.67 0.09

7 0.89 0.74 0.15 0.82 0.69 0.13

Right skew

28 0.48 0.43 0.06 0.91 0.73 0.18

14 0.63 0.57 0.06 0.92 0.79 0.14

7 0.81 0.70 0.12 0.90 0.74 0.15

Note: Left (right) skew is 5% OTM IV (5% ITM IV) net of the ATM IV for a given cross-section. The total number of contracts
in each category is the sum of the absolute values of the number of long and short contracts. Each tercile for a given smile
characteristic corresponds to 92 observations.We present the results when the selection criterion is the Sharpe ratio.

number of calls in the OT portfolio, both long and short, increases or stays the same in all cases as the maturity gets

shorter.

In Table 6, we present the corresponding characteristics for puts. The number of short and long puts is higher when

the ATM IV is high and/or the right skew is low. Here, the number of puts in the OT portfolio varies inversely with the

number of calls decreasing or staying the same in all cases for shorter maturities. This indicates that put overpricing is

much less pronounced for shorter maturities because the probability that there will be a crash until option expiration

is correspondingly lower. It is probable that the parallel increase in the number of calls noted in Table 5 takes place

because the constraint in the total number of options in the OT portfolio is now less binding on the calls that remain

overpriced.

Because over the whole sample period and in the subperiods before and after the financial crisis the OT investor

primarily transfers payoffs from the high market return states to the low market return states by writing OTM calls,

we address the question whether all types of options are needed for profitable OT portfolios. First, we allow trades in

only short calls, but not in long calls, long puts, and short puts without changing the programobjectives. Then, we allow

trades in both short and long calls, but not in puts. In unreported results, we find that with only short calls, the results

are weak. The inclusion of long calls improves the results, but there are still fewer feasible portfolios (234, 264, and

260, respectively, for the 28-, 14-, and 7-day options) than in Table 2. Thus, trading in long calls and in puts significantly

enhances the performance of theOTportfolios, even though these options are relatively less important thanOTMcalls

in most months.

7.3 Are the options in theOT portfolios special?

Our results beg thequestion as towhether theoptions in theoptimal portfolios are special. Recall that in the “first pass”

columns of Table 1, we find that the average number of separate contracts in the option portfolios is low exceeding four

in only one case. This is surprising given the number of available options in each cross-section. For the 28-day options,

this number rises from 16.4 in the beginning of the sample period tomore than four times asmuch in the later periods.
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TABLE 6 Characteristics of puts in relation to the smile: January 1990–February 2013

Lowest tercile Highest tercile

Option
maturity
(days)

Total number
of contracts

Number of
short
contracts

Number of
long contracts

Total number
of contracts

Number of
short
contracts

Number of
long contracts

ATM IV

28 0.08 0.04 0.04 0.54 0.37 0.17

14 0.10 0.05 0.05 0.29 0.16 0.13

7 0.10 0.05 0.06 0.15 0.08 0.07

Left skew

28 0.20 0.12 0.08 0.35 0.24 0.12

14 0.19 0.11 0.08 0.22 0.12 0.10

7 0.08 0.04 0.03 0.14 0.07 0.08

Right skew

28 0.51 0.34 0.17 0.09 0.05 0.04

14 0.29 0.17 0.13 0.08 0.04 0.04

7 0.15 0.08 0.07 0.07 0.03 0.04

Notes: Left (right) skew is 5% OTM IV (5% ITM IV) net of the ATM IV for a given cross-section. The total number of contracts
in each category is the sum of “the absolute values” of the number of long and short contracts. Each tercile for a given smile
characteristic corresponds to 92 observations.We present the results when the selection criterion is the Sharpe ratio.

In other words, the option portfolios containmore than 20%of the available options in the earlier cross-sections, but a

much lower proportion in the later ones.

We address whether our search for mispriced options exhausts the options that produce dominating OT portfolios

by removing the options that are included in the optimal portfolio, the first pass options from each cross-section, and

repeating the search with the remaining options in the cross-section. Only the cross-sections with at least three calls

and puts are admitted in the sample. The results are shown in online Part B. They are weaker than the main results in

Table 2, yet they remain strong for the 14-day and 7-day options. The statistical tests reject the null of nondominance

in all cases for these two sets of options. However, for the 28-day options, the null of nondominance is rejected only for

10% trimming in the right tail with the low overall means indicating little stability in the results.

7.4 Does theOT investor achieve higher returns by simply trading outliers from the IV

Smile?

A potential criticism of the SD of the OT portfolios over the IT portfolios is that the OT investor essentially adopts the

common trading strategy of buying options that lie below the IV smile and writing options that lie above it. Recall that

a higher mean return of the OT portfolio over the IT portfolio is a necessary, but not sufficient condition for SD. We

examine whether the observed higher mean return of the OT portfolios over the IT portfolios is attained by the OT

investor’s buying options that lie below the IV skew andwriting options that lie above it.

In each cross-section, we regress the spread midpoint of the IVi of all options that pass all our filters except for the

moneyness filter on each option’s moneyness, Ki∕St , and its squared value: IVi = a + b(Ki∕St) + c(Ki∕St)2 + ei. We run

separate regressions for puts and calls.

In Table 7, we report the means and t-stats of the residuals of the options that enter the optimal portfolios in units

of the annualized IV in percentage points. For example, for short calls in the first line of the table, the mean residual

0.09 implies that short calls in the optimal portfolio have, on average, annualized IV 0.09% above the skew. For all

three maturities, we observe similar average positive residuals. However, the corresponding standardized residuals
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TABLE 7 Regression residuals of options in the optimal portfolios: January 1990–February 2013

