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Abstract

In this paper, we investigate the behaviour of the unique right-most species-1 particle in the
2-species ASEP. We start with the introduction, where we first introduce the model itself, which
was introduced by Frank Spitzer in the paper [4]. Then we give a brief outline of the research
done in the field, and the results obtained by Schiitz (in the paper [3]), Tracy and Widom (in the
papers [5], [6]), Lee (in the papers [1], [2]), and Raimbekov (in the paper [2]). We then proceed
to the preliminary section, where we explain the necessary background needed to understand the
thesis. After that, we start experimenting with some special cases of the general N-particle problem;
this will naturally lead us to the main results section. The main result of the thesis is the integral
formula for the probability distribution of the unique species-1 particle which is right-most at time
t =0 in a 2-species ASEP.
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Chapter 1

Introduction

The theory of Asymmetric Simple Exclusion Processes (ASEP) has been studied extensively since
1970, when Frank Spitzer first introduced them. In the paper [3], Gunter Schiitz constructed a
solution for the (single species) TASEP using two different ways: the constructive Bethe Ansatz
technique, and as a determinant of a certain matrix. He also obtained the solutions to the ASEP by
Bethe Ansatz in the number of particles N =1 and N = 2.

Then, in the paper [5], Craig Tracy and Harold Widom obtained the solutions to the forward
equation for the ASEP with general N. They then obtained probability distributions of each particle
T, separately, m < N. Moreover, they obtained these probabilities in 2 different forms: in terms of
contour integrals with sufficiently small contours C,., such that all poles of the integrand lie outside
the contours C), and in terms of contour integrals with sufficiently large contours Cg, such that all
poles of the integrand lie inside the contours Cg.

Next, in another paper [6], Craig Tracy and Harold Widom deduced the form of the solutions to the
forward equation for the multi-species ASEP with general N. However, in their solution, the leading
coefficients were not given explicitly. Eunghyun Lee in [1] has constructed the algorithm to obtain
those coefficients. Moreover, in the TASEP case, he expressed the solution as the determinant of a
certain matrix. Further, in the paper [2] Eunghyun Lee and Temirlan Raimbekov came up with
those coefficients explicitly in the special case when the model is a 2-species ASEP with the initial
configurations 2...21 and 1...12.

In this paper, our goal is to obtain the variant of what Tracy and Widom obtained in [5]: we want
to find the distribution of the right-most particle position xx which belongs to the species 1, given
that all other particles belong to species-2.



Chapter 2

Preliminary

2.1 What is a multi-species ASEP?

First of all, as was said before, ASEP stands for Asymmetric Simple Exclusion Process. ASEP were
first introduced by Frank Spitzer in the paper [4].

Consider a continuous-time process of N different particles moving randomly on Z, belonging to
species 1,2,...,k, with the time being a random variable that is distributed exponentially, with
parameter A = 1; since there are several different species present, we call this process a multi-species
process. In the special case when there is only one species, the process is called a single-species
process.

Each particle is equipped with an exponential random clock; when the exponential random clock
ticks, the particle moves either to the left with probability g, or to the right with probability
p =1-gq; since generally g # p # %, we call the process an asymmetric process. In the special case
when p =1, and ¢ = 0, we call the process a Totally Asymmetric Simple Exclusion Process
(TASEP); the geometric interpretation of TASEP is that particles can move only to the right.
Next, there is a restriction on how many particles can occupy a single spot in Z: there can be at
most 1 particle occupying a single spot; that is why the process is called an exclusion process.
Now, suppose that 2 particles stand next to each other and one is supposed to jump onto the other;
then in this situation the difference in species comes into play. If the particle that is about to jump
belongs to higher or the same species, then the particles swap their positions; if the particle that is
about to jump belongs to lower species, then there is no motion, and the Poisson clock begins anew.
In other words, the species-2 particles are in some sense superior to the species-1 particle.

Given the above, the state space for this system (multi-species ASEP) can be represented by the
set S =8 x1I, where ' c ZV, S = {(z1,...,xx) € Z 1 1 < x5 < ... < zn}, and T is the set of all
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N-tuples of indices 1, ..., k; by abuse of notation, to simplify the notation, we will denote the tuples
by strings: (nq,ng,...,nN) = niNg..nN = 7.

2.2 Finding transition probability in a single-species ASEP

To analyze ASEP, the first step is to construct the forward Kolmogorov equation.

2.2.1 N=1.
For simplicity, let us first consider the N =1 case. Suppose that we have 1 particle that starts
moving randomly on Z at time ¢t = 0, such that at time ¢ = 0 the position of the particle is at y € Z.

Then, we denote the probability that at time ¢ the particle is at = € Z by Py(z;t). To simplify the
notation, we write Py(x;t) = P(x;t). Then, our forward equation takes the form:

%P(m;t) =pP(z-1;t) + qP(z + 1;t) — P(x;t).

This differential equation is supplied with a very natural initial condition:

P(z;0) = Py(z;0) = dzy.

The meaning of this initial condition is that, at time ¢ = 0, the probability that a particle is at y is
1, and is zero otherwise.

To solve this equation, we apply the separation of variables technique: suppose that P(x;t) =
P(2)T(t), where z € Z, t e R*°. Then, we get:

P(z)%T(t) = pP(z - 1)T(t) + qP(z + 1)T(t) - P(z)T(t)
=[pP(z-1) +qP(x +1) - P(x)]T(t)

It is readily seen that T'(t) = Ce®. Then, we cancel Ce® from both sides, thus obtaining a difference
equation:

P(z)-e=pP(x-1)+qP(zx+1)- P(x).

Such equations are solved by a substitution: P(x) = £*~1. Using this substitution, we get:
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p(x_1)+ P(a;+1)_P(a:):g+ 1=
PGy UP@) Py et

Therefore, we finally get our most general solution:

P(z;t) = P(x)T(t) = €51 Ce = 0™ e = O(€)¢ L.

Note that the constant C' is really a function of £&. Now, we need to construct a specific solution that
satisfies our particular initial condition P, (x;0) = d4,; for this, choose C(§) = {7Y, and construct the
contour integral:

P(x;t) = % jg gV g let e = % yé- gx‘y‘le(?qg‘l)t de.

[

where the contour c is a circle around 0. Then, it is not hard to see that the integrand satisfies the
initial condition: let ¢ = 0; then, there are 2 cases: either x =y, or = # y.

e x =y: in this case, our integral is:

1 2ioe_1). 1 1
P(x;0) = — jfgl‘—y—le(s*qf D0 ge - L 555-1 1ldé=—2mi=1.
211 J 27 J 211

e x #y: in this case, our integral is:
1 2ige—1)- 1
P;0) = 5 § el B e e tag=o
m 271
C C
where n # -1, since x # y.

Therefore, indeed, P(z;t) satisfies the initial condition P(z;0) = d4,, and hence is our desired
solution.

2.2.2 N=2.

Next, suppose that we have 2 particles that start moving randomly on Z at time ¢ = 0, such that
at time ¢ = 0 the position of the left-most particle is at y; € Z, and the position of the right-most
particle is at yo € Z, y1 < y2. Then, we denote the probability that at time t the left-most particle is
at 1 € Z, and the right-most particle is at x3 € Z by Py, ,)(71,72;t) = Py(71,22;t). To simplify
the notation, we write Py(x1,22;t) = P(x1,22;t). Then, our forward equation can now take 2
different forms, depending on the mutual position of particles:
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Case 1: the particles are far from each other (z2 >z +1):

d
EP(CEl,l'Q;t) =pP(x1—1,29;t) + pP(x1, 20 — 1;t) + qP(x1 + 1,29;t) + qP (21,22 + 1;t) — 2P (21,225 1).

Case 2: the particles are next to each other (z2=z1+1=x+1)

d
EP(w,er L;t)=pP(zx -1,z + 1;t) + ¢P(x,z + 2;t) — P(x,z + 1;t).

These equations are supplied with the initial condition:

P(:L’l,:L’Q;O) = Py(l’l,fL’Q;O) = 5xy = 5x1y1 . (5$2y2.

To simplify our analysis, we would like to have a single differential equation. To do this, we would
need to define a function u(x1,x2;t) to be the solution to the forward equations above, but defined
on an extended domain: u: Q x [0;00) —> [0;1], where Q = {(z,y) € Z?: = <y} o> Q, so that we
have: u [qx[0;00)= P- The reason for this extension is that we will need the term u(x,x;t), which
takes the input that doesn’t belong to the state space of our Markov process.

And so, to combine our 2 cases of the forward equation into a single equation, equalize %u(ml, x9;t)
from case 1 subject to xo =x1 +1 =2 + 1 with %u(m,x +1;t) from case 2:
pu(z — 1,2+ 1;t) + pu(z,x;t) + qu(z + 1,2 + 1;t) + qu(z, x + 2;t) = 2u(z, x + 1;t)
=pu(x - 1,2+ 1;t) + qu(z, z + 2;t) —u(z,z + 1;t).
This leads us to the boundary condition:

pu(x,z;t) + qu(z + 1,2 + 1;t) —u(z,x + 1;t) = 0.
And so, we finally get a single differential equation:

d
%U(.Il,ibz;t) =pu(zy — 1, 29;t) + pu(zy, 29 — 1;t)

+qu(zy + 1, 29;t) + qu(x1, wo + 15t) — 2u(x1, 25 1).

As before, we solve this by separation of variables: wu(x1,x2;t) = u(xi,22) - T(t). Then, we
immediately get: T'(t) = Ae®, so that our equation becomes:

u(zy,x2) - € =pu(ry —1,22) + pu(xy, 20 — 1)

+qu(zy + 1, 29) + qu(x1, w2 + 1) — 2u(x1, 22).
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Such equations are solved by substitution: u(zi,x2) =&/ 1522 L. Then, we get:
u(zy —1,29) u(zy,x9 - 1) u(zy +1,22) u(zy,xo+ 1) u(zy,x2)
u(wy,2) u(xy,x2) U(ﬂﬂl,xz) u($1,$2) u(wy,2)

=P g1+ L g - 1= 6(8) +ea(&).
& 3

€(€1,82) =p

And so we get a general solution:
u(w1,x2;t) = u(xr, ) - T(t) =& ! £ Lo Ae€re)t = 4(gy, £)E 15“ Lee(&r.82)t,

Now, notice that the solution is symmetric in the variables £&; and &s; and so, by linearity of the
differential equation, we get even more general solution to the forward equation:

u(wn, ;) = Ara(€1, E2)E7 165 e IR 4 Ay (&1,60)85 e e )0,

Now, we impose the boundary condition:

p(A12(517§2)§f_1 g_l + A21(§1,§2)§§_1 f_l)ee(él’&)t + Q(A12(517f2)§f§§
+A01 (€1, 62)E5€7)e 1t (A15(&1,&2)E771ES + Ani (61, 6)€5 €T e Cr82)t = .

