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Abstract

Gait is the walking posture and dynamics of a person and is considered a unique
biometric of a person. Based on this biometric and using various algorithms one can
recognize the person’s identity with high precision. Although many conventional ma-
chine learning and deep learning methods that learn a person’s identity based on their
gait have been proposed, there still exist some typical limitations. While conventional
machine learning methods are error-prone to the background noise, more advanced
methods based on CNN models do not well capture the temporal dependencies in
terms of inter-frame correlation for gait recognition. This work addresses the limi-
tations of previous works by employing deep sequential models and demonstrating
their effectiveness and efficiency in learning gait information using 3D human skeletal
data. We propose a person identification model, that uses both the joint coordinates
and features derived from them, including joint distance, joint orientation, and joint
velocity. Sequential models based on Long Short-Term Memory and Transformer net-
works capture the spatial correlations of skeletal joints within a single frame and the
temporal dependencies and dynamics of the joints throughout a sequence of frames.
The effectiveness and efficiency of the proposed methods, the impact of data augmen-
tation methods, a combination of derived gait features were studied and analyzed.
The experimental results show that the proposed models achieve high person identifi-
cation accuracy on the UPCV Gait (98.26%), and KS20 VisLab Multi-View (90.86%)
datasets, which are competitive to the previous state-of-the-art methods.

Thesis Supervisor: Nguyen Anh Tu
Title: Assistant Professor

Thesis Supervisor: Min-Ho Lee
Title: Assistant Professor

3



4



Contents

1 Introduction 7

1.1 Overview and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related work 11

2.1 Conventional methods . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Deep learning-based methods . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Convolutional neural networks . . . . . . . . . . . . . . . . . . 11

2.2.2 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Attention mechanism . . . . . . . . . . . . . . . . . . . . . . . 12

3 Proposed methodology 15

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Extracting gait features . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Normalized joint coordinates . . . . . . . . . . . . . . . . . . . 16

3.2.2 Joint Distance and Joint Orientation . . . . . . . . . . . . . . 17

3.2.3 Joint Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Person identification model learning . . . . . . . . . . . . . . . . . . . 19

3.3.1 Long Short Term Memory . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Data augmentation for person identification . . . . . . . . . . . . . . 23

5



4 Experimental results and discussion 25

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Method comparison . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.2 Performance sensitivity . . . . . . . . . . . . . . . . . . . . . . 28

4.3.3 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.4 Model deployment . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Conclusion 35

6



Chapter 1

Introduction

1.1 Overview and motivation

Gait recognition refers to a complex of technologies and algorithms whose aim is to

identify persons based on their body posture and its dynamics, also known as gait.

Recognizing people using gait is more convenient than using other biometrics like

face, retina, or fingerprint because can be done from distance without the active col-

laboration of people and it is difficult to imitate others’ gait. One of the applications

of gait-based person identification algorithms is video surveillance in public areas for

security purposes. Such surveillance systems assist in preempting suspicious events,

providing awareness to the security personnel, and re-identifying people after some

time in other places.

1.2 Problem statement

Depending on the gait data modality, the latest competitive methods for gait-based

person identification can be categorized into two groups, i.e. silhouette-based [4] [9]

and skeleton-based [31]. Silhouette-based methods extract silhouette features directly

from video sequences with human gait. However, this approach is sensitive to view

angle and pose since information on some body parts can be missed when occluded by

other body parts. Skeleton-based methods model human skeletal joints from images
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with the help of 3D depth cameras such as Kinect [15,23] or human pose estimation

algorithms such as OpenPose [3] and AlphaPose [10]. The human body is modelled

as a set of coordinates of a human skeletal joints, which can consequently be used

as a key feature for person identification. Although, this methods is computationally

expensive and require high-quality data, after extracting skeletal data, one can work

with a compact and yet efficient data in further processing steps. There are also

hybrid methods [2] that integrate both silhouette and skeleton information for gait

recognition.

However, the calculation and use of the mean and standard deviation features to

capture temporal information and the overall architecture of CNN proposed in [15]

may limit the performance of person identification in practice. First, the proposed

person identification model requires a preliminary stage of extracting 3D joint co-

ordinates using Kinect cameras. Second, the model size remains large, having 8.6

million parameters, which may lead to overfitting the training data, especially when

the dataset is small-size and not challenging i.e. has few subjects and include the

limited view variations.