Residuals Standardized residuals

Option type
Number of
observations Mean t-stat Mean t-stat

28-Day options

Short call 346 0.09 1.47 −0.02 −0.35

Long call 469 −0.17 −3.37 −0.12 −2.48

Short put 226 0.19 2.89 0.13 1.46

Long put 278 −0.35 −8.14 −0.33 −7.68

14-Day options

Short call 371 0.07 1.38 −0.04 −0.52

Long call 482 −0.18 −3.85 −0.27 −3.76

Short put 203 0.17 2.74 0.17 1.38

Long put 225 −0.32 −5.74 −0.35 −5.78

7-Day options

Short call 340 0.08 1.39 −0.07 −0.58

Long call 512 −0.15 −3.38 −0.30 −3.24

Short put 135 0.18 2.41 0.10 0.69

Long put 157 −0.33 −5.35 −0.37 −3.70

Notes: The table presents the means and t-stats of the residuals of the options that enter the optimal portfolios in units of the
annualized IV in percentage points. For example, for short calls in the first line of the table, the mean residual 0.09 indicates
that short calls in the optimal portfolio have, on average, annualized IV 0.09% above the skew. The standardized residuals are
standardized eachmonth by the standard deviation of the residuals in that month.

are slightly below zero implying that the main ingredient of the zero net-cost portfolios is, on average, located almost

exactly at the smile. For all threematurities, short puts have, on average, positive residuals, whereas long calls and puts

have, on average, negative residuals. For all three maturities, residuals are generally larger for short puts. However,

as we argued previously, these categories of options bear less weight in zero-net-cost portfolios than short calls. The

residuals are standardized eachmonth by the standard deviation of the residuals in that month.

For all threematurities, the mean values of the residuals are positive for short positions and negative for long ones,

consistent with the above conjecture. The standardized residuals are statistically significant for the long calls and long

puts. However, we argue below that these results are economically insignificant.

Consider first the short calls in the 28-day option portfolios. These calls have a mean residual 0.09. Assuming that

the index price is one, the annualized volatility of the index is 18%, the dividend yield is 2%, the risk-free rate is 2%, and

the Vega of a 28-day ATM European call is 0.0011. That is, the call is overpriced by 0.09 × 0.0011 = 0.000099%. If the
OT investor were to write the maximum allowed number of such calls (one call per index unit), the sale of these calls

would increase the annualized excess return of theOT portfolio by 12 × 0.000099 = 0.12%.
We perform the corresponding calculations for the long calls, short puts, and long puts. If the OT investor were to

buy themaximumallowednumber of calls (one call per index unit), the purchase of these callswould increase the annu-

alized excess return of the OT portfolio by 0.2345%. If the OT investor were to buy the maximum allowed number of

puts, the purchase of these putswould increase the annualized excess return of theOTportfolio by 0.4827%.Addition-

ally, if theOT investorwere towrite themaximumallowed number of puts, thewriting of these putswould increase the

annualized excess return of the OT portfolio by 0.2650%. From the first row of Table 6, we know that the OT investor

writes, on average, 0.60 calls, buys 0.12 calls, writes 0.17 puts, and buys 0.10 puts. Therefore, the contribution to the

higher annual mean return of theOT portfolios in buying options that lie below the IV skew andwriting options that lie

above it is about 0.60 × 0.1188 + 0.12 × 0.2345 + 0.17 × 0.2620 + 0.10 × 0.4827 = 0.19%. This contribution is small

compared to the difference between themean return of theOT and IT portfolios, 𝜇, in Table 2.
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Repeating these calculations for the 14- and 7-day options produces the respective contributions of 0.21% and

0.29%, which yield even smaller fractions of the overall excess return of the OT portfolios. For the 7-day options, the

contribution is 0.79%, which is large, but still a fraction of the overall excess return of the OT portfolios. We conclude

that even though “expensive” or “cheap” options contribute to the excess return of the OT portfolios, they are not the

main driver of the SD results.

Apart from the fact that our portfolios incorporate realistic trading prices, which are not represented by the mid-

point prices used in the above exercise, they are chosen strategically in order to shift the probabilityweight to the “low”

states of the index return and attain superior risk-adjusted expected returns. A policy of trading outliers of the IV skew,

even if it can be achieved at zero cost, is unlikely to achieve ex post OT dominance without such features.

8 EXCESS RETURN OF THE OPTION PORTFOLIO REWARD FOR RISK

Our SD tests are based on the maintained hypothesis that the index return is the only priced factor and the stochastic

discount factor is monotone decreasing in the index return. This maintained hypothesis further implies that the docu-

mented excess returns of the OT portfolios, adjusted for market risk, are positive. In this section, we test whether the

excess returns of the OT portfolios are rewards for risks that are not taken into account in our theoretical setup. We

consider the three factors in Fama and French (1993), “Jump,” “Volatility Jump,” “Volatility,” and “Liquidity,” which have

been shown in Constantinides, Jackwerth, and Savov (2013), to explain the cross-section of S&P 500 option returns,

and the Christoffersen et al. (2013) extension of the Heston and Nandi (2000) stochastic discount factor, which is

U-shaped in index returns.

8.1 Construction of option portfolio returns over calendarmonths

We construct 28-day option portfolio returns with a holding period that approximately coincides with the calendar

months.16 At the beginning of a month, we construct the OT options portfolio by buying andwriting options that were

originally issued as 28-day options. One, 2, and 3weeks later, we close out our positions (or exercise them if they expire

and are in the money) and construct a new OT options portfolio by buying and writing options that were originally

issued as 28-day options. The 1-month excess return of the OT options portfolio, rOT,t , is the sum of the cash flows of

these trades divided by the index value at the end of the previousmonth.

TheOT portfolios are chosen in the presence of transaction costs as in the previous sections and then the bid or ask

price at which an option is written or purchased is replaced by the corresponding bid–ask midpoint, as is commonly

done in this literature. Unlike earlier studies, we do not assume that the put–call parity holds as to not to interferewith

the option market data. Because the short option positions now have higher prices and the long positions have lower

prices, the resulting realized excess OT payoffs are higher by about one-half the bid–ask spread.

8.2 Factor-adjusted option portfolio returns

For the first test, we adjust the excess returns of the OT options portfolio with the three factors in Fama and French

(1993) by running the time series regression:

rOT,t = 𝛼 + 𝛽MrM,t + 𝛽SMB rSMB, t + 𝛽HML rHML, t + 𝜀t,

16For our earlier results, we construct the OT option portfolios of the 28-day options by buying or writing the options when they are 28 days tomaturity that

is at the end of the third week of the month and holding them until expiration at the end of the third week of the following month. Thus, the holding period of

the 28-day options does not coincide with a calendar month.We also construct the OT option portfolios of the 21-, 14-, and 7-day options in a similar fashion.