This gives us the expression for Asq:

+ —
21 = —]MAQ =: S91412.

p+q&i&e—&
And so our general solution finally becomes:

u(wy, w25t) = (A12(€1, )67 > + SnnAna(61,6)€5 e )t

Now, we need to satisfy the initial condition. Choose Ai2(&1,&2) = &¥'¢,Y?, and construct the
contour integral:

u(a:l,a:Q,t) (2 Z) ygyg z1=y1-1 xz y2- 1+521(§17§2)€x1 vl wz v 1) e(&.82)t dfld@

c2 C1

where the contours ¢; and ¢y are around the points &1 =0 and & = 0, and are so small that all poles
of the integrand are outside them. Then, it is not difficult to verify that this expression satisfies the
initial condition: let ¢ = 0; then, there are 2 cases: either x =y, or x #y.

e x =Yy: in this case, we have:

u(er,2:0) = (5 l) (e s )G ) dédss

(zm) $ § (e rsu(@ g g dads
(27”) 9§_§'§ 51 52 d&1dés +0 = ( )2 (2m) =1.
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e x #y: in this case, either x1 # y1, or x9 # 2. Then we have:

u(l'l,l'z;()) (2 Z) 56‘% z1=y1-1 xz v2= 1+521(§1,§2)§x1 y2-1 xQ 1= 1)60 d{ldfg

c2 1

“uterm0) =0+ (5) § F (Snteerg g agae,

ca c1

Now, suppose that x1 # y1; then, either x1 < y1, or 1 > y1. If 21 < y1, then clearly x1 < o,
and so x1 —y2 — 1 < =1, and thus the integral over &; is zero. If x1 > y1, then x2 > 91, and so
x9 —y1 —1 >0, and thus the integral over &; is zero.

Now, suppose that xo # y9; then, either zo < y9, or xo > yo. If x9 < yo, then z1 < y9, and
so r1 —yo — 1 < =1, and thus the integral over & is zero. If xo > yo, then zo > y1, and so
x2 —y1 —1 >0, and thus the integral over &; is zero.

And so, in any case, we get: u(x1,22;0)=0+0=0.

Therefore, our construction indeed satisfies the initial condition P(x1,x2;0) = 0xy = 0z,y; - Oxsys, and
hence is our desired solution.

2.2.3 General N.

In the general case, the forward equation can take many different forms, depending on the mutual
position of particles; all of them are combined into a single equation:

d

dtu(:cl, cornit) =pu(er — 1, .., xn;t) + oo + pu(ay, ..oy — 151)
+qu(zr + 1, .., zn;t) + o+ qu(xy, ...yzy + 1;t) = Nu(zq, ...,z N3 t).

by imposing the boundary conditions:

PU(XL, ey Ty Ty ooy TNGE) + qu Xy, ey 2 + L+ 1,y t) —u(y, @y, 2 + 1, o ays t) = 0.

1 <4< N. The initial condition for this equation is given by:

N
P(CC]_, ,l‘N,O) = 5xy = H5$zy1
i=1

Then, it was shown in [5] that the solution to this equation is given by:

N
Ti=Yq(i -1 Z E(gl)t
Py(x;t)= ), (27”) y§ 95(,4 Hga(i)y @ )el-l dé;..déy.

oSN
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where A, = [[{Sap : {o, B} is an inversion in o}, and the term S,s is defined as above: S, :=
_ P+3€aép—Sa
p+a€alp—Ep "

N, . .
Remark 2.2.1. The constant (ﬁ) is unwieldy and doesn’t carry any importance; therefore,
further we will include each constant % in the differential d¢;, i =1,...,N.

2.3 Finding transition probability in a multi-species ASEP

In this section we now review how to construct and solve the forward equation for a multi-species
ASEP. The multi-species ASEP were first introduced by Tracy and Widom in the paper [6], and
then developed by Lee in the paper [1].

231 N=2

Suppose that we have 2 particles moving on Z, such that one particle belongs to species 1, and the
other particle belongs to the species 2. Then, when constructing the forward equation, we need to
take much more information into account.

Case 1: the particles are far from each other (z2 >x; + 1), and the left particle belongs
to species 1, and the right particle belongs to species 2:

This case is exactly as it was in the single-species model, because differences in species start to play
a role only when there are interactions:

d

EP(xl,xg, 12;t) = pP(x1 — 1,29,12;t) + pP(x1, 22 - 1,12;1)

+qP(x1 + 1,29,12;t) + qP (21,2 + 1,12;t) — pP(x1, 22, 12;t) — pP (21,22, 12;t)
—qP(z1,29,12;t) — qP(x1,22,12;t) = pP(x1 — 1,29,12;1)
+pP(x1, 20 - 1,12;t) + qP(x1 + 1, 22,12;t) + qP(x1, 22 + 1,12;t) = 2P (1, 22, 12;1).

Case 2: the particles are far from each other (z2 >x; + 1), and the left particle belongs
to species 2, and the right particle belongs to species 1:

Exactly same as before:

d
EP(SL‘l,ZL‘Q, 21;t) = pP(x1 — 1,29,215t) + pP (21,22 — 1,215 1)
+qP(x1 + 1,29,21;t) + qP (21,22 + 1,215 t) — 2P (1,19, 21;1).
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Case 3: the particles are next to each other (z2 =21 +1=2x+1), and the left particle
belongs to species 1, and the right particle belongs to species 2:

d
aP(x,x +1,12;t) = pP(x - 1,2+ 1,12;t) + pP(x,x + 1,21;¢t) + qP(z, x + 2,12;1)

—-pP(z,x+1,12;t) - qP(z,z + 1,12;t) — qP(x,z + 1,12;t) = pP(z - 1,2 + 1,12;t)
+pP(x,x+1,21;t) + qP(x,x +2,12;t) — P(x,x + 1,12;t) — qP(x,z + 1,12;1).

As it is now clear, what we have is a system of coupled linear differential equations, and so they
can’t be solved separately from each other.

Case 4: the particles are next to each other (z2 =21 +1=2x+1), and the left particle
belongs to species 2, and the right particle belongs to species 1:

d
@P(x,:r +1,21;t) =pP(x - 1,2+ 1,21;¢t) + ¢P(x,x + 1,12;t) + qP(x,x + 2,21;t)

-pP(z,x+1,21;t) - pP(z,x + 1,21;t) - qP(z,z + 1,21;t) = pP(x - 1,z + 1,21;1)
+qP(z,z+1,12;t) + ¢P(x,x + 2,21;t) — pP(x,x + 1,21;t) - P(z,x + 1,21;¢).

And so, as was remarked above, we must solve these equations together; and therefore, approaching
the problem as in the single-species ASEP is not feasible. To solve these equations together, we
need to construct a matrix differential equation. Therefore, let us construct the following matrix:

P(yl,yQ)(JUl,fU%t) =

Pry, yo 11y (@1, 02, 1151); Py, g 12) (1,02, 111)5 Py, 4 01) (01,22, 1158)5 - Py, 4 00y (21, 72,115 1)
Py yo11) (01,02, 1258); Py, o 12) (21, 72,125); Pryy gy.01) (01,02, 1258); - Py, g 20) (71,72, 12;1)
Py o) (21,2, 2158); - Py 12y (21,22, 2158); - Py, g0 21) (01,22, 2151); Py, 40 22) (71,72, 2151)
Py, o 11) (01, 22,2251); Py, yo12)(21,72,225); Py gp.01) (01, 2,2251); - Py, yo 20) (71,72, 22; 1)

First of all, notice that we don’t restrict ourselves to the cases where species are different: we also
include the cases where all particles belong to the same species (in particular, the matrix entries
(1,1) and (2,2)), thus reducing to the single-species ASEP in those cases.

Next, we can immediately see that the terms like P, ., 12)(71,%2,11;t) are always zero: this is
because the probability that one particle becomes a species-1 particle, given that at time ¢t = 0 it was
a species-2 particle, is always zero, at any instant of time, at any configuration (x1,x2). Therefore,
out matrix simplifies to:

Py, o) (@1, 2251) =

P(yl,yg,ll)(xlyx%ll;t); 0; 0; 0
Oa P(y17y2,12)(x1,x2)12;t); P(yl,yg,Zl)(xlvx%lQ;t); 0
0; Ply, yo2) (1,22, 215); Py, 4 01) (71, 72,215 1); 0
0; 0; 0; Py, ya22) (01, 22, 22; 1)



CHAPTER 2. PRELIMINARY

Now, given this matrix, we want to construct the matrix forward differential equation; for this, we
need to consider cases again, but now using matrices of functions instead of plain functions. For
notational simplicity, as always, we will denote P, .,)(w1,72;t) by P(x1,22;1).

Case 1: the particles are far from each other (z2 > z; +1):

%P(zl,xz;t) =pP(z1 - 1,29;t) + pP (21,22 — 1;1)

+qP(x1 + 1, m95t) + qP (21,22 + 1;t) = 2P (1, 223 1).
Case 2: the particles are next to each other (zo=2z1+1=x+1)

a4

dtP(x,x +1;t) =pP(x - 1,2+ 15t) + qP(x,x + 2;t) — AP(x,x + 1;1).

where the matrix A is given by:

1; 0; 0; 0
{0 1+q¢; -p; O
A= 0; -¢; 1l+p; 0
0; 0; 0; 1

Now, as before, we want to combine everything into a single matrix equation with some boundary
conditions. To do this, equalize the different cases with the matrix U(z1,z2;t) substituted for
P($1,.1‘2;t)2

pU(z - 1,2+ 1;t) + pU(x,25t) + qU(x + 1,z + 1;t) + qU(z, z + 2;t)
=2U(z,x+ 1;t) =pU(z - 1,2 + 15t) + qU(x,x + 2;t) - AU(x,x + 1;1).
This yields the boundary condition:
pU(z,x;t) +qU(z + 1,z + 1;t) =2U(x,x + 1;t) - AU(z,z + 1;t) := BU(z,z + 1;1¢).

Where the matrix B is given by:

1; 0; 0; O
105 p; p; O
B_O;q,q,O

0; 0; 0; 1

10
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2.3.2 General N.

More generally, let U(x;t) = U(z1, -, 2n;t) be an NV x NV matrix whose entries are functions on
ZN x [0, 00) such that U(x;t) satisfies the matrix differential equation:

N

d
EU(X;t) => [pU(m, i1, = 1w, ang t) + qU (2, o w1, 2 + 1, @4, "'733N§t)]
i-1

- NU(I’l,"',l‘N;t),
together with the initial condition

Iyv if (21,285) = (Y1, yn) and @1 <~ <zpy
Oy~ if (z1,2n) # (Y1, yn) and 21 < <zn

U(.’IT17"',IN;0) = {

and the boundary condition

pU (21, Tiz1, Ti, iy i, TN E) + qU(T1, o w1, 2 + 1,25 + 1, 2440, -, 2N 1)

i—1 N-i—1
= (Ii(z )®B®I}8\)f( ’ ))U(mla"'yxz’—laxiaxi"'17xz'+2;"'axN§t)
where the matrix B is given by:

if 45 =kl with i = j;
if either ij = kl or ij = [k with i < 7;

[B]ij,kl -

if either ij = kl or 5 = lk with i > 7;

o 3

for all other cases

Then, it was shown in [6] that the solution to this equation is given by:

> A, [T (5o )
1 \ve®

O'ESN

For some matrix A,, and it was shown in [1] how to construct the solution to this equation.

11
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2.4 Permutations, inversions, and subsets

Definition 2.4.1. A permutation ¢ on a set S is a bijection ¢: S — S.

Definition 2.4.2. Consider a permutation o on a set {1,2,..., N}. We write 0 = ning...ny to mean
the permutation o : .S — S such that o(7) = n;.

Example 2.4.3. Let o be a permutation on {1,2,3}. Then, we write o = 123 to mean the identity
permutation, o = 132 to mean the permutation that permutes 3 and 2, and ¢ = 231 is the permutation
that "rotates everything clockwise”.

Definition 2.4.4. Let o be a permutation on the set {1,2, ..., N}. We say that the pair (o(n1),0(n2)), ni €
{1,2,.... N}, ng € {1,2,..., N} is an inversion in o if ny < ng but o(ny1) > o(ns).