1.3 Aims and objectives

In this work, we propose an alternative gait recognition method that also employs

the human skeleton data. In particular, we process the features derived from the

skeletal coordinates in a sequential manner benefiting from the architecture of the

LSTM and Transformer networks. To the best of our knowledge, this is the first work

investigating the use of a Transformer network for gait-based person identification

using human skeleton data.

1.4 Key contributions

The key contributions of this work are the following:

• A compact sequential deep learning models for gait recognition using human

8



skeletal data.

• Investigation of identifying ability of the gait features derived from raw joint

coordinates.
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Chapter 2

Related work

2.1 Conventional methods

The gait features are usually extracted from frame sequences within sample videos of

a walking person. The approaches that make use of the raw image data and extract

features directly from the image frames are very sensitive to the person’s position,

camera viewing angle, and scale. One particular example of such approach is Gait

Energy Image (GEI) [12], which is a single image template constructed by averaging

the binary silhouette over a range of frames. There are many variations of GEI

as Frame Difference Energy Image (FDEI) [5], Pose Energy Image (PEI) [27] and

Histogram Of Flow Energy Image (HOFEI) [24].

2.2 Deep learning-based methods

2.2.1 Convolutional neural networks

For the gait recognition tasks, the most recent works has applied several classifiers

backed with deep learning architectures including several variations of CNNs, that

has showed remarkable performance in other computer vision tasks. Majority of

these works make use of gait information learned from image sequences in the form

of 3D skeletal data with body joint coordinates collected from depth sensors. By
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manipulating these skeletal data, one can model the human movement by several

simple geometric features, such as distance between the joints, joint orientation [15],

and joint displacement.

2.2.2 Recurrent neural networks

Recurrent Neural Networks (RNNs) and Long Short-Term Memory Networks (LSTMs)

[13] are among the most popular and effective deep learning methods that learn the in-

ternal dependencies within a sequential data in wide range of applications [7,11,21,30].

Many works address the task of gait recognition by analyzing the gait as a sequence of

features in a continuous video that captures a human movement. In particular, [28]

proposed an LSTM-based human action learning model from skeletal data. First,

the model splits the skeletal joints into five groups termed body parts, namely the

torso, two hands, and two legs). Then it processes them in a sequential manner and

captures the temporal information required for identifying an action. Each body part

is processed by a separate LSTM that learns the temporal information required for

identifying an action. In other work, [36] developed a convolutional Long Short-Term

Memory (Conv-LSTM) for gait recognition based on RGB image sequences of hu-

man silhouettes. The method is constructed in such way that the refined silhouette

features generated by convolutional layers are transformed into vector sequences as

the input of LSTM layers. Although the model proves its effectiveness by beating

the previous similar methods, there remains complexities regarding the size of the

learning model.

2.2.3 Attention mechanism

The attention mechanism is proposed by [1] as an enhancement of the previous en-

coder decoder-based neural machine translation networks. Since then, it has been

widely used in many other natural language processing [30, 33] and computer vi-

sion tasks [34, 37]. Recently, several works [6, 14, 16] have employed the attention

mechanism for gait analysis. In particular, [14] proposed a lightweight convolutional
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neural network architecture for gait recognition using wearable devices that employ

the attention mechanism that detects the important channels within the network

and simplify the network complexity. In another work, [6] has proposed dual-stream

neural network based on Vision Transformer (ViT) [8] to recognize people through

radar gaits. Moreover, [16] has proposed convolutional neural network joint attention

mechanism (CJAM) which combines a CNN and Transformer [33] networks, where

consecutive image frames are encoded via the CNN and the outputs are then passed

into the Transformer for gait classification.

In our work, we incorporate the former stages of the gait feature extraction tech-

niques used in Huynh-The et al. with sequential learning models, including LSTM and

Transformers, which in turn reduces the model complexity and decreases the training

time. In contrast to [16], we feed the skeletal features directly to the Transformer

network skipping the stage of encoding through CNN.