The OT option portfolios of the 21- and 14-day options may or may not expire within the same calendar month, but the 7-day options expire within the same

calendar month. For our earlier results, it is immaterial that the holding period does not coincide with a calendar month.
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TABLE 8 Excess returns adjusted for risk with the Three Fama–French factors: January 1990–February 2013

𝜶 𝜷M 𝜷SMB 𝜷HML

0.64 −0.09 −0.02 −0.06

(0.07) (0.02) (0.01) (0.03)

Notes: The excess returns of the OT options portfolio are adjusted for risk with the three factors in Fama and French (1993)
by running the time-series regression rOT,t = 𝛼 + 𝛽MrM,t + 𝛽SMBrSMB,t + 𝛽HMLrHML,t + 𝜀t , where rOT,t , rM,t , rSMB,t ,and rHML,tare the
excess returns of the OT, market, small-minus-big, and high book-to-market minus low book-to-market portfolios in month t.
Standard errors are in parentheses andNewey-West (1987) corrected using four lags.

TABLE 9 Excess returns adjusted for risk with the Constantinides et al. factors: January 1990–February 2013

Jump Volatility jump Volatility Liquidity

Risk premia estimated from equities

0.75 0.41 0.67 0.65

(0.07) (0.07) (0.07) (0.07)

Risk premia estimated from options

0.88 0.35 0.69 0.72

(0.07) (0.07) (0.07) (0.07)

Notes: The excess returns of the OT options portfolio are adjusted for market risk and one of the factors “Jump,” “Volatility
Jump,” “Volatility,” or “Liquidity” as rOT,t − 𝛽MrM,t − 𝛽f𝜆f , where the risk prices of these factors, 𝜆Jump , 𝜆VolJump , 𝜆Vol , and 𝜆Liq, are
estimated in Constantinides et al. (2013) either from the universe of equities or from the universe of index options. Standard
errors are in parentheses andNewey-West (1987) corrected using four lags.

where rOT, t , rM, t , rSMB, t , and rHML, t are the excess returns of the OT, market, small-minus-big (SMB), and high book-to-

market minus low book-to-market (HML) portfolios in month t and 𝛼 is the risk-adjusted average excess return of the

OT portfolio. Table 8 indicates that the risk-adjusted average excess return of the OT portfolio is positive and highly

significant partly because the factor loadings on the SMB and HML factors are small and marginally significant. We

conclude that the three-factor model in Fama and French (1993) does not explain away the average excess return of

theOT portfolio.

For the second set of tests, we adjust the excess returns of the OT options portfolio with the market and, each one

in turn, the factors Jump, Volatility Jump, Volatility, and Liquidity that have been shown in Constantinides et al. (2013)

to explain the cross-section of S&P 500 option returns. In the first stage, we estimate the factor loading 𝛽f from the

time series regression rOT,t = 𝛼 + 𝛽MrM,t + 𝛽f ft + 𝜀t , where rOT,t and rM,t are the excess returns of the OT and market

portfolios and ft is the realization of the factor Jump, Volatility Jump, Volatility, or Liquidity. The risk prices of these

factors, 𝜆Jump, 𝜆VolJump, 𝜆Vol , and 𝜆Liq, are estimated in Constantinides et al. (2013) over the same time period either

from the universe of equities or from the universe of index options. In the second stage, we estimate the risk-adjusted

average excess portfolio return, rOT,t − 𝛽MrM,t − 𝛽f𝜆f . Table 9 indicates that the risk-adjusted average excess return of

theOT portfolios is positive and highly significant in all cases.We conclude that the Constantinides et al. (2013) model

does not explain away the average excess return of theOT portfolios.

8.3 Option portfolio returns adjusted for risk and valuedwith the Christoffersen et al.’s

stochastic discount factor

Jackwerth (2000) was the first to introduce a nonmonotonic stochastic discount factor to explain option prices. Non-

monotonicity under the form of a U-shaped stochastic discount factor is, in fact, the explanation given for the anoma-

lous in-sample results for individual options in Beare (2011), Constantinides et al. (2009) by Bakshi et al. (2010), and

Beare and Schmidt (2016). A U-shaped stochastic discount factor captures an important empirical observation for
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TABLE 10 Excess returns adjusted for risk with the Christoffersen et al. stochastic discount factor: January
1990–February 2013

Excess return Risk-adjusted excess return
Option
maturity
(days) 𝝁 t-stat

t-stat
95% LCI

t-stat
95%UCI 𝝁 t-stat

t-stat
95% LCI

t-stat
95%UCI

A: Index returns

28 0.78 2.68 −1.89 2.05 −2.2× 107 −1.00 −1.16 2.3 × 105

21 0.93 2.72 −1.83 2.11 −1.5× 107 −1.00 −1.16 6.8 × 105

14 0.93 2.17 −1.90 2.03 −2.3E × 104 −1.00 −1.16 2.8 × 103

7 1.65 2.58 −1.90 2.03 −1.9× 104 −1.00 −1.16 1.5 × 103

B: OT portfolios

28 5.53 2.06 −2.53 1.65 5.8 × 106 1.00 −5.2× 104 1.16

21 7.40 4.74 −2.52 1.70 2.1 × 106 1.00 −1.1× 105 1.16

14 6.77 2.63 −1.56 2.66 1.3 × 104 1.01 −2.1× 102 1.17

7 18.00 1.23 −5.47 1.34 2.1 × 105 1.00 −9.4× 103 1.16

Notes: The table displays the average monthly excess return and the risk-adjusted excess return of the index and the OT port-
folio in percent. Confidence intervals on t-statistics are derived via a bootstrap procedure as in Christoffersen et al. (2013,
table 2).

extreme positive index returns. These returns occur when the overall volatility is very high in situations after a mar-

ket crash, as it happened for about a year following the recent financial crisis.