Example 2.4.5. Let o be acting on {1,2,3}, 0 =231 . Then, there are 2 inversions in o: (2,1) and
(3,1).
Definition 2.4.6. Whenever we write an expression of the form [] Sg,, we imply that the product

a<f
is taken over all inversions (3, ) in some permutation o whenever there is a permutation that is

clear from the context. Otherwise, if there is no permutation in the context, then the expression of

the form [] Sg, means what it should mean: the product over all pairs (o, 8) with 5 > a.
a<f

Definition 2.4.7. Let S c{1,2,..., N} be a subset. We define }(.5) as the sum of all elements of
k
S, S = {81,82, ...,Sk}: Z(S) = Zl 5j.
‘7:

Example 2.4.8. Let S be the whole set {1,2,..., N}. Then, ¥(S)=1+2+...+ N = w

Remark 2.4.9. In general, for the subset S of cardinality k£, we have the following inequality:
>(S) > @, because s; > i, Vi.

12



Chapter 3

Towards the main results

In this chapter we are experimenting with the special cases to find out what we are looking for: the
probability that the rightmost particle n belonging to species-1 is at the spot x at time ¢, given that all
other particles belong to species-2: Py (n(t) = z). In the paper [1] Lee discovered how to obtain the
probabilities Py (X, t;7) = Py, yy) (@1, .., TN, t;n1m2...n ) that at time ¢, the particle that belongs
to species n; is at x;, 1 < 13 < ... < xy. Therefore, by writing the event {n(¢) =z} as the disjoint
union of the events {(z1 = a1, 22 = a2, ..., Tym-1 = -1, Tm = T, Tms1 = Amal, -, TN = AN, 2...212..2) },
we immediately see that:

Py(?’](t) = :E) = Z Z Py(ZC _iN—l e T il, ey L —il,x;Z...Ql)
inN-1=1 d1=1
+ Y Y Py(z—inag = — gy, @ — g, T, T+ 013 2...212)

in_1=1 i1=1

ot DY Py(zr i, e iy o+ inog;12..2),
inoi=1  dp=1
In another paper [2], Lee and Raimbekov discovered how to find the terms Py (z1 = aj,z2 =
A2, vy Tyn—1 = Q15 Tm = Ty Timsl = mals -, LN = AN, 2...212...2) explicitly in the special case when
we have a 2-species model with all but one particle belonging to a single species. Our goal in this
chapter is to discover the main patterns of our general particle system by studying the special cases,
and to lay the foundations for future work.

13



CHAPTER 3. TOWARDS THE MAIN RESULTS

3.1 N=2

Assume the initial state Y = (y1,92,21). Then, using the results from the paper [2], we get that the
transition probabilities are as follows:

Py($1,$2,21) / / T Z;-i_qlfgl)g(gl g )55153;2)&'1_3/1—152—?;2—1 ( +q61— 1+ +q£2 1) d§1d£2

and

Py (r1,72;12) = f fCI pf(qi?lgjl) gner )£Iy1—1§£y2—1( +g€1-1+ £ +q€a- 1) d¢,dés.

where ¢; and cy are the circles centered at the origin with radius less than 1 that do not include any
singularities except at the origin. Let n(t) be the position of the species-1 particle at time ¢t. We
want to compute

Py (n(t) =x) =) Py(xz —i,2;21) + Y Py(z,x +1i;12).
i=1 i=1

Let
1 1
Wiz (&1, &2,2,t) =& 15; v2-l ( +g€1-1+ £ +q8a- )

for notational simplicity.

e Y2, Py(x—1i,x;21): there are two term in the integrand. First, we compute

> T Wha(&1, &, 2, t)dErdE.
> [, [ & Weenn Ddads,

Since the radius of the contour is less than 1, the series diverges. But it is possible to deform
the contour to a circle with radius larger than 1 because the only singularity of the integrand
is at the origin. Let us call the circle C'. Hence,

i; [c2 fcl &' Wia(&, &, ) dérdey :,; /c2 .[01 & Wia (61, &2, @, t)dérdéo

B »[02 ‘[Cl 511_ 1 W12(§17€27 x7t)d§1d§2

- f c 511_ 1 Wia (&1, &2, 2, t)dE1déy + (Residue at & = 1).

The residue at £ =1 is

/ W12(1,£2,x,t)d§2=[ ggfyrl e(%m&z—l)td&‘
() cs

14



CHAPTER 3. TOWARDS THE MAIN RESULTS

We obtained

g/@ /Cl & Wia (&1, &, 2, t)déydéy = _[62 -[q é W12(§1,§2,:13,75)d§1dg2+fc2 gy 6(%'*Q§2—1)td€2.
(3.1)

Now, we compute

- (p_q§2)(§1 1) —z
Z;f S — Wi2(&1, &2, w,t)dE1ds.

As before, we need to enlarge our contour co, but this time without approaching poles of the

(P q€2)(&1-1)
function T We have:

(-a€)(E-1) _ (- a&2)(&1-1)
p+q&i&a—& p-&(1-qé2)
To avoid approaching poles, it suffices to impose: [£1(1 - ¢&2)| < |p| = p. And so, consider:

[€1(1 = q&2)| = [&1] - [1 - g&a| < [&1]- (1 + |g&al) = €] - (1 + glé2]) < p.

After some calculations, this becomes:

o<1

And so, in order for this inequality to make any sense, we must have that Tl

é | > 1. But this is

not enough. We also need to have that |{3| > 1. This is possible only if:

1
1 —l—-1|: = 1< 1
<Ieal < [Ifl ] [|51| ]

This becomes:

p
+1<—=—; —
q &l €] < 1
And so, let ¢1 be any sufficiently small contour, so that &, €c; = |¢] <ZT . Next, let Sy be
any contour in the annulus 1 < R< = [m ] Then, we can finally compute our integral:

(p-q&2)(&1-1) .,
;/ 5 prahits— &' Wia(&1, &2, 2, t)déadéy

_ (p-g&)(&-1)\ (1
) /cl [52 ( p+q&1&2— & ) (52 - 1) Wi2(&1, &2, 2, t)dEadéy

] (p-g&)(& - D) ( 1 | i
_fCl fg( Py ) (52_1) Wia(é1, 62, 2, t)déadé) + (Residue at & = 1).

15



CHAPTER 3. TOWARDS THE MAIN RESULTS

The residue at & =1 is:

(p—q)(&—l) rz-y1—1 (%+q§1—1)t
( P+ b - )51 e a1

f((p—q-l)(§1—1)) W12(§1,1,:v,t)d51=f

p+qéi-1-§
_ - =D\ oyi-1 (Eraer-1)t 50 _ (- =) oyt (E+a&r-1)
_-[01( p - pé1 )51 e d&_—/cl( p(1-¢&) ) P =

— f q_pgf*ylfle(ﬁ'*'qgl_l)t d£1
c1 P

o Y2 Py(z,x+1i;12):

S Aan)-3 [ (ZE )@ 6nodode

Observe that this time, the series converges if [£1] < 1, V& € ¢q.

As before, consider the problematic function:

1 1
p+a&i&e-& p-&-(1-q¢&)

We want to avoid approaching singularity: |£1(1 - ¢&2)| < |p| = p. Then, consider:
161(1 = q€2)l = [&1]- 11 = g€al < [&1] - (1 +|g€al) = &1 - (1 + gléa]) < p.
And so, it suffices to impose:
p
61l < -
(1+4ql&2])

On the other hand, we also want to have |{;| < 1. And so, let ¢; be any contour such that
& ecy = [&] <min {(ng; 1}. Then, we are finally ready to compute our integral:

;Py(ﬂc,m +14;12) = Z; ch o %f} Wi (&1, &9, 2, t)dErdEy

_ p(€2 _gl) ) 51
- [C2 fcl (p+q§1§2 —51) (1 —gl) Wia(&1, &2, @, t)d1ds.

And so, the whole expression becomes:

16



CHAPTER 3. TOWARDS THE MAIN RESULTS

> Py (z,x +1i;12)
i=1

Wi2(&1, &2, 2,t)dE1dEs

Py (5(t) = 2) - iPy(x ;21 +

(p-¢62)(&-1)

+ff( Pt ks -6

(&2 - &1 &1
ff(p+q£1€2_£1)'(1_§1)W12(§1,§2,x,t)d£1d§2

—y2-1 g rake-1)t q=D ja—y-1 | Z+aki-1)t
+£2£§ y2-1 §2+q§2 d€2+l1 - gic Y1 16(§1+q§1 ) d&.

Adding the first 3 summands together yields a nice formula:

1
Cc1 51 - ].
1
) : (52 — 1) Wia(&1, &2, z,t)d6adéy

Py(n(t) =x) = ZPy(x i,x;21) + ZPy(aj x+1;12)

i=1
- __(@p- 1)(51—52)(5152 1)
Bl DG D6 aaty) D derde

—-p yg gf*ylfle(éﬂl&—l)t ¢, +9§ 5:26*31271 6(£+Q§2_1)td§2.
Cc1 Cc2

3.2 N=3

Assume the initial state Y = (y1, 92, y3,221). Then, using the results of the paper [2] we obtain the
following table:

o |[Ag]21.221 | [Ac 212,221 | [Ag]i22,221
123 1 0 0

132 Q32 P32 0

213 So1 0 0

231 S521Q31 S21pT31 0

312 Q32531 | pl32Q31 | pl32pTs

321 521031532 [ S21pT31Q32 |pT32pT31 521

Py (n(t) =z)=> Y Py(z—i—j,x—i,2;221)+> Y Py(xz—i,z,2+5;212)+> > Py (z,z+i, x+i+j;122).
i=1j=1 i=1j=1 i=1j=1

17



CHAPTER 3. TOWARDS THE MAIN RESULTS

As before, define:
Wia3(&1,62,83,2,t) = f_yl_lfg_yrlfg_yg_le(éwgrhéwgrhéw&fl)t.
. r-y;—1 (B+Q§—1)t .

Remark 3.2.1. Let W;(&,x,t) := %Y e\¢ . Then, we have:

1. Wijk({lvf?vf?nxa t) = Wi(gla l‘,t) : W](€2,$,t) : Wk(f?nxa t)v

2. Wij(&la&?vmat) = Wi(flvxvt) ' Wj(£2ax¢t)'

3. Wi(1,z,t) = prvite(Frat1)e 0 Jq
In particular, we have:

1. Wijk(17§27§37x7t) :ij(£27£37x7t);
2. Wijk(£1717£37x7t) :Wik(£1>g37$at);
3. Wigk(&1,82,1,2,t) = Wij(&1, 62,2, t).

We also have:

o Wijr(&1,82,83,2,t) = E76565 - Wi (61,62, €3, 0,1).
Definition 3.2.2.

_ P+q€alp &5, T §p — &a

i . , (p-q&p)(&a 1)
R T P R R T P '

QB& . p+ qgaiﬂ -&a

Notice that all Sgo, T34, and g, have identical denominators.

The transition probabilities are as follows:

Py(onanag221) = [ [ [ (6067657 + Quel 665 + Sugf 6765 + SmQuiey 577
3 2 1

+Q32531631E1265° + 521@315325?5525%'3)W123(51,52,53, 0,t) d&1d&odEs.

PY($17$27$3;212):[ f f (0+PT32§TIE§2€§3+0+521PT31§§1§§2§TS
c3 Jea Jer

+pT30Q31851 61265 + 521]9T31Q32f§1§§2§1x3)W123(€1752753, 0,t) d&1d&adEs.

18



CHAPTER 3. TOWARDS THE MAIN RESULTS

PY($1,$27$3;122):ff[ pT3opT31E51E1265° + So1pT1pT32851 65247 )W123(§1,§2,§3,0,t)d51d§2d§3~
c3 Jea Je

Now, we need to put everything together. The first series is:

iiPY(x—Z—J, —i,2;221) = iif[[ 531”1]£$Z£3

i=1j=1 i=1j=1

+Q328] TESTIE + S €y TIETTES + S Qu &y ey TEY
+Q3253165 T ETTIES + S01Q31 55065 I ESTIET )W123(€1,§275370,t) d&1d&2dEs.