13
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Chapter 3

Proposed methodology

3.1 Overview

In this section, we present the overall design of our proposed framework and describe

the process of extracting gait features from 3𝐷 human skeletal joint coordinates and

training sequential deep learning models build upon LSTM and Transformer net-

works for person identification. We extract several gait features from the raw joint

coordinates, starting with normalizing and aligning the joint coordinates, followed by

data augmentation steps. We then generate joint-based and geometric gait features.

The former include the normalized joint coordinates and joint velocity features and

the latter include joint distance and joint orientation features. Person identification

models based on LSTM and Transformer are then trained on multiple different com-

binations of the extracted gait features. Finally, the trained models can be used

to predict a person identity based on 3D skeletal data. The overall scheme of the

proposed gait-based person identification method is shown in Figure 3-2.

3.2 Extracting gait features

Human skeletal joint coordinates can be collected either directly from 3𝐷 depth cam-

eras or estimated from raw videos by human pose estimation algorithms as Open-

Pose [3] or AlphaPose [10]. In general, the acquired data are the 2𝐷 or 3𝐷 coor-
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dinates of a predefined set of skeletal joints, usually 18 to 25 joints, depending on

the configurations of the 3D depth cameras and human pose estimation algorithms.

Given a full set of skeletal joints 𝑆 = {𝑗𝑖=1:𝑛}, where 𝑛 is the number of body joints,

each joint is defined either as a point with coordinates (𝑥, 𝑦, 𝑧) in the 3𝐷 space 𝑅3

or as a point with coordinates (𝑥, 𝑦) in the 2𝐷 space 𝑅2. For our experiments, we

will use only 3D joint coordinates extracted through Microsoft Kinect depth cameras.

3𝐷 skeletal data are usually extracted using the Microsoft Kinect depth cameras and

are available as sequences of body joint coordinates in 3𝐷 space. In this work, we

use 3𝐷 skeletal data from UPCV Gait [17–19] and KS20 VisLab Multi-View Kinect

Skeleton [23,25] datasets.

Having extracted raw joint coordinates in a single frame, a person can be theo-

retically identified based on these gait features. However, the gait information in one

frame is not enough to provide accurate identification and is very sensitive to small

changes in joint positions. In order to build a more robust and effective identifica-

tion model that captures temporal information and the gait dynamics, we derive a

set of secondary gait features. In particular, we engage the intra-frame geometric

features i.e. joint distance and joint orientation, and inter-frame temporal features

i.e. joint velocity. Overall, in order to identify persons based on their gait, we set up

four types of features, namely, normalized joint coordinates (JC), joint velocity (JV),

joint distance (JD), and joint orientation (JO).

3.2.1 Normalized joint coordinates

We apply a preliminary normalization step to enforce the skeletal data to be in a

single format and scale. We shift the joints in such a way that the coordinates of the

joint for the ’base of the spine’, labelled as 12 in Figure 3-1, is placed in the origin.

Then, we align the skeleton by rotating the joints so that the vector connecting the

joints labelled as 2 and 12 was parallel to Y-axis. Finally, we scale all the coordinates

so that the distance between the joints labelled as 1 and 2 was unit size. Normalized

joint coordinates (JC) will be used a baseline gait feature in experiments.
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Figure 3-1: Model of a human skeleton represented as a set of 20 body joints estimated
by using the Microsoft Kinect v1 depth sensor.

3.2.2 Joint Distance and Joint Orientation

Joint distance (JD) and joint orientation (JO) are the geometric features of gait and

are extracted from a single human skeletal model. Both of these features are derived

from joint coordinate information following the same methodology introduced in [15].

In particular, we calculate the Euclidean distance between two arbitrary joints in

three planes corresponding to 𝑥 = 0, 𝑦 = 0, and 𝑧 = 0 respectively. Specifically, the

distance values of two joints 𝑖 and 𝑗 are calculated as follows:

𝜎𝑥(𝑖, 𝑗) =
√︁
(𝑦𝑗 − 𝑦𝑖)2 + (𝑧𝑗 − 𝑧𝑖)2, (1)

𝜎𝑦(𝑖, 𝑗) =
√︁
(𝑥𝑗 − 𝑥𝑖)2 + (𝑧𝑗 − 𝑧𝑖)2,

𝜎𝑧(𝑖, 𝑗) =
√︁

(𝑦𝑗 − 𝑦𝑖)2 + (𝑥𝑗 − 𝑥𝑖)2.