We examine whether the U-shaped stochastic discount factor correctly prices the identified OT portfolios. We

apply the Christoffersen et al. (2013) extension of the Heston and Nandi (2000) stochastic discount factor, which is

U-shaped in index returns and may potentially explain away the average excess return of the OT portfolio. This is the

only such model available in the literature containing closed-form expressions for both options and the stochastic dis-

count factor. We present the essential features of this model and defer the technical details to the appendix. The key

feature of this model is that only one parameter, 𝜉, is defined by option market data, while the remaining parameters

are extracted from the underlyingmarket.

We start by estimating the parameters of the real distribution with GARCH on the daily returns. Because the U-

shaped stochastic discount factor depends upon the entire volatility path from the beginning of the month until the

option expiration, we filter out the realized volatilities from the realized index returns given that they both depend on

the same random factor.We then determine the extra volatility pricing parameter 𝜉 needed to price the entire universe

of options from the closed-form expressions and the observed option prices. This parameter is chosen by maximizing

the likelihood for our data. The results for the smaller value of this parameter found in Christoffersen et al. (2013)

are qualitatively similar. To compute the realized stochastic discount factor at time t, SDFt , we multiply the realized

volatility by 𝜉.

Table 10 presents the average risk-adjusted excess return of the OT portfolios, SDFt × rOT,t ,where rOT,t is the real-

ization of the excess return of theOT portfolios at time t. The risk-adjusted excess returns on theOT portfolios assume

extreme positive values due to the extreme variation in the SDF for the realized paths of the conditional volatility

whose variation results in all of the t-statistics in the proximity of one. Moreover, the stochastic discount factor is

unable to correctly price the index whose risk-adjusted returns assume extreme negative values. We conclude that

the Christoffersen et al. (2013) stochastic discount factor does not explain away the average excess return of the OT

portfolios.

Finally, we examine whether the observed OT option prices are consistent with the U-shaped stochastic discount

factor as extracted from the entire optionmarket data. For this, it suffices to compare the predictedmodel prices with

the realized ones in an exercise that parallels the one conducted by Christoffersen et al. (2013, table 2 and pp. 1992–
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TABLE 11 Frictionless returns on optimal portfolios and straddles: January 1990–February 2013

Optionmaturity
(days) 𝝁MARKET 𝝁MODEL 95% LCI 95%UCI

OT portfolios

28 5.59** 20.35*** 0.64 11.13

21 7.77*** 20.55*** 4.55 10.65

14 7.36*** 15.02*** 1.20 11.37

7 18.28* 43.91*** −3.49 50.76

Straddles

28 0.61*** 2.08** 0.23 0.95

21 0.48** 1.92*** 0.04 0.87

14 0.83*** 1.99*** 0.33 1.28

7 1.38*** 1.94*** 0.65 2.12

Notes: The table displays monthly frictionless average excess returns on OT portfolios and straddles, as well as 95% bootstrap
confidence intervals for market returns in percent. The symbols *, **, and *** denote statistical significance at the 10%, 5%, and
1% levels, respectively, via bootstrap with 10,000 draws. p-Values for this test are consistent with bootstrapping t-statistics as
in Christoffersen et al. (2013, table 2).

1994) for a policy of shorting straddles that is found to be highly profitable in several studies.17 In that exercise, the

authors consider short straddles worth 10% of the underlying index and conclude that the straddle returns at model

prices are consistent with those observed in the market as they are within the 95% bootstrapped confidence interval

around themarket returns.

Table 11 presents the realized average returns at market and model prices for the OT portfolios and straddles, as

well as the 95%confidence intervals around themarket returns bootstrapped as inChristoffersen et al. (2013, table 2).

Because these returns consist of the initial portfolio prices and the realized payoffs that are identical in both cases, the

difference betweenColumns 2 and3 in all of the panels comes solely from themarket andmodel prices. Recall also that

the model prices are the expected payoffs of the options in the portfolios evaluated by the risk neutralQ distribution

of the returns and volatilities and the same value of the parameter 𝜉 as in Table 10. To preserve comparability with

the Christoffersen et al. (2013, table 2) results, we normalize the OT portfolios to yield the same initial premium as

the 10% of the underlying index collected via the short straddles at each date, while the portfolio excess returns are

derived relative to one unit of index as before.

The highly significant straddle returns in our table can be compared to those of Christoffersen et al. (2013, p. 1982

and table 2) only for the 28-day options for which the Christoffersen et al. (2013) results are more than twice as high

reflecting the post-crisis years in our data. In contrast, theirmodel returns at 1.82%are of the sameorder ofmagnitude

as ours in Column 3 of Panel B. Alternatively, it is clear that for the same collected premium, the optimal OT portfolios

yield higher returns, but not necessarily lower p-values than the corresponding straddles. Similarly, in Panel C of the

table, we find that the difference in means between the OT portfolios and straddles is always significant at 10% or

better.

Most important, however, is the fact that the model prices lie far above the 95% confidence interval around the

market price in the second column for the OT portfolios and the straddles, as well as their differences. This is in

sharp contrast to the consistency between the market and model prices observed in the earlier study for the 28-day

options. This inconsistency holds for the28-, 21- and14-dayOTportfolios and straddles, andonly for the highly volatile

7-daymaturityoptionsdo theOTportfolio and straddle confidence intervals encompass themodel prices.Weconclude

17The literature on the anomalous straddle returns includes Broadie, Chernov, and Johannes (2007, 2009), Christoffersen, Heston, and Jacobs (2013), Coval

and Shumway (2001), Driessen andMaenhout (2007), and Santa Clara and Saretto (2009).
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that the observed option prices in the OT portfolios are not consistent with the Christoffersen et al. (2013) U-shaped

stochastic discount factor.18

9 ROBUSTNESS TESTS

9.1 MispricedOT portfolios for the CAC andDAX indices

In the online TableC1,we provide the results for themispriced 28-, 14-, and 7-dayOTportfolios extracted fromoptions

on the CAC and DAX indices, together with the contemporaneous sample of the January 2006–February 2013 S&P

500 options. For the weekly options, the sample starts in June 2006. Weekly options (i.e., S&P 500 and DAX options)

that are listed about 1week before thematurity on Fridays other than the third Friday of a givenmonth are considered

separately. We use the Sharpe ratio criterion and show all of the information presented for that criterion in Table 2,

together with the sample sizes in each case and the dates where feasible dominating OT portfolios could be extracted.