The second series is:

iiPy(m i,x,x+j;212) = iifff pT32§ §§§§+j+521pT31§ 535“]

i=17=1 i=17=1

+pT32Q31€5 1€ + So1p T Q3265 €5 f“J)Wl%(&, £2,€3,0,t) d€1d&adEs.

The third series is:

Z ZPY(.% T+ l’+2+],122) E Z f f / pT32pT31§3§x+z T+I+]

i=1j=1 i=175=1

+S91pT31pT52E5 €5+ €] v )W123(51, £2,&3,0,1) d§1d62dés.

As before, we need to split each integral into a sum of integrals, and deal with each integral separately.
There are 6 summands in the first integral, 4 summands in the second integral, and 2 summands in
the third integral, and so there are 12 integrals to consider overall:

e The first integral:

212 L L[ 77676 Wian(n.0.6.0.0) derdsadss.

This integral is the most basic, as there are no singularities to consider. First of all, observe
that & lepmier - &7 (£162) 7" (§7€5€5). And so, for the series to converge, we must have
both |£1] > 1 and [£1&2] > 1. For this, it suffices to deform only one contour ¢; into the contour
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Cy so that & € C7 = |&1| > max{1; Enax{|€ |}} Then the series becomes:

212 L L[ 77676 Wian(61,60.60.0.0) derdsades

353 I W ,€9,63,0,t) d&1déad
Z;jlfffﬁ & 123(&1,&2,63,0,t) d§1déadEs

= f% f fCl 61 -Fﬁfﬁéﬁ%ﬁ Wi23(&1,62,&3,0,t) d&1déadEs
f f fCl 61 5 52_ 716565 Wias(1,€2,83,0,1) d€id€adss

1
= . %% t) d&1d€ad
/(:3 /62 . 51 1561 123(£1, €2, 63, 2, 1) d€1d&adés
1
+ (Residue at & = f_) + (Residue at & =1).
1
Next, we need to compute the residues.
The residue at &; = é is:

/Cg, fsl 511— 1 é Wiz (51’ é’f&%t) d&1d€s.

where the contour S; is the contour such that 1 <[] < é We deform the contour further, to

get the next residue:
/ /51 -1 &1

1
&
1 1
- [ L W (51, €a..t) dadés + (Residue at & = 1).
c3 Jcy fl -1 fl

Wi (51, E0.t) dErdés

The residues at £; =1 are:

1 1 1 1
[ ¢ 1 ) £3ax7t) d€2d£3+[ T ngg(l,—,&;,l‘,t) d£3
cgJea & 1 - =y cs 1 1

:/c3 5 521_1 Was(&2,&3,2,1) d£2d§3+fc3W3(§3,x,t) dés.

e The second integral:

o0

iZf / / Q267 ey §§)W123(§1,§2,§3,07t) d&1d2dSs.

i=17=1
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This time we need to take care of avoiding potential singularities of the function @32. Simplify

a bit:

(p-q€3)(§2-1)
P+ &2z — &
And so, we need to deform the contours so that we also have: |g€2&3—&| < |€2](g|&s|+1) < |p| = p.

(Quer g es) = ( &7 (G08) 7 (Q188)").

And so, deform the contour ¢; into Cy so that & € C7 = || > max{l;énax{|§—3|}}; also,
3€c3

make the contour co small enough, so that & € co = [€2] < Then the series becomes:

p
qlésl+1”

=iy 1% ,€9,&€3,0,t) dé1d€ad
leZlf[f Q2 TS ) Wins (€1, €2, £,0,1) déadadgy

llJZ;/Ca[czf Q32§x13 -ig )
)

fc3 ch o Q32 1_1 55 515352 Wi123(&1,&2,83,0,t) dé1déadEs

B -/03 Lz »/Cl Q32§1 -1 ' 5153 _ 1) 123(51,52,53,56,t) d§1d€2d€3
+ (Residue at &3 = l) + (Residue at & =1).
&1

Wi23(&1,62,&3,0,t) d&1d€adEs

The residue at &3 = é is:

—/cz S1 (Q32511—1 gl)W123(§1’§2’£_7 ’t) d&1d&s

:fc2 fSI((Pfl—Q)(@—l). 1 61)W123(§1,§27§—7 ,t) dé1dés

p&1+q§a—&1& &1 -1
i (e -)(E2-1) 1 | i
= ch N vy 51 — § )W123 (51,52, & :U,t) dé1d&s + (Residue at & =1).

The residues at £ =1 are:

(p-1-¢)(&-1) 1
p-l+qée-1-§& 1

ch . (Q321 51 W123(1,§2,§3,x,t) d§2d§3+/( )W123(1 &, = o t) dés

[65 [62 Q32 W23(f2,53,x t) déadés +f02 (%)Wg (&, 2,t) déo
(p-q)(&2-

/03 . ng W23(§2,€3,$ t) d&adés +/C2( 1))W2(52756,t) dés

f Q32
c3 Jeo

p =2
Wt o..0) deadea | (YoL)W (0t) dea
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e The third integral:
ZZ]//(Szlig_i_jff_ifg)les(fla‘52753,0,75)d§1d§2d53-
isljm1Jes Jea Ja

This integral is one of the toughest ones. As before, we want to enlarge the contours so that
|€2| > 1 and |€2&1| > 1, while also satisfying: |q&1&2 — &1] < |€1](¢|€2| + 1) < |p| = p. This time, it it
also necessary to assume that g < p.

Now let us enlarge the contour ¢y into Cy so that & € Cy = |&o] > |£ E Note that for small

1], the requirement |€2| > 1 is automatic. In partlcular let ¢; and Cs be circles, so that
|&a| = Const, |£1| = Const. Then, it follows that |& = \g e where € > 0. Then, to avoid
singularities, it suffices to have:

|51|<q|52|+1>=|51|( (‘€ | +e)+1)=q+|51|<qe+1><p.

which is clearly true for sufficiently small circle ¢, provided that ¢ < p. And so, finally the
series becomes:

>y | ! | 2 | (Sn& T ) Wana(r,€2,5,0,1) dadady

i=1j=1

)
:i i [/ [ (sﬂss”*& T ) Wina (61, €2, 5,0, 1) ddéadés
)

f f02 fq 2152 I 55 525153 Wi23(&1,&2,83,0,t) dé1déadEs

:[03 [02 [c1 52152—_1'&62—_1)W123(51,€2,£3,:17,t) d€1dEadEs

1
+ (Residue at &g = —) + (Residue at & =1).
1

The residue at &; = i is:

L[ (sa T = Wi (61 2t derdey

f jc-l g'l—gl'a)wmza (51,5—,63,35 t) d&rdés

ff 123(51, 753,33,15) d&1dgs.

&1
The residue at & =1 is:

[c3 fq 32151 1 1)W123(§1’1’53’$’t) dg,d&s
f /;1 o1 W13(§1 &3, 2,t) d&rdgs.
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e The fourth integral:
Z f f f S91Qz165 ey ff)W123(§1,§2,§3,0,75) d&1d&odEs.
i=14=17¢

As before, we want to enlarge the contour cy so that [§] > 1, [£2&3] > 1, |¢€1&e — &1 <

1€1](qlé2] + 1) < |p| = p, and |g€1&3 — &1 < |€1](q|€3] + 1) < |p| = p. Deform the contour cg into Co

so that & € Cy = |&| > max{1; max{|£—13|}}; also, make the contour ¢; small enough, so that
3663

e =& < mln{mm {q|£2|+1} min {q|£§|+1}} = min {ql&gﬁ}' Then, the series becomes:

&aeca &3ecs &aec

B [ ,[CQ S21Q31 -1 § § 52 53 51 )W123(£1>£2>£37 0 t) d§1d§2d§3

B /C3 fCQ fcl 821Q31§2 1 %—_1)W123(€1,€2,€3795,t) d&1dEades
+ (Residue at &3 = i) + (Residue at & =1).
&2

The residue at &3 = é is:

/52 [cl (5216231 521 §2 )W123 (51’52’ 52 ,t) d&1d&,
) /5:2 /Cl (521 . (5522;55)1(€1§;;1) . 521— & )W123 (& 2 g_ ’t) derdes

(Pe-g)(&a-1) 1 : B
= f@ fq (5‘21 . Dt 1 61 - o 52 — 52)W123 ({1,52, 5_ a;,t) dé1d&s + (Residue at & =1).

The residues at £ =1 are:

ch fq (521Q31 ] '52 3 )W123(§1, 1,&3,2,t) déydés

(p-1-¢)(&-1) 1
o (S P ) Wass (a1 )

f fq Q31 )W13(§1,€3,$ t) dé1d€s +/<:1 (%%)Wl (&1, 2,t) d&;

f Ll le )ng(fl,&g,m‘ t) dé1dés + fl (z (qpp))Wl (gl,x t) d&;y.
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e The fifth integral:
S x l ] CE*i z W b b )O)t .
ZZ;JZ:I f L —ll ((;232 3153 51 52) 123(61 62 53 ) d§1d§2d§3

Shrink the contour c¢; and enlarge the contour c3 into C3 as in the third integral; next, shrink
the contour cy as in the second integral. Then, provided that ¢ < p, the series becomes:

Z Z f ]6-2 /c-l (Q32S31§§_i—j§f—i§§)ngg(gl’52753’O’t) € deodés

i=175=1
;; f [02 fq (Q32S315§7i7j§f_i§§)W123(§1,52,53,0,75) d&1d&2dEs
1 1
[03 [02 [q Q32531 &1 ‘&53—_15551%%)”/123(51,52,53,O,t) d&1dé2dEs

/53 fCQ fcl (Q32531§3;_1 ' 515;_ 1 )W123(€1,€2,€3,x,t) d&1déades

+ (Residue at &3 = gi) + (Residue at &3 =1).

1

The residue at &3 = 5% is:

[ fcl Q32531 51 ] € )W123 (51’62’5 , ,t) d&ydéy

x,t) dé1dés.

_ (P -9)(e-1) 1 1 1
_f arpir+ge—-&& & 1—§I)W123(§17§23€.1,

The residue at &3 =1 is:

/ /c1 Q32S31%)W123(§1,§2,l,m,t) dédés
/ /;1 ' 1)W12(§1=52v$ t) d§1dSs.

e The sixth integral:

22[ f fq S21Q3155265 €5 ﬁf)Wm:a(El,&,ﬁs’t) d&1d&odEs.

Shrink the contour ¢y and enlarge the contour c¢3 into C3 as in the third integral, and shrink
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the contour ¢; as in the fourth integral. Then, provided that ¢ < p, the series becomes:

; [ f f So1Qa1 5585 I ETTIET ) Wina (€1, 2, €3, 0, 1) dEadéadts
ii/ f f S21Q31832£§ Z_JE Ef)Wl23(£la£2a£3a0at) d£1d£2d£3

f [/ S521Q31532 11 55 5352‘51)W123(§1,§2,§3,0t)d§1d§2d§3

.[ _[2 -[Cl 821Q31532 53 -1 ) 52(:-31_ 1 )W123(€17£27§37 z, t) d£1d€2d§3

+ (Residue at &3 = fi) + (Residue at & =1).
2

The residue at &3 = é is:

/ /C-l 521Q31532L_1 .é)ng (&’&’é’x’t) dé1dés

_ e 0@ 1 1 1
) fcz fc1 (521 P&+q8i—686 & 1-& )W123 (&’&’ §z’x’t) dhrda.
The residue at &3 =1 is:

f[ 521Q31532 )W123(§1,€2,1,33775)d§1d§2

ff .u,g. )Wl2(§1,§2,xt)d£1d§2
= p p &-

e The sevenths integral:

i i [:3 fc2 fcl (PT32€ fg€x+j)W123(§1,§2,§37U,t) d&1d&2dEs.

i=1j=1

Enlarge the contour ¢; into C] large enough, and shrink the contour ¢y small enough, so that
the singularities are avoided. Then, the series becomes:

ii[@)f f pTs28T §3§z+])W123(€17§27§37th) d&1d&2d€s

=1 j=

3 T W ,€2,63,0,t) d&1déad
ZlEff[ DL€l €565 ) Wiz (61, €2, 60,0,1) dEydads

L
L Lt

W123(§1,§27§3733 t) d&1déadEs
+(Residue at & =1).