Hence, the joint distance feature between two arbitrary joints is defined as 𝑠 =

[𝜎𝑥 𝜎𝑦 𝜎𝑧].

Furthermore, we calculate the joint orientation as an angle between the joint-
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joint vector and three coordinate axes,
−→
𝑂𝑥,

−→
𝑂𝑦, and

−→
𝑂𝑧. Precisely, angles between

joint-joint vector
−→
𝑗𝑖 and three coordinate axes are defined as follows:

𝜏𝑥(
−→
𝑗𝑖 ,

−→
𝑂𝑦) = cos−1(

−→
𝑗𝑖 ·

−→
𝑂𝑦

||−→𝑗𝑖)|| × ||
−→
𝑂𝑦)||

), (2)

𝜏𝑦(
−→
𝑗𝑖 ,

−→
𝑂𝑧) = cos−1(

−→
𝑗𝑖 ·

−→
𝑂𝑧

||−→𝑗𝑖)|| × ||
−→
𝑂𝑧)||

),

𝜏𝑧(
−→
𝑗𝑖 ,

−→
𝑂𝑥) = cos−1(

−→
𝑗𝑖 ·

−→
𝑂𝑥

||−→𝑗𝑖)|| × ||
−→
𝑂𝑥)||

).

Hence, the joint orientation feature between two arbitrary joints is defined as 𝑡 =

[𝜏𝑥 𝜏𝑦 𝜏𝑧].

3.2.3 Joint Velocity

Joint velocity (JV) measures displacement of joints between consecutive skeleton

frames. In contrast to the geometric features, which extract joint information from

a single skeleton frame, the joint velocity feature involves multiple skeleton frames,

thereby capturing the dynamics of the skeletal joints throughout the continuous frame

sequence. Concretely, for a single joint 𝑖, the joint velocity at time 𝑡 is defined as

follows:

𝜐𝑥(𝑡) = |𝑆𝑡
𝑥(𝑖)− 𝑆𝑡−1

𝑥 (𝑖)|, (5)

𝜐𝑦(𝑡) = |𝑆𝑡
𝑦(𝑖)− 𝑆𝑡−1

𝑦 (𝑖)|,

𝜐𝑧(𝑡) = |𝑆𝑡
𝑧(𝑖)− 𝑆𝑡−1

𝑧 (𝑖)|,

where 𝑆𝑡
𝑥(𝑖), 𝑆

𝑡
𝑦(𝑖), 𝑆

𝑡
𝑧(𝑖) are the 3𝐷 coordinates of a joint 𝑖 of skeleton 𝑆 at time 𝑡.

The joint velocity feature for a single joint 𝑖 at time 𝑡 (i.e. 𝑡𝑡ℎ frame of a skeleton

sequence) is defined as 𝑣(𝑡) = [𝜐𝑥(𝑡) 𝜐𝑦(𝑡) 𝜐𝑧(𝑡)].

With the 𝑛-joint skeleton 𝑆 at time 𝑡, we retrieve 𝑛 joint velocity features. Fur-

thermore, we construct 𝑛(𝑛−1)/2 joint distance features corresponding to every pair

of joints in a skeleton. The number of orientation features is also 𝑛(𝑛 − 1)/2 due to
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Figure 3-2: Overview of the gait-based person identification method.

the similar definition. All the derived features will be flattened prior to being fed into

the identity learning models.

3.3 Person identification model learning

In this section, we present the detailed design of the proposed person identity learn-

ing models based on LSTM and Transformer networks, which learns underlying rela-

tionship between the extracted gait features and the person identity in a sequential

manner.