The table indicates that the results for all of the indices are qualitatively similar, although the feasibility is somewhat

reduced for the two European indices from the impressive 272 of 278 (approximately 98%) in the entire sample of the

S&P 500 Index, which is virtually the same in the shorter sample. Still, the feasibility is more than 90% in all but one of

the six cases inwhich it is 82%. The strongmaturity effect on in-sampleOTprofitability is clear for all three indices,with

the 7-day options recording an impressive excess return of over 5% everywhere, much higher than for the entire S&P

500 sample in Table 2. The similarity of the results for all three indices extends to the out-of-sample DD tests, which

are not significant for the 28-daymaturity OT portfolios, but strongly significant for the other twomaturities. The size

of the time series sample accounts for the difference between the first panel of Table 2 and the last panel of the online

Table C1. We conclude that the mispricing effect of the OT portfolios dominating the index extends to the two other

indices that are examined.

The results for the weekly options for the S&P 500 and DAX are similar to each other, but distinct from the results

for the 7-day options. Weekly options exhibit both lower profitability and lower feasibility in relation to their 7-day

counterparts. The profitability decreases fromover 5% to about 2%per annum,whereas the feasibility decreases from

well over 90% to about 75% for the S&P 500 and to 50% for DAX.

9.2 Alternative volatility projections for the return distribution

Volatility projections are a key element of our SD tests. Our base case method is forward-looking in the sense that

it uses the VIX, which is corrected on the basis of the observed average error for its well-known upward bias. Here,

we also consider alternative projection methods based on two GARCHmodels, the Glosten, Jagannathan, and Runkle

(1993) and the exponential EGARCHmodel of Nelson (1991), as well as an ad hoc randomwalk volatility model.

The following expressions indicate the assumed dynamics under the two daily GARCHmodels with t and t + 1 indi-

cating two successive days and htthe variance at t.

GJR:

ln
St+1
St

= 𝜇 +
√
ht𝜀t+1, ht = 𝜔 + (𝛼 + 𝛾It−1)𝜀2t−1 + 𝛽ht−1, It−1 = 0 if 𝜀t−1 ≥ 0, It−1 = 1 if 𝜀t−1 < 0,

and EGARCH:

ln
St+1
St

= 𝜇 +
√
ht𝜀t+1, ln (ht) = 𝜔 + 𝛼(||𝜀t−1|| − E ||𝜀t−1||) + 𝛾𝜀t−1 + 𝛽 ln (ht−1),

where 𝜀t+1 is the standard normal conditional on the information set at time t. For the GJRmodel, the following recur-

sive expression allows the estimation of total return volatility over the life of the option: ht+1 = 𝜔 + (𝛼 + 𝛾

2
+ 𝛽)ht .

18In unreported results, we reverse the exercise and determine that the value of 𝜉that correctly prices theOT portfolios generates highly biasedmodel prices

for the entire cross section.
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TABLE 12 Portfolio returns and stochastic dominance tests in relation to volatility forecast: January
1990–February 2013

DD test p-valueOption
maturity
(days)

Number of
feasible dates 𝝁

p-Value
for𝝁 ≤ 0 𝝈OT 𝝈OT− IT 5% Trim 10%Trim

A: GJR

28 218 0.45 .170 15.50 2.57 .029 .000

14 215 1.23 .019 16.34 1.91 .000 .000

7 222 1.53 .082 17.04 2.60 .000 .000

B: EGARCH

28 224 0.32 .235 15.79 2.11 .125 .007

14 225 1.25 .018 16.39 1.92 .000 .000

7 222 2.08 .053 17.11 2.85 .000 .000

C: Randomwalk

28 243 −0.30 .682 15.38 2.85 1.000 1.000

14 235 1.27 .005 16.61 1.51 .010 .000

7 239 0.93 .176 17.33 2.25 .000 .000

Notes: 𝜇 is the mean and 𝜎OT−IT is the volatility of the difference in the annualized percentage return between the OT and
IT portfolios. The volatility of the return of the 28-, 14-, and 7-day IT portfolios is 16.48%, 17.15%, and 18.12%, respectively.
Statistical tests are performed on the basis of the total number of dates. The p-values for the difference in means are derived
via bootstrap with 10,000 draws. For the DD test, 10% trimming (deleting the sequentially lowest outcomes in either return
set) in the left tail is uniformly performed,while similar trimming in the right tail is as shown. The results of theDDtestswithout
trimming in the right tail are not reported as they are qualitatively the same as the p-values for the difference in means. The
table presents the results when the selection criterion is the Sharpe ratio.

For each GARCH application, we estimate the model coefficients over a rolling window of 3,800 daily observations

corresponding to approximately 15 years of data. For the GJR model, we project the volatility by summing the fore-

casted conditional variances given the estimated coefficients and the above recursive expression. For the EGARCH

model, we sum the forecasted conditional variances evaluated by simulating 100,000 return paths. Randomwalk pro-

jected volatility is simply the sample volatility realized just before each trading date over the same number of days as

the option maturity. Table 12 presents the results for the Sharpe ratio criterion for the 28-, 14-, and 7-day maturities,

which should to be compared to our base case adjusted VIXmethod in Table 2.

We find evidence of mispricing in all of the panels that is confirmed ex post at all maturities for either the GJR or

EGARCH forecast methods with somewhat lower profitability compared to our base case except for the 7-day options

under the EGARCH forecasts. The results are generally weaker for the random walk case insofar as they exhibit no

evidence of SD for the 28-day options either in-sample or ex post. All three models, especially the two GARCH ones,

also yield a significantly lower number of feasible dates than our base case.