§153£2)W123 €1,69,63,0,1) dérdadss
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The residue at & =1 is:

fcg ch (pT321§2£2)W123(1,§2,§3,x,t) d£2d€3=fcg fc2 (pT321§2£2)W23(§2,§3,x7t) déodEs.
e The eights integral:

3 ST W ,€9,63,0,1) dé1déadéEs.
Z;fof o1pT51€5 5] ) 123(&1,&2,83,0,t) d&1d&adEs

Enlarge the contour cs into Cs, and shrink the contour ¢;. Then the series becomes:

iwfff 521PT31€§ Z§3§x+])W123(§1,§2,§3,O,t)dfldggdgg

i=1j=1

) 2]001 »/;3 ./;'2 »/;1 SleT31§ 53 £x+] W123(€17 €27 53) 07 t) d§1d£2d€3

= S T
/03/02[01 211031 ~
1
ff/ 521PT31
C1

The residue at & =1 is:

W123(§17§2, £3,2,t) d§1dEadSs
+(Residue at & =1).

caa )W123(51> £2,63,0,t) d€1déodés

f fc So1pT31 1 5151 )W123(§1, 1,&3,2,t) dé1dés

[ S
[

)W13(§17 &3, 2,t) d§1dEs

W13(§1,§37$ t) d&1d€s.
e The ninth integral:

fC3ff PpT320Q3183 §1§x+J)W123(§17€27§3,0775)d§1d§2d§3-

21]1

Enlarge the contour c3 into C'5 and keep the contours ¢; and co small enough. Then, the series
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becomes:

wi[cff pT32Q31€ §1§I+J)W123(§17€27§3,0 t) dédéadés

i=17=1

ii/ f f PT32Q5165 €165 Y Wias (€1, &2, 63,0, 1) dédeades

:/03.[:2.[(:1 PT32Q31 !
f f fq pT32Q51

The residue at &3 =1 is:
f / pT32Q311 §2§ )W123(51,§2,1,$,t) d&1d&s

f f : q_p )le(&,fz,x t) d&ydés
p f

A ‘p
e The tenth integral:
iwfc f f So1pT31Q3283~ §2§x+])W123(§1,§2,§3,07t) A&, déodes,.

i=17=1
Enlarge the contour cs into C3 and keep the contours ¢; and ¢o small enough. Then, we get:

So1pT: W ,€0,83,0,t) d&1déad
;]Z;f /C; Cl( 91pT51 Q3265 €5 €] ) 123(&1,€2,E€3,0,t) d€1dEadEs

W23 (€1,82,83, 7, t) d1d€adSs
+(Residue at &3 =1).

53515 )W123(§17§2,§5,0 t) d§1d&adés

o, 2,t) d€1dés.

= ZZ f / 521PT31Q325 ST ) Wias (€1, €2, €3, 0, 1) d€rdéades
i=1j=1 2 Ja

:fC‘s /02 fq 521PT31Q32
f / /CI 521PT31Q32

The residue at £3 =1 is:
f f 521PT31Q321 515 )W123(§1,§2,173377f) d&1d§s

- [ [ (s p-l.u.flg JWia(6, 60,2, 1) dEadt

:'/;2 c1 52 . D .1§£1)W12(517£27x7t) dfldfg

53 §67 )W123(§1, £2,83,0,t) d§1dé2dEs

W123 517 627 537 Z t) d€1d€2d§3
+(Residue at &3 =1).
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e The eleventh integral:
Z f / / pTopTs €57 x+Z+J)W123(§17§27§3707t) d&yd&adgs.
i=15=1¢3

This time there is no need to deform anything; just choose contours small enough to avoid
singularities. Then we get:

293 L (prerTager e ) Wass 61, €2, €.0.0) dedeadey

i=17=1

- »/63 »/CQ »/Cl (pT32pT31 1 §2£2 ' 1 §1§12£2 )W123(£1) 52) 537 €z, t) dfldfgdfg

e The twelveth integral:
/ / / 521PT31PT32§35x+Z MHJ)W123(£1,§2,§3,O,2€) dé déydés.
c3 c1

Keep contours small enough. Then we get:

Y5 [ [ (San T G Wiaa(er, 0. 6.0.0) derdeadey

i=1j5=1

/ff So1pT31pT32 515’ &525 )W123(§1,§2,§3796,t)d§1d§2d§3-

Now, we collect the common terms together using the Mathematica software:

e The integral over £;,&2,&3: This integral has 12 summands; after calculation, we get:

(2p-1)* (&1 -&)(& - &) (&L - &) (L& -1)
55 515 95 (& -1)(&-D(&-1) (&G —p-a6&2) (& —p—a6i&3) (&2 —p — 46283) Whzs drdtadSs.

c3 ca c1

e The integral over £;,&s:

}15515 %%S—)Wu(&,&,x t)d€1d§2+§1§§1§ 52 p p&_ )W12(€17§2,90t)d51d52
%;ﬂ qpp1§2€ W12(51352,$,t)d51df2+j£2£ Sﬂqpplflg )VVIQ(&’&’%’t)d&al52

q-p (2p-1)(& - &) (G- 1)
T b TR DG D - G ) dade
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The integral over £;,¢&3:

jé fi - W13(51,€3,$ t) déydés + }é ] Q31 ng(gl,gg,x t) dédés
o f (BT W6 a,0) dsdy
_4q (2p-1)(& - &3)(&i1&s - )

_p c3 c1_(51—1)(53—1)(§l_p_q£153) 13(517537$3t)d§1d§3.

The integral over &, &3:

jé o 52 5253 Was(82,&3,t) d€adSs + 55 55 Q32 )W23(£27§3,:c t) déadés

* §€3 92 PTs2 1-& )W23(£27€3755,t) d€adEs

§§- (20— 1) (& — &) (€283~ 1)
c3 Je2 (52_1)(63_1)(62_])_(]5263)

Wa3(&2,&3,,1) d2ds.

The integral over &;:

ygl (% (q]_gp) )Wl (&1, 2,t) d.

The integral over &s:

(D) ) i

The integral over &3:

'é W3 (537x7t) dfg

Notice that we didn’t include the {g = =~ residues in the computations of the double integrals above.
This is because they cancel out with each other:

o §1,80:

(PG -g)(&-1) 1 1
-952 o\ pEitaba 66 E-1 W123 &1,62, ,x,t) d&1d&s

(Pe-g)(&G-1) 1
i 56;2 »¢C‘1 (Sﬂ pEa + 61 - 626 52 - ng SRS —,x,t) d1dgz

(p& —q)(&-1) 1
SR A ey W”f”(&’f?’ .t) désdey

(Pe-g)(&a-1) 1 1 1 )
ygg jél pa+q61—&86 & 1-& )W123 (51’52’ fg’x’t) dé1dg2 = 0.
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o {1,683t
1

&és 1 511— 1 gll Wias (El’ 3 75375‘7:t) d&1d&s
i 5’53 ?gl (1 _151 ‘ fll)Wms (517 5—11,53,35,15) dé1dés = 0.

Remark 3.2.3. These cancellations seem somewhat miraculous; however, it becomes much clearer
if we didn’t make any evaluations in the first place: for example, consider the last cancellation in the
variables &1,&3. They came from the permutations ¢ = 123 and ¢ = 213. Then, the corresponding

sum would be:
[ (e L) won{n) as

" fcg fcl (521|£2=§11£2%1 : 5_11) W23 (517 é,ﬁg,x,t) dédés

_1 q(&1-62)(&1&2 - 1) 1 )
3 L/, D CED R ) (51’51’53’9””5) dg1dgs = 0.

-1
o=g

Remark 3.2.4. When we deformed the contours, we assumed that ¢ < p to avoid some singularities.
As it turns out, there is no need to be afraid of these singularities: Tracy and Widom in [5] gave
the argument that the residue that arises because of the denominator p + ¢§n&g — {» (which is given
by &4 = %) is O(1) at infinity in the variable &g, and so it vanishes when integrated over the

variable {g.

3.3 Some simplifications for further work

After some calculations, we can verify the following main identities:

Qﬁa = Sﬁa _pTﬁa;

Similarly:
Tﬁa = Sﬁa + 1;

Moreover:

2p-1)(& - &)(&&-1)
£ 8@ DG D6 p iy 28D s

yg (P-)(1-68)
o Jer (1-&)(1-&2)

To1Wha(&1,62, 2, t) d€1dEa;
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(2p-1)%(& - &) (& - &) (&L - &) (G168 - 1)
55 95 55 (€= D) - 1)(E - (€ - D qr&a) (61— p - a6162) (62— p—qlata) | 128 He1062083

(P - 0)*(1 - £265€3)
959555(1 «51)(1—§2)(1_§3)}:!BTB&W123(§1,§2,§3,$,7§) dé1d€rdes

c3 ca C1

c3 co C1
Let us consider the sum inside the integral:

1 1 1 1 1 1 1 1

. S . S. .

51—15152—1+Q32§1—1 5153—1+ 2152—1 5152—1+ 21@3152—1 §&3-1
1 1 1 1 1 )

S S S T .

+Qs2 Nea—1 8- 1" 2G50y E3—-1 &3 e &S1-1 1-&
1 & 1 2 I &

5.1 1-6 +pT32Q3153 1T 6 +521pT31@32 a1 1.6
§162 &1 5152

)
. + So1pT31pT:
1-& 1-616 21PL31P 321_51 1— 616

+So1pT31

+pT30pT31

The first thing that we need to do is to remove the @, terms by writing: Qgn = Sga — PT3q. Then,
this will yield:

1 1 1 1 1 1
ESAU&U(U ~1 &) - 1 _pT32£1——1 G&-1 Sapin &-1 &~
VlnSng g1 S nng '5255—1 gy 1?&2
+521pT51 521— 11 §1§1 +pT32.531 531_ 1 16_5 = pT32pT3 531 11 §2€2
+521PT31532§ 1_1 = 3 & = Sa1p 31PT32£31 11 flfl
+pT39pT 1 §2£2 "1 §1§12§2 + 591pT51pT 30 . fl &1 fff 5

The first term we recognize as the integrand from the paper by Tracy and Widom, which equals:

1 1 (1-£1£83)
A, . =q151q9T31q97T:
2 o)~ 1 ooy — 1 P e YT - &) (1- &)

We now gather the remaining terms by the pTj, factors:
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e The pT3; factor:

1 1 1 1 1 &1
21P 3152_1 €65 — 1 21P431 3253_1 5253_1+ 21P 3152_1 1-&
T . = —So1pT51¢T" '
g T g TR T ey (16

e The pT35 factor:

I S 1 1 1 &
f-1 ago1 Mg Ty gg T g T g

1 & (1-£16263) .
TS g T PR T g (16

-pT32

e The pT35,pTss factor:

1 &2 1 &1 ) §162
—p139pT: T . T390 .
pL32p 315 1 1= & G- 1 1_£1+P 32p 311 & 1-66
SRSt (1-£616263)
+S801pT31pT32 = pTo1pT31pT52 ;
1-& 1-6& (T-&)(1-&)(1-¢&3)
And so, the coefficient before the (I-8188) ___gactor becomes:

(1-€1)(1-€2)(1-€3)

qT121q131qT39 — So1pT31q 132 — pT32qT31 + pI21pT31pT32;

We now observe the following identities:

So1 + 1 ="Ty;
¢ +p° =+ )0’ -pa+q°) =1-(p° -pa+q°) =p* - pg+¢°
and so we finally get:
q121qT31qT32 — S21pT319 132 — pI32qT31 + pTo1pT31pT32
= (p* - pq+ ¢*) T Ts1 Ta2 — pqTor Ts1 Ts2 = (p — q)*Tor Ts1 Ts2;

This simplification suggests that we should always remove g, terms, then we need to take the
summations over the columns in the [A,] table with T, rearranged into the next column.
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o [As Ja221,2221 [As 22122021 [As 2122 2221 [As]1222 2221
1234 1 0 0 0
1243 Ous PTis 0 0
1324 S30 0 0 0
1342 S32Q42 S32pT2 0 0
1423 (43542 PTh3Q42 PTaspTys 0
1432 S320Q42543 S32pTa2Qus pTLuzpTs2Sso 0
2134 So1 0 0 0
2143 S21Q43 So1pTy3 0 0
2314 S21531 0 0 0
2341 521531011 S21531pTh1 0 0
2413 S21Q4351 So1pT43Qn So1pTuspTn 0
24311 591531Q41543 5215319141 Qa3 So1pTa3pTa1 531 0
3124 S32531 0 0 0
3142 532531 Q42 S32531pT 2 0 0
3214 532531591 0 0 0
32411 532531521Qm 5325315210111 0 0
3412 S532531Q4251 S32531pT12Q a1 S32531pTa2pTsa 0
3421| S32531521Q41 5812 | S32531521pTi1Quz | S32531pTa2pTs1 521 0
4123 Q4351251 pTu3Q4251 PTuzpTyoQu PTy3pTyapTy
4132|  S320Q42543511 S32pTs2Q43511 Ss2pT1opT3Qa1 SsopTsopTaspTin
4213 521043541542 So1pTa3Q 41542 So1pTu3pTa1 Qa2 So1pTy3pTa1pTis
4231] S915310Q41543542 | 5215310141 Qua3542 | S21531pTu1pTa3Qaz | S215310Tu1pTaspTyn
4312| S32531Q42541543 | S32531pT42Qu1543 | S32531pTaopTu1Qas | S32531pTaopTuipTys
4321832531921 Q41542543 | S32531.921 9141 Q42543 | 532531 521 pTu1 pTa2 Q43| S32.531.521pT 01 pTa2pThs

3.4 General formula conjectured

We have the following table for the case N =4 (see [2]):

After computing manually the formula for N = 4, we get the following expression for the 4-fold

integral:
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(p-a)*(g+p )qu 515 jg jgngrqug]Z g 11%ffi??W1234(§1,§2,§3,§4,33,75) d§1d&adE3dEy.

which equals:

I X X 3 Mo &-11;Iffi‘*W1234(51,£2,53,54,m,t) 61 s,
i=1 ’

This suggests the following conjecture for the N-fold integral for general N:

N-1 - H€1
(v Z_Q)ﬂg 5’595 [T Tho - Wi (€1, 62, s &, 2, t) dE1dEn...dE .
- B a-6)
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Chapter 4

Main results

Theorem 4.0.1. Let S = {s1, 52, ..., sk} be a subset of {1,2,..., N} of cardinality |S| =k, and define:

5]
[-1ie)
I(z,Ys) = 9595 I Tﬁaml;.Wsl_,_sk(gsl,...,58k,x,t) dés, ... dEs,
Cou O ao,égeﬁs I;[l(l_gsz)

Then, the distribution of the unique species-1 particle which is right-most at time ¢ = 0 is given by:

|S|_1 Z(Sc)_|Sc\~(\Sc|+l)

o =
B =)= ¥ 10 -d) (%) I(2,Ys)
5c{1,2,...,N} =1 p
EnesS
Is| ..
[ -4 )Z(SC\{&V})JSC\{sN}~(SC\{5N}+1)

i=1 (g 2
S¢{1,2,...,N} sl p
ENES

I(x,Ys).

where the sum is over all subsets S of {1,2,..., N}.

Remark 4.0.2. Note that the number of terms grows exponentially as N increases: there are 2V —1
different integrals.

Remark 4.0.3. The formula suggests that the integrals that contain the {y variable behave
differently from those that don’t. Indeed, to compute the lower-dimensional integrals, we will need
to evaluate [A,] at the variables that are not present in the integral. The coefficients of [ A,] in the
variable &,,, m < N are not different from the single-species coefficients and are given by [] Sima,
where the product is over all inversions in 0. However, the coefficients of [ A, ] in the variable &y
contain the terms Ty, and the unique @)y, and so this case needs special attention.

Before we give a proof of this theorem, we need to establish some preliminary results.
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4.1 Brackets and g-Brackets.

Our goal in this section is to introduce and develop the machinery that is necessary to study the
kind of problems that we are studying.

Definition 4.1.1. Let n be a positive integer. A g-bracket is defined by:

=147+ 7" 2L

1-7"
[, =

Similarly, the g-factorial and the g-binomial coefficients are defined by:

[ ]7" [1]7' [2]7' [ ]7' g[k]ﬂ |:k’:|7' [n_k]T'[k]T'

Warning 4.1.2. This is a departure from the standard notation: it is customary to write [n], for
the g-bracket. However, it creates potential confusion with our probabilistic ¢, so we prefer to write
[n]; instead.

Remark 4.1.3. The g-bracket [n], can be seen as a continuous deformation of the usual integer n:
we recover the usual integer by taking the limit lin% [n]; =n. The g-brackets are not made-up, but
T

rather arise naturally in mathematics, as in the following theorem (which we will need later):
Theorem 4.1.4. (Cauchy binomial theorem): We have:

n L k(k+1)

H(l +y7'k) = Z ykT 2 [n] .

k=1 k=0 klr
Definition 4.1.5. Let n be a positive integer. We define a bracket by:

p"-q"
[n]:= P o2t pg v

Similarly, we define the factorial and the binomial coefficient:
[n]!:= [1][2][n]:ﬁ[k] [n]:: [n]! .
il k [n—Kk]!-[E]!

Remark 4.1.6. Let 7 = %. Then, the following relations between brackets and g-brackets hold:

m m

N-1
Proposition 4.1.7. The coefficient [] (p' —¢") can be expanded as follows:
i=1

N-1

. k(k+1) (N—-k)(N-k-1)
2

N N-1
(e AN _1k 5
(' -q") Z%( ) [ ) ]q P

i=1
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Proof:

First of all, we have:

]ifjll(pi ~d')= ]:pi : ]: (1 - (%)k) ) (:Pj) : :1 (1 +(-1) (%)k) .

The first factor we can evaluate immediately:

N-1 Nt

) B (N-1)N
(Hp])=p-p2-----pN1=pk-1 =p 2 .
j=1

The second factor is handled by the Cauchy binomial theorem: set y = -1, 7 = %; then:

oo () Eert) [ -Eor )

i=1

N-17  _pv-k-1)
[ k ]p '

Putting everything together yields:

n(n)n(()) = (e

(N 1)N E( )k k(k+1) [Nk 1]-p_N k(k+1) Z(— k(k2+1) I:Nk—l] pNT2‘*‘Nk % k

Ic(k+1) N -1 (N-k)(N-k-1)
Z(— [ k ]'p B

k(k+1)

N-1 _
[ . ]ka_pk(k+1)

4.2 The [A,] and [AZ] coefficients.

Since we will work with the [A,] coefficients extensively, we will need to study them thoroughly. The
material of this section will be primarily used in the section about the lower-dimensional integrals,
but the construction [AS ] will be needed soon.

It was shown in [2] that the coefficients [Ay]2..212..2.2..21 are zero whenever o(j) = N, Vj > N-m+1,
where the particle of species 1 is mth from the right, and otherwise is given by:

N-m m—1
[As]2.212..22.21 = H S8, H SN.o(k) " H PTN o(N+1-k)  ONo(N+1-m)-
a<f<N k=1 k=1

where the product is taken over all inversions in o.

As was noted in the previous chapter, we don’t want the (g, to appear when we add the different
summands together. With this in mind, we introduce the coefficient [ A ] with Qn, replaced by
Sna:
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Definition 4.2.1. The coefficients [ A7 2. 212..2,2..21 are defined by:

N-m+1 m—1
[A5]2.212.22.21= [] Ssa- [ Snow): H PIN o(N+1-k)-
a<f<N k=1

where the product is taken over all inversions in o, where we also have that o(j) =N, 3j < N-m+1,
and are zero otherwise.

Now, let us pay attention to the coefficients [As]2..212..2.2..21 again. The very first thing that
we observe is that, if it wasn’t for the £y variable, the coefficient would look exactly as in the

single-species case: [] Sgo. As we shall soon see, this is exactly what makes the integrals with {y
a<f
variable so different from the integrals without it.

Proposition 4.2.2. Let S = {s1,52,...,8t} & {1,2,...,N} be a proper subset, let o € Sy be a
permutation that is order-preserving in the first |S¢| < N variables, suppose that o(1) =nqy, o(2) =
ng, ..., o(|S°) = nyse|, and suppose that njge # N. Let [As]2..212..2, 2..21 be the coefficient where the
1 appears in the mth position from the right, m < N —|S¢| = |S|. Then:

4\ H(IS°+1)
[As]2.212..2, 2”'21|5n1’~.-,£nlsa|=1 = (]—9) [Ay]2.212..2,2..21

where [A, ]2, 212..2 2..21 is now the coefficient on the N —|S¢| = |S| particles, ~ is the permutation
on the set S such that v = o|g, and the position of 1 from the right is m (i.e. the position from the
right doesn’t change).

Proof:

First of all, since the map o is order-preserving in the first |S¢| variables, it follows that there are
no inversions among the first |S¢| variables. We now need to count the number of inversions (£, «)
such that g€ S°and a e S.

e We have that o(1) = n;. Therefore, there are exactly n; — 1 inversions (ni,«) in o:
(nl, 1), ceey (nl,nl - 1).

e We have that o(2) = ng. Then, there are exactly ng — 2 inversions (no,«) in o: it’s
(n2,1),...,(n2,n2 — 1), but without (na,n1).

e More generally, we have that o(7) = n;, and there are exactly n; — i inversions (n;,«) in o: it’s
(ni, 1), ..., (nj,n; — 1), but without (n;,n1), (ni,n2), ..., (ni,ni-1).