In unreported results, we further analyze the relationship between the quality of the forecasts and the SD results

by estimating basic statistics, such as the bias and the variability of the forecast error 𝜀t,P ≡
√
ht,PRED −

√
ht,OBS, pre-

dicted minus observed volatility. We find that VIX-adjusted is at par with both GARCH models with respect to the

forecast quality, but both GARCH models produce positive biases of similar magnitude that are similar to the neg-

ative bias for the adjusted VIX. The random walk produces a small bias, but its forecast error dispersion measures

are clearly inferior to the other three methods. These results explain the lower number of feasible dates for the two

GARCHmethods because the net short position of our OT portfolios tends to produce lower in-sample expected pay-

offs when the predicted volatility is high. We conclude that the mispricing of the OT portfolios exists in all of the

volatility prediction models and that the adjusted VIX method is the most efficient of all candidate methods in iden-

tifying them.
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TABLE 13 Trading results with restricted option choices: January 1990–February 2013

DD test p-valueOption
maturity
(days) 𝝁

p-Value for
𝝁 ≤ 0 𝝈OT 𝝈OT− IT 5% Trim 10%Trim

Optimal portfolios ex call upper bound violations

28 0.04 .458 15.81 1.88 .241 .003

14 0.70 .175 16.13 2.46 .009 .000

7 1.31 .096 17.15 2.39 .000 .000

Optimal portfolios composed of calls

28 −0.10 .531 14.79 4.84 1.000 1.000

14 0.93 .295 14.71 6.00 .007 .007

7 1.33 .298 16.17 6.06 .005 .000

Optimal portfolios composed of puts

28 −0.24 .843 16.31 0.98 1.000 1.000

14 −0.27 .797 16.83 1.24 1.000 1.000

7 −0.22 .764 17.90 1.30 1.000 1.000

Notes: The first panel presents the results when we exclude calls that violate the Constantinides and Perrakis (2002) upper
bound. The second panel reports the results when puts are excluded. The third panel provides the results when calls are
excluded. 𝜇 is themean and 𝜎OT− IT is the volatility of the difference in the annualized percentage return between theOT and IT
portfolios. Statistical tests are performedon the basis of the total number of dates. The p-values for the difference inmeans are
derived via bootstrap with 10,000 draws. For the DD test, 10% trimming (deleting the sequentially lowest outcomes in either
return set) in the left tail is uniformly performed, while similar trimming in the right tail is as shown. The results of theDD tests
without trimming in the right tail are not provided as they are qualitatively the sameas the p-values for the difference inmeans.

9.3 Trading results with restricted option choices

We find that the OT portfolios uncover violations that go beyond the violations of the Constantinides-Perrakis (2002)

call upper bounds by eliminating these violating call options from the choice set. This involves eliminating them from

212, 183, and 199 cross-sections, respectively, for the 28-, 14-, and 7-day maturities. The results are presented in the

first panel of Table 13. TheOTportfolios stochastically dominate the IT portfolios for all of thematurity options, butwe

reject thehypothesis that the expected returnof the ITportfolios is lower than the expected returnof theOTportfolios

only for the 7-day options. In unreported results, we choose the OT portfolios after replacing the violating call options

with their upper bounds and find that the expected return of theOT portfolios is significantly higher than the IT return

for both the 14- and 7-day options.

We then consider some popular and allegedly profitable strategies: covered calls, put vertical spreads, and butterfly

spreads. We restrict the choice set for the OT portfolios to calls only. The results are reported in the second panel of

Table13. TheOTportfolios stochastically dominate the ITportfolios for 14- and7-dayoptions, butwe cannot reject the

hypothesis that the expected return of the IT portfolios is lower than the expected return of the OT portfolios for any

of thematurity options. Finally, we restrict the choice set for theOT portfolios to puts only. The results are provided in

the third panel of Table 13. The OT portfolios do not stochastically dominate the IT portfolios for any of the maturity

options and we cannot reject the hypothesis that the expected return of the IT portfolios is lower than the expected

return of theOT portfolios for any of thematurity options. In unreported results, we restrict theOT choice set toOTM

options for both calls andputs. The excess returns decrease by a factor of two for all threematurities and are significant

only for the 7-day options.

We conclude that the OT portfolios are profitable because they contain both OTM and ITM calls and puts and both

long and short positions. The portfolios cannot be explained by call or put butterflies or vertical spreads and are not

an extension of the profitable covered calls identified in Constantinides et al. (2011). Further, the observed ITMoption

prices that are ignored inmost frictionless studies are significant contributors to the portfolios’ profitability.
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TABLE 14 Frictionless portfolio returns and stochastic dominance tests: January 1990–February 2013

Costless trading in the index and options

DD test p-valueOption
maturity
(days) 𝝁

p-Value for
𝝁 ≤ 0 𝝈OT 𝝈OT− IT 5% Trim 10%Trim

28 0.41 0.00 16.39 0.49 0.00 0.00

14 0.63 0.00 16.97 0.43 0.00 0.00

7 0.88 0.00 17.96 0.38 0.00 0.00

Portfolio composition for costless trading in the index and options

Total
number
of calls

Number of
short call
contracts

Number of
long call
contracts

Total
number
of puts

Number of
short put
contracts

Number of
long put
contracts

Number of
short index

28 0.46 0.10 0.36 0.50 0.43 0.07 0.36

14 0.49 0.10 0.39 0.51 0.48 0.03 0.45

7 0.50 0.12 0.37 0.50 0.49 0.01 0.37

Notes: 𝜇 is the mean and 𝜎OT− IT is the volatility of the difference in the annualized percentage return between the OT and IT
portfolios. In the top panel, we present the results for portfolios constructed under costless trading in the index and options.
For all of the dates, there are feasible portfolios. The volatility of the return of the 28-, 14-, and 7-day IT portfolios is 16.48%,
17.15%, and 18.12%, respectively. Statistical tests are performed on the basis of the total number of dates. The p-values for
the difference inmeans are derived via bootstrapwith 10,000 draws. For theDD test, 10% trimming (deleting the sequentially
lowest outcomes in either return set) in the left tail is uniformly performed, while similar trimming in the right tail is as shown.
The results of theDD testswithout trimming in the right tail are not provided as they are qualitatively the same as the p-values
for the difference inmeans. In the bottompanel, we present the results for these portfolios’ composition.We report the results
for the entire available sample. The total number of contracts in each category is the sum of the absolute values of the number
of long and short contracts. The table provides the results when the selection criterion is the Sharpe ratio.

9.4 SD in a frictionless world

Earlier studies that ignore transaction costs find that it is puts rather than calls that are typically overpriced. In contrast,

we find that the options portfolios contain farmore short calls than long calls, short puts, and long puts suggesting that

it is calls rather than puts that are overpriced, except during the financial crisis fromNovember 2008 toOctober 2009

(Table 3).

We explain this difference by applying our portfolio selection algorithm to the frictionless universe of options as

defined in most studies. First, we calculate the average of the bid and ask prices (Pav) of OTM calls and OTM puts. We

then calculate the corresponding prices (Pav) of ITM calls and ITM puts from the average prices of the corresponding

of OTM calls and OTM puts through the put–call parity. The ITM options that appear in more than 30% of the cross-

sections play no role in this frictionless data. Finally, we obtain the set of adjusted prices (Padj) by minimizing the sum

of squared deviations (Padj − Pav)2 subject to the condition that there are no convexity violations. The resulting adjust-
ments never exceed a few cents.

The results of our algorithm for the Sharpe ratio criterion are shown in in the first panel of Table 14 for all three

maturities. The average OT excess payoffs have much lower means than the equivalent Table 2 entries, but also very

low volatilities and are strongly significant. Themajor differencewith the results under frictions lies in the composition

of the OT portfolios shown in the bottom panel. Compared to our base case in Table 3, we find that the shifting of

payoffs to the low end of the support of the index by shorting calls that take 65% or more of the portfolio in all three

maturities now takes only about 10%, while the long calls significantly increase. The payoff shifting now takes place

by the adoption of relatively large positions in the short index and a large increase in short puts. Thus, put options

appear overvalued in frictionless data, even though trading in them to eliminate the over valuation is not feasible under

realistic conditions that account for the bid and ask prices. This resolves the differenceswith earlier studies that ignore

transaction costs.
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10 CONCLUDING REMARKS

We demonstrate that at least some S&P 500 options are significantly mispriced relative to the index. A utility-

maximizing investor holding the S&P500 Index and a risk-free bond, subject to proportional transaction costs, stochas-

tically dominates their portfolio by overlaying a zero-net-cost portfolio of European S&P 500 options of 28-, 14-, or

7-daymaturities bought at their ask price andwritten at their bid price in almost everymonth from 1990 to 2013. The

mispricing is strongest in short maturity options. The portfolios include about twice the number of calls than puts and

the call positions are overwhelmingly short positions, consistent with the practice of writing covered calls. This contra-

dicts the common belief that puts, but not calls, are overvalued, which we attribute to the neglect of trading costs and

the methodology of creating a frictionless option universe. Similar results are obtained with options on the CAC and

DAX indices. Themispricing is explained by neither priced factors nor a nonmonotonic stochastic discount factor.

Our SD methodology uses the same assumptions as the recent working paper by Post and Longarella (2018) who

find mispriced zero-net-cost option portfolios that produce in-sample SD for OTwhen added to the index. The deriva-

tion of the OT option portfolios uses a different LP, which produces higher expected out-of-sample expected returns

that were, however, more volatile and did not survive the DD out-of-sample tests. A reconciliation of the two studies’

methodologies transcends the subject of this paper.

There are a number of possible reasons as to why this mispricing persists. Index funds and ETFs minimize tracking

errors and the inclusion of options in their portfolios would likely increase tracking errors. Passive mutual funds may

find it difficult to communicate to their investors the benefits of SD and may be unsuitable for investors seeking quick

returns. Other active mutual funds and hedge funds may not hold the market portfolio as they have different targets,

such as picking winners or enhancing portfolio returns by skewing their holdings toward small capitalization, value, or

high profitability stocks. Finally, option traders’ and intermediaries’ credit constraints and funding liquiditymay distort

the prices of index options. In any case, it remains to be seenwhether this paper’s demonstration of the largeOTexcess

returns will alter investors’ behavior and eliminate the documented anomaly.
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APPENDIX: THE CHRISTOFFERSEN ET AL . ’s (2013) EXTENSION OF THE HESTON AND

NANDI’s GARCH PROCESS

Wemodify our notation by denoting the optionmaturity timeby Tinstead of t + 1 and estimate aGARCHmodel, the

physical or P-distribution of daily index return data over a time period that covers the entire dataset and includes all

optionmaturities. The risk-neutral orQ-distribution is derived from the stochastic discount factor that transforms the

parameters of the physical distribution and includes parameters reflecting investor preferenceswith respect to return

and volatility. The asset dynamics are given by:

ln(S𝜏 ) = ln(S𝜏−1) + r + (𝜇 − 1
2
h𝜏 ) +

√
h𝜏𝜀𝜏

h𝜏 = 𝜔 + 𝛽h𝜏−1 + 𝛼(𝜀𝜏−1 − 𝛾

√
h𝜏−1)2, 𝜏 = 1,… , T, (A1)

where T denotes the upper range of the return data.

Because the conditional density of the daily GARCH returns is normal, the log-likelihood function is19:

log LP = −1
2

T∑
t+1

⎛⎜⎜⎝ln(h(𝜏)) +
[ln S𝜏 − ln S𝜏−1 − r − (𝜇 − 1

2
h(𝜏))]

2

h(𝜏)

⎞⎟⎟⎠. (A2)

19See Christoffersen et al. (2013, p. 1986).