We now need to count all there inversions:

s 1 (gl
(m =)+ (n2=2) 4 (s = 18) = 3= 331 = (87 - —|S| (59 + 1)
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We now observe that, since we have that n; # N, Vi, then it follows that every inversion (n;,%) in
o gives rise to the S,; factor, and so when evaluated at (&,,,&n,, "'v§n|56\) =(1,1,...,1) gives the

Z(SC)_ [S€-(1S€l+1)
factor (%) ? )

We finally observe that the position m from the right in the factor [A,]2. 2122 2..21 doesn’t change:
indeed, since 7 = o|g, the position from the right remains unchanged. m

Corollary 4.2.3. Under the hypotheses above, suppose that o(1) = n1, 0(2) = na, ..., o(|S¢) = n/g¢|,
and suppose now also that njge = N. Then:

_ c CISO\LEN (S NEN I+
(Al 212 22 1| ~ (u)(g)lﬂ m<g)2(5 \{én)) 3 . H S5
0]2..212...2,2... -1~ «
6”17"'767%3(;' 1 p p p a<[8
a,BeS
Proof:

Apply the previous proposition to the first |S¢| — 1 variables to obtain:

S(S\{En)})- IS \{§N}I-(I25 MEnt+1)

A =2 -[A .
[ 0]2...212...2,2...21|§n17_._7§n|sc|71:1 (p) [Ay]2.212..2,2.21

Now evaluate at £y = 1. Since we have that o(]S¢|) = N, then it follows that there are exactly

- 18 = |S| inversions in o of the form (N,a): (N,s1),..., (I, sg). Next, since the position of the
1 is mth from the right, then it follows that we have (m —1) pTn-factors, a single @ no-factor, and
(18| - m) SNa—factors So that, when we evaluate those at £y =1 we get p- ]l) =1 to the power of

m—1, L to the power of 1, and to the power of |S| — m, thereby obtaining:

T(S\{En))— Ei \{ﬁN}\(\gj \{En3+1)
( ) [Ay]2 21202, 2210 oy

S(S\{En - IS¢ \{éN}\(\SC\{EN}Hl)

(5227 e

a<f3
a,BeS

4.3 The N-fold integral.

Our main goal in this section is to prove the following proposition:

Proposition 4.3.1. The N-fold integral in the distribution of the right-most species-1 particle is
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given by:

o =16
[1w Z—q)f 55% [T Toe - Wi (6,0, o v, 2, 8) d .
i=1 B>« H(l fz)

As always, before we need to establish some results.

Proposition 4.3.2. Let m be some fixed positive integer, m < N. Then, we have the following

identity:
> Il Tsa- T Tsa- Hsﬁa:[ ] [ ] Zsa-
|S|=m B>« B>a B>a B>a
«,BeS° a,BeS aeS.
BeSe

where the sum is over all subsets S ¢ {1,2,..., N} with |[S|=m
Proof:

To prove this, it suffices to show that

Z H TBa : H Tﬁa ' H Sﬁa
|S|=m B>c B>a B>«
«,BeS¢ a,BeS aeS

BesSe N
[T Tsa ) [m]
B>«
Now observe that the left-hand side becomes:
Sﬁa ) 1 Z (_p"'qgag,é’_gﬁ)‘ H (p"'qgagﬁ_{a)
|S|=m ,8>g Tﬁa B>a TBa [S|=m B>« 55 - ga B>a 5/5 - ga ‘

aeS° aeS aeS°
BeS¢ BeS eS¢ peS

Now, observe that, if we multiply this expression by the Vandermonde [] ({n —&g), then we get an
a<f

antisymmetric polynomial which is O(¢V7!) at infinity, and so has the degree at most N - 1. And
so, it is a constant times the Vandermonde, because any antisymmetric polynomial in &, ...,&N is
divisible by the Vandermonde. Therefore, the original sum is a constant.

We now prove the result by induction. Assume that the identity holds for IV — 1. Then, to evaluate
the constant C, let us evaluate the expression at &y = 1:

RS - + qSa e
Cam= T (_p 4€ap €ﬂ) (p a€alp - € )
ISEm Boa €8 — &a oo &8 —&a
aeS aeS°
5656 £N:1 BES £N=1
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Now, we will need the following expressions:

_p—pla

_p+q£a€N—£N‘ _ e PHEElN L
§N _ga En=1 1 _ga ’ gN _fa

£N:1 B 1_506

so that we get:

_p+Qfa‘§,B_£B)' (p+q§a€5—§a). Nem
IS|em Ao ( £~ &a ;}x £ —&a b
NeS aeS aeS°
BeS© BeS—{N}
_p+q€a§ﬁ—€ﬁ)_ (p+fJ§a§/3—€a), m
1S|Em Bl:[a ( €8~ &a ,ggy £5—&a ¢

N aeS aeS°®
5 5o Ny s

C’N,m =

+

By inductive hypothesis, this equals:
N-1 N-1
R PN L
m—1 m

We now observe that this is identically equal to what we need:

IN-17 xwm [N=171 o [N-1)! o [N -1] -

] B R R | R R e A ey Ry R

:[N—l]!-[m]-pN‘m+[N—l]!'[N—m]'qm:( [N -1]! )_(pN—qmpN‘m+qmpN‘m—qN)
[N -m]!-[m]! [N -m]!-[m]! P—q

(o) (o) (o) - = Lo

To prove the theorem of this section, we will need to sum over each column separately, as was
remarked in the previous chapter:

Proposition 4.3.3. Split the factor Qo as Sgq — P1sq so that we are working in the [Aj ] table.
Then the coefficient before the sum of N-fold integrands over the k-th column of this table is given
by:

N -1 (N-k)(N-k+1) k(k-1)
q 2 p oz .

Oy = (D)™ [N —k

Proof:

First of all, the summation over the geometric series yields:

1 Ea(N)-+-Eo(N-k+3) Ea(N) ] o
, o (-1)-[AS
JGZS:N [(50(1)---§U(N-k+1) 1) (&) - 1)] [1 = &o(N)--Eo(N-k+3) 1-&) (D l4s)s. 2000
N [ 1 ] ' [ So(N)Eo(N-kv2)  Eo() ] 1A%
oy Cov-ry = Doy =D ] [1=&ovybov-rsry  1=Eo) 7212 222
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We now observe that the numerator of this expression becomes:

—(1 =&y Eo(v-k+2)) " Eo(v)--Eo(N-k+3)) "+ &) + (Eo(1) - Eo(N-ks1) = 1) - (So(v)--Eo(N-k+2)) - " Ea(IV)
= {& vy Cov-k+2) = 1+ (§o1)Eo(vatr1) = 1) - oy --Eo(N-k+2)) } '50(N—k+3)~--€§(_]%[)

= {o1) Loy = 1a(n-rsz)--Eaiay = ~{1 = Loy Lo Yo (-hsz) - Ehiay = —{1 = €1 &N Yoo (Notez) - Eb -

So that the whole expression becomes:

5 [ 1 ][ 1-&1..6Nn ]
vesn L&) Eov-ry = Doy =D | [ (1 =&o1)Eov-r+1)) - (1 = o) Eo(N-k+2))
‘ [ EovyEo(N-k3)  Ea(N)

1=&onybov-ke3)y  1=Ex()

’ [AZJQ_..212...2,2...21 :

To go further, we need to write out the coefficient [A? ]2, 212..2.2..21 explicitly:

5 [ 1 ][ 1-&1..6Nn ]
vesn L&) Eov-ry = Doy =D | [ (1 =&o1)Eov-r+1)) - (1 = Eo(n)--Eo(N-k+2))
:| N-k+1 k-1

[T Ssa- [T Svow)  [10TNo(N+1-n)-
<B<N n=1 n=1

[ EovyCo(N-kv3)  &a(N)
L=&onybovaiez)y 1 =E&)

Let S¢={o(1),...,0(N-k+1)}, and S = {o(N -k +2),...,0(N)}. Now we split the coefficient

[T Sgaas Tl Sga- I1 Sga: II Spa- We now split the sum over all permutations o € Sy
a<f<N a<f<N a<f<N a<f<N

aesS ,aeS , eS¢
eS¢ A p

into a triple sum: the sum over all permutations in the set {1,...,N —k + 1}, the sum over all
permutations in the set {N -k +2,..., N}, and finally the sum over all subsets S¢c {1,2,..., N} of
cardinality N — k + 1.
N—k+1 k-1
Next, we observe that 1 Sy o(n)* Il TNo(N+1-n) = 1 Sna Il Tna -We now make the following
n=1 n=1 oeS° aeS
important observation: the coefficient [A¢ ] is nonzero at first place if and only if N € S¢. Therefore,

it follows that the whole product becomes:

[T Ssa IT Ssa I Ssa II Sna IT Tnva= [T Sea I Ssa I Ssa [ TNa-

a<f<N a<f<N a<f<N aeS° aeS a<fB<N B,aeS B,aeS¢ aeS
aeS B,0eS B,0e5¢ NesS© Nes© aeS, NeS¢
BeSe BeSe

Moreover, the sum over all subsets S¢ of {1,2,..., N} with cardinality N — & + 1 reduces to the sum
over all subsets S°\{N} of {1,2,..., N — 1} of cardinality N — k.

Therefore, since we have the factors [] S, and T[] Sga, we can apply the Tracy-Widom integral
B,aeS B,aeS°

formula for the left-most particle in the variables {;(n_12) - §o(n) and right-most particle in the
variables 50(1)7 ceey fa(N—k-%—l):
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(N-k)(N— ’““)( )N 1-&1...{N—k+1

T3a
(I-&)...(1 —fzv_k+1)]5,£[se g

E
|S€|=N-k+1
NeS¢

. 1-&..8Nn g
[(1—51---§N—k+1)-(l—fN...gN_k+2)] P T Sea [1 Tva

a<fB<N aeS
aeS NeS
eS¢

|22 _gy1-1 1-&nkr2--EN ] T,
[p - (1= &n-k+2) .- (1 -&N) 5,115 g

‘SC|:N—]€+1 (1_51)(1_5]\[)
NeS¢
[T Tsa IT Tsa [T Sga [T Twa-
B,aeS B,aeS° a<B<N aeS
aelS Nes©
BeS¢
We now write: [ Tgo [l Tna= [I Tsa Il TNa, and apply the previous proposition to the
B,aeS° aesS a<fB<N a<N
NeS¢ B,aeS°¢
variables &1, ...,En—1 to obtain:
(N=k)(N-k+1) 1-&..
[q 2 p(k 1)k/2(_1)N F H Tﬂa H TBa H Sﬁa H TNa
|S¢|=N-k+1 (1-&). (1 fN) B,aeS a<fB<N a<f<N a<N
NeS¢ B,aeS° éxeégc
€

N—l] ( WN-R)(N=k+1) (f_1)k/2 N-k 1-&1..¢N )
= . q 2 p —1 Ta T a
[N—k R () I e lg_IN o L

_ N-1 [ EERNRD) (ke 1)kj2 1 \N-k 1-&1.. )
v (q A T (1 “eny) 1L T

Corollary 4.3.4. The N-fold integral in the distribution of the right-most species-1 particle is given
by:

N-1 - ng
4 (p Z—Q)yg %55 HT,Ba — L Wy N (€, €2y oo s, t) dEdEs..dEN .
= Pra n(1 &)

Proof:

We have that the coefficient before the sum of the integrands over the kth column in the [AZ] table
o Nok[N-17 N=R)(N-k+1) k(k 1)
is given by Cn = (-1) [ N—k] q 2 p . What remains is to sum all these coefficients

over the whole table (that is, over k=1,...,N):
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N, N - 1] (V=R (V1) k(k y Nol [ ] K1) (NoRV-k)

N
];CNJFZ 1)Nk[N . Z( 1) Z p H(p ~q')m

4.4 Lower-dimensional integrals

We conclude the chapter with the study of lower-dimensional integrals, leading us to the final form
of the integral formula.

Proposition 4.4.1. Consider an arbitrary integrand of the form:

: [Aa]z...m...z,z...m :

1 ] ‘ [ 5a(N)---fa(N—k+2) o fa(N)
(Cot)Cov-i)y = Doy =1 | [1=EonyCov-ie)  1=&)

Let ¢; <2 <... <cp. Then, the residues at &, = ﬁ vanish.
c18e-8ep 1

Remark 4.4.2. There is nothing special about taking the residue at the value with the largest
index only; it is just the convention that we stick to.

Proof:

Let o be an arbitrary permutation, and let [A,]2. 212..2,2..21 be the coefficient with the 1 being kth

from the right, and let &, = ﬁ be an arbitrary residue. We will group up this residue with
€16¢2°"5Cp—1

other residues of this type, evaluate at &, = ﬁ and obtain zero.

€1562°5Cn-1
First of all, we remark that n < N — k, because the maximum number of variables in the geometric
series when k is the position of 1 from the right is N - k.

Next, from the shape of the denominator we see that if there is a residue at ., = ﬁ,
€15€2°5Cn -1

then it means that the map o takes the set {1,...,n} to the set {ci,...,c,}. Taking the residue at
&, = m (without evaluating) gives:

1 1 1
Eereyony (Eo()y-otnty — 1)lbpay—1) [(60(1)-.-50(%1) 1) (&oqry - 1)]

Sov)Sov-ke2) L) ]'[A lo 2122221

L=&onyCovaks2)  1=Ex)

Now let us sum this integrand over all permutations o such that o(n+1),0(n +2),...,0(N) are all
fixed (so that it is possible to group them up by the Wj_n term). In other words, we sum over all
permutations in {c1, ca,...,cp}.

N-k k-1

We now recall that [Ay]2. 212.22.21 = Iﬁ—INS/B,a‘ Hl SNo(i) - HlpTN,a(Nu—i) “QN,o(N+1-k) and
a<p< 1= 7=

o(j) =N, 3j < N-k+1. We also observe the following: since o(n +1),0(n +2),...,0(N) are
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k-1
all fixed and n < N -k, then the coefficient [ pTn s(n+1-i) - @No(N+1-k) doesn’t change as o

i=1
N-k
changes; similarly, the part of the coefficient ] Sgao- 1 Sy, (;) that doesn’t involve &, variables
a<f<N i=1

also remains unchanged. Therefore, when we sum over the permutations in {c,ca,...,c,}, we get
the Tracy-Widom’s top-dimensional integrand for the right-most particle in n particles, thereby
obtaining:

1 . 1 ] [ Covybov-ke2)  Eo(i)
Eerberen Loy Cotmi)y = Doy =1 ] 7 L1 =&y bovarsa) 1=
1_._1_[1502‘ k-1
VL G [T Tsa-———" T1 Ssa- [1PTNo(N+1-1) - @No(N+1-k)-
Ba. o M(-&) Go
a,Be i-1

where the set S¢ is given by {c1,ca, ..., ¢, }, and the product [] Sg, is the product over all pairs of

(B,ex)
inversions (3, «) that remain after the factors [] Sp, are gone.
B>
a,Be%‘c

It now becomes clear that when we evaluate this expression at &, , everything becomes

=1
ey g€y

zero (because of the 1 - ﬁ &, factor). m
i=1

Corollary 4.4.3. Let 0 € Sy, and consider an arbitrary integrand of the form:

1 ][ Eovy-Co(N-kv2)  Ea(N)
(§or)Con-k) = 1)--(§oy = 1)

Suppose that the integrand gives rise to a nonvanishing residue in |S| variables. Then, the map o is
necessarily order-preserving in the first N —|S| variables.

[A, :
1= vy ol —ts2) 1= [As]s. 2122221

Proof:
To get a residue in |S| variables, we need to have the N — |S|-fold residue. Moreover, since the
residue is nonvanishing, all &, = # factors must disappear. This is possible only if all the
€15€2°5Cp—-1
= m, vy = é, and &, = 1. And this is possible only if the

map o is order-preserving in 1,2,....,n,n=N —|S|. m

residues are given by: &,

Remark 4.4.4. Notice that every permutation ¢ is always order-preserving in the first variable,
trivially. Therefore, almost every integrand gives rise to an N — 1-dimensional residue; the only
exception are the integrands with the coefficient [AU]12...2,2.‘.217 which don’t require any contour
deformations, and hence don’t give any residues at all.
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Proposition 4.4.5. Let S = {s1,...,sx} € {1,2,..., N}, &y € S. Next, let S¢ = {c1,...,cy_} with
c1 < cg <...<cny_g. Then, the k-fold integral over S is given by:

|S‘_1 Z(SC)_‘SC|‘(|SC‘+1)

1o -a) (%) T 1Y),

i=1 p

Proof:

By virtue of the previous corollary, the integrals over S c {1, ..., N}, |S| = k are exactly the sums over
o such that o(1) = ¢1,...,0(N — k) = cy_i, with the residues taken at &, — e =

T Erdon i
%7&}:1 = 1, which is equivalent to the evaluation at &, , =1,...,&, = 1,&, = 1. Therefore, the
c1

|S|-fold integrand over &, ..., &, (without the W-term) becomes:

>, ! e ! [Asla..21,2..21] £,()=1
veS: So(N-k+1) —1 Eo(N-k+1)--Eo(v-1) — 1 Lere Nk
o(1l)=c1
J(N—];J.j=CN_k
So(N-k+2)---So(N So(N
oot Z (k) M. ) [As]2..212..2, 2...21] Eoiy=1 -
oeSn: 1- ga'(N—k+2) "'ga(N) 1- ga(N) 1<i<N-k
o(1l)=c1
(T(N*I;?.).:CN,]Q
Z(Sc)_|SC|-(\SC|+1)
We now observe that by the proposition 4.2.2, [A,]2.. 212...2, 2...21] oyl = (%) ? [Ay]2..212..2,2..21

1<i<N-k
Z(sc)i‘scl'(‘SCHl)
with the position of 1 from the right unchanged. Next, since the coefficient (% 2

doesn’t depend on the permutation o, we can put it outside of the sum. Therefore, we obtain:

(q)Z(SC)—lsc'(‘;ClH) 1 1 [A ]
1 : _— 2..21,2..21
p veSs So(N-k+1) — 1 Eo(N-ks1)-Eov-1y — 1+
60 -k "'50 50
LY (W-kt2) %0 (N) . ) [A5]12..2,2..21 |-

s L&) Covy 1= &o(y

We finally observe that the sum inside the brackets is nothing but the sum that we had for the
N-fold integral, but over the variables &, ,...,&,,. Applying proposition 4.3.1 to the expression in
the brackets gives:

k
g\ D05 D 1-TI &,

(_) . Z11(101‘—(11.) I1 Tﬁa'kL .

p :
&B,ESS 1131(1 - 581)
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Proposition 4.4.6. We have the following identity:

5] (IS|-m) (|S|-m+1) m(m 1) S
Spoo e (-1)m" 1[|m| ] (p-q)-p*mg™! H(p

m=1

Proof:

By one of the propositions above, this is equivalent to showing that:

Bl gsimyisiomsn) m(m 1) S S| | Ek+1)  (SI-k+1D)(|SI-k)
Ep 5 ( 1)m l[|m| ] (p q) p|S|mml Z( 1)k|:| |:| 2 p 5 ]

m=1

For this, it suffices to demonstrate the equality termwise. Now the first thing that we do is that we
change the index set: k=m —1, so that m = k + 1; then, our expression becomes:

|5

m=1

(ISl=m)(|S|=m+1) m(m 1) S _ _
p e (-1)™ 1[‘ - ] (p-q)-p*mg™!
m —
S|-1

IS Gsik1yasir) <k+1>k S
=Y p 2 (-1)F [' - ]'(P—Q)'P|Slk1qk
k=0

(Sl=k-1)(S|-k) <k+1>k Sl-1 _ b
= (- )k[| |]<; ]_(p5| qu_p|S\k1 k+1);

IS]-1
= Z P
k=0

(SI=k=1)(S|=F) (SI=F)(S|=k+1) (k+1)k (k+2)(k+1)
B _p|5'\—k =p 2 ,andq 2 -qk"'l =q 2 ,so that our

q

We now observe that p
expression becomes:

SEL [ dsiemsioren (k+1)k |S| - (SI=k=1)(IS|=k)  (k+2)(k+1) |S|-1
k S|-k-1
> (" ] e e B Gl N |
k=0

We now rearrange the terms so that our sum runs over k =0, ..., |S| as follows:

"o 5 asst-n
(SI=k)(IS|=k+1)  (k+D)k Sl-1 (sp(sl+1)
P 2 q 2 (—1)'“[ i ] Fep 2
o k=1,...,]5]-
(8|=k)(IS|=k+1)  (k+1)k 1115 -1 _ (S|=k) (|S|-k+1) (k+1)k S|-1
—p S q 2 (_1)k 1 | | .p|S\ k+p 5 ( )k | |
k-1
(SI=k)(IS|-k+1)  (k+1)k Sl-1 _ (S|=k)(IS|-k+1) (k+1)k Sl-1
=p 2 q 2 (_1)k|:|k|_1:|.p|5k+p 2 (- )k[| ‘ :|

q
(ISI=k)(|S|-k+1) (k+1)k i 1S]
: o
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k=15|:
(1)

(si+1Ash S (\S|+1><|sw>
—q 5 ( )|S| 1 [| | ] _

|51 -

) 5] k[1S|T kG (1SI-k+D(ISIk)
We finally observe that our new rearranged sum is exactly equal to Y, (-1) [ . ] q 2 p 2
k=0

termwise. m

Corollary 4.4.7. Let S = {s1,....,s1} € {1,2,...,N}, éEny ¢ S. Next, let S¢ = {¢1,...,cny_k} with
€1 < cg <...<cny_g. Then, the k-fold integral over S is given by:

15
H(p -4 o\ E(5°\ e ) EMEIS V)

—p\5| (5) . I(z,Ys).

Proof:

As before, we have that the integrand over &g, ,&s,, ..., &s, (without the W term) is given by:

1 . 4] |
o)2..21,2..21] ¢,0=1
vesw:  So(N-k+1) —1 Eo(N-k+1)--Eo(nv-1) — 1 éi(g)v,k
o(1l)=c1
J(Nfl.c.).:cN,k
Eo(N-k+2)---Sa (V) Eo (V)
oot Ce [As]2.212..2,2..21] ¢, =1 -
agN: 1=&ovareySovy 1 =Eo() 1SNk
o(1l)=c1
O’(N—k.t.).=CN_k

By the Corollary 4.2.3, this sum becomes:

S(S\{En)})- IS \{EN}I-(I25 MEnH+1)

1 1
(p) ey CoN-keny =1 Eo(mken) (1) — 1
IS1=1 g - So(N-k+2)---Ea(N) So(N) q-D
(2) L2 T Spa+ Ssal.
(p) }1; ? gszs 1= &o(N-k+2)---Eo() 1-&ony P Ogg
»ﬁES a,ﬁES

We now observe that each sum individually is nothing but the coefficient for the N-fold integrand
in the Tracy-Widom integral formula for the kth rightmost particle (equivalently, the |S| -k + 1-th
leftmost particle), 1 <k <|S|. Applying the Tracy-Widom integral formula gives:
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c _ISO\ENIUSONEN I+
q_p‘(g)Z(S \{én ) 5 |S] (g

SR oD k/a (S1-ke1)(S1k)j2, S|k | 1S =1
) P q (-1) :
p \p p

k=1 |S| -k

We now factor out Iﬁ out of the sum, and put p — ¢ inside the sum to obtain:

Z(SC\{{'N})_ls \{éN}I'(\s MEn 3+ 1|

1 1 _ _ _ _ _ k1S -1
2 () S gk L () qpkDR/2g Sk S1-b/2_q)s k“S\'—k]'
k=1

Applying the previous proposition gives:

sl
c c c c 7 7
TS5\ {en ) - EMEMIITMEN D) 1 $(9°\ (€ ))- EMEMIS e i) }31(]3 -q")

_1%@) H(pi_qi):_(g) = m

D plS|
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