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3174068
https://doi.org/10.1111/fima.12288
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The corresponding risk neutral process has the same form as (A1), but has an instantaneous expected return equal

to r and a volatility parameter set ΩQ = {𝜔 ∗, 𝛽 ∗, 𝛼 ∗, 𝛾 ∗}, with parameters transformed via the stochastic discount

factor taking the form:20

MT

Mt
=
(
ST
St

)𝜑

exp(𝛿T + 𝜂

T∑
t+1

h𝜏 + 𝜉(hT+1 − ht+1)). (A3)

The stochastic discount factor parameters (𝛿, 𝜂, 𝜑, and 𝜉) are linked to the P-distribution setΩP and to each other

by the following relations:

𝛿 = −(𝜑 + 1)r − 𝜉𝜔 + 1
2
ln(1 − 2𝜉𝛼);𝜑 = −(𝜇 − 1

2
+ 𝛾)(1 − 2𝜉𝛼) + 𝛾 − 1

2

𝜂 = −(𝜇 − 1
2
)𝜑 − 𝜉𝛼𝛾2 + (1 − 𝛽)𝜉 − (𝜑 − 2𝜉𝛼𝛾)2

2(1 − 2𝜉𝛼)
. (A4)

Given the parameter valuesΩP, the stochastic discount factor has exactly one extra parameter, 𝜉, as the other three

are givenby (A4) once 𝜉 is given. This parameter accounts for theU-shaped stochastic discount factor if 𝜉 > 0, a require-

ment for the stochastic discount factor to potentially account for ourOT results.21 The setΩQ is given by the following

system:

h∗t =
ht

1 − 2𝜉𝛼
;𝜔∗ = 𝜔

1 − 2𝜉𝛼
; 𝛼∗ = 𝛼

(1 − 2𝜉𝛼)2

𝛾∗ = 𝛾 − 𝜑;𝜑 = −(𝜇 − 1
2
+ 𝛾)(1 − 2𝜉𝛼) + 𝛾 − 1

2
. (A5)

This system yields a unique setΩQ consistent with the P-distribution setΩP and the parameter 𝜉. In turn, given this

ΩQ, theOT portfoliomodel value can be easily found from the option pricing expressions in Christoffersen et al. (2013,

appendix D) for each one of the four maturities [𝜏i , T], i = 1,2,3,4of the 28-, 21-, 14-, and 7-day options, respectively.

We estimate 𝜉 bymaximizing the log-likelihood for all options defined as:22

log LQ = −1
2

N∑
i=1

[
log

(
s2e
)
+
e2
i

s2e

]
, (A6)

where ei = (IVMod − IVMkt)∕IVMkt and in place of s2e , its sample analog is used, ŝ2e = 1
N

∑N
i=1 e

2
i
.

The parameter setΩP = {𝜇,𝜔, 𝛽 , 𝛼, 𝛾} of the P distribution contains the risk premiumparameter 𝜇 and four volatility

parameters and is common to the four maturities [t, Ti], Ti − t = 28, 21, 14, and7 for i = 1, 2, 3, 4, respectively. As in

Christoffersen et al. (2013), it is estimated by filtering the daily index returns for a time period bracketing the option

dataset on both sides.Weuse return data from1984–2014 that contain the option data and apply the sequential likeli-

hood estimation of Broadie, Chernov, and Johannes (2007) starting from the returns and then proceeding to the option

market for any additional parameters. Maximizing the log-likelihood function logLP given in relation (A2), we find the

P-distribution parameter setΩP:𝜔= 0, 𝛼 = 4.1931× 10−6, 𝛽 = 0.8467, 𝛾 = 165.17, 𝜇 = 2.8161, and log LP = 32,584.9.23

20For a single GARCH period, the logarithm of the stochastic discount factor can be expressed as a quadratic function of the random stock return only. See

Christoffersen et al. (2013), Corollary 2, p. 1970). Unfortunately, no such closed form expression exists for maturities greater than 1 day.

21See Corollary 3 of Christoffersen et al. (2013, p. 1970).

22Expression (B6) is virtually identical to expression (24) of Christoffersen et al. (2013, p. 1986) with the difference that the numerator of the error ei is the

difference in actual prices rather than their IV’s.

23These correspond to a higher return premium and volatility than the corresponding results in Christoffersen et al. (2013, table 5), most probably due to our

much longer return dataset.
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We then estimate 𝜉 and the corresponding Qdistribution as in Christoffersen et al. (2013) or, indeed, as in most, if

not all asset pricing models, by using the entire cross-section of available option prices for the four maturities under

consideration.24 Specifically, put–call parity is imposed for every option in the cross-section implying that it no longer

matters whether puts or calls are used for the estimation with OTM calls and puts in each cross-section. The likeli-

hood function logLQ given by (A6) is then evaluated as a function of 𝜉 and its maximum, log LQ = 84,704, is found

at 𝜉 = 𝜉∗ = 58,933.25 This value is significantly higher than the value 𝜉 = 32,839 implied by the results of Table 5 in

Christoffersen et al. (2013, p. 1992) reflecting the different maturities and the different span of the data in our sam-

ple.26 Our correspondingQ-distribution parameters are (1 − 2𝛼𝜉∗)−1 = 1.9771, 𝜔 = 0, 𝛼 = 1.6391 × 10−5, 𝛽 = 0.8467,

and 𝛾 = 85.21.

The stochastic discount factor is equal to the stochastic discount factorMT∕Mt , with the parameters given by (A4),

the above estimates of the parameter set ΩP , the value 𝜉 = 𝜉∗ as above, and the implied realized volatility path

(ht+1,… , hT+1) extracted from the observed daily index returns (A1) and the corresponding observed errors 𝜀𝜏 . If NTi

denotes the number of feasible cross-sections for the corresponding maturity Ti = 28, 21, 14, and 7 days, the average

risk-adjusted excess return SDFt × rOT,t of theOT portfolio in Table 10 is given by:

SDFt × rOT,t =
1
NTi

t=NTi∑
t=1

MT

Mt
(ht+1,… , hT+1)rOT,t . (A7)

As for the returns in Table 11, atmodel prices for bothOTportfolios and straddles, the initial values of the portfolios

are estimated as in Christoffersen et al. (2013, appendix D) with the aboveQ distribution parameter set.

24Note that there are significantly fewer maturities in these estimations that were used by Christoffersen et al. (2013, p. 1975), because the latter included

all of the available maturities between 2weeks and 1 year.

25Unreported results show that logLQ is a parabolic function of 𝜉, first increasing and then decreasing after reaching 𝜉∗ .

26Christoffersen et al. (2013, p. 1975) include all of the available maturities between 2weeks and 1 year.