3.3.1 Long Short Term Memory

Recurrent neural network (RNN) is a type of neural network architecture that is

primarily used for modelling arbitrary length sequential data. Given a sequence

𝑋 = (𝑥0, 𝑥1, ..., 𝑥𝑇 ) consisting of 𝑇 input features, for a timestamp 𝑡, the 𝑛− 𝑡ℎ RNN

unit produces an output based on both current input feature 𝑥𝑡 and state ℎ𝑡−1 of

the previous unit. Formally, given an input feature 𝑥𝑡 and previous RNN unit’s state
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ℎ𝑡−1, an RNN unit is usually implemented as follows:

ℎ𝑡 = 𝑔1(𝑊ℎℎℎ𝑡−1 +𝑊ℎ𝑥𝑥𝑡 + 𝑏ℎ) (6)

𝑦𝑡 = 𝑔2(𝑊𝑦ℎℎ𝑡 + 𝑏𝑦)

where 𝑊ℎℎ, 𝑊ℎ𝑥, and 𝑊𝑦ℎ are the unit’s internal parameters, 𝑔1 and 𝑔2 are activation

functions, e.g. tanh or sigmoid, that are used to squash the unit’s output values in a

range [0, 1], 𝑏ℎ and 𝑏𝑦 are the biases, ℎ𝑡 is a state of the unit and 𝑦𝑡 is an output of

the unit. For some tasks, where a single label is predicted only the output of the last

unit is used.

Despite RNNs were used in many natural language processing [29] and computer

vision tasks [22], there remain difficulties with learning long-term dependencies within

a long sequence of data, mainly because of the vanishing or exploding gradients

problem [26]. Long short-term memory (LSTM) [13] is a specific kind of Recurrent

Neural Networks (RNNs), which is designed to solve the above-mentioned problems

by learning what information should be preserved and what can be forgotten. LSTM

achieves this thanks to an extended architecture of a unit, which consists of several

steps of computations that update the internal unit’s state and output. Formally,

given an input feature 𝑥𝑡 and previous LSTM unit’s state 𝐶𝑡−1, and output ℎ𝑡−1,

the current unit state and output are calculated according to the following recurrent

equation:

𝑓𝑡 = 𝜎(𝑊𝑓ℎℎ𝑡−1 +𝑊𝑓𝑥𝑥𝑡 + 𝑏𝑓 ) (7)

𝑖𝑡 = 𝜎(𝑊𝑖ℎℎ𝑡−1 +𝑊𝑖𝑥𝑥𝑡 + 𝑏𝑖)

𝐶
′

𝑡 = tanh(𝑊𝑐ℎℎ𝑡−1 +𝑊𝑐𝑥𝑥𝑡 + 𝑏𝑐)

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶
′

𝑡

𝑜𝑡 = 𝜎(𝑊𝑜ℎℎ𝑡−1 +𝑊𝑜𝑥𝑥𝑡 + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 tanh(𝐶𝑡)

where 𝐶* are the units’ state information passed into the next units and ℎ* are
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the units’ outputs. 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 are the internal processing units, that learn the

parameters required for filtering out the input and output information. 𝑊* are the

units’ internal parameters, 𝜎 (sigmoid) and tanh are activation functions that are

used to squash the unit’s output values in a range [0, 1], and 𝑏* are the biases.

By its nature, gait captures human pose information in space and its motion in

time. This information can be represented as a frame sequence where each frame

contains spatial information of a human pose. Multiple frames contain the temporal

information that captures dynamics of a group of skeletal joints and of a human body

in general. Processing the human pose information sequentially, we can effectively

learn the spatial correlations within a single frame and temporal relations throughout

multiple frames. Based on this intuition, we propose a person identity learning model

based on LSTM architecture. We train the LSTM model on a set of features selected

from the features described in section 3.2. Specifically, with sequence size 𝑆 and 𝐾-

joint 3D skeletal coordinates, the dimensionalities of different gait features are given

as below:

• Normalized skeletal joint coordinates, where each of the S input units of the

LSTM accepts 𝐾 × 3 sized vectors.

• Joint distance features, where each of the S input units of the LSTM accepts

0.5×𝐾 × (𝐾 − 1)× 3 sized vectors.

• Joint orientation features, where each of the S input units of the LSTM accepts

0.5×𝐾 × (𝐾 − 1)× 3 sized vectors.

• Joint velocity features, where each of the S input units of the LSTM accepts

𝐾 × 3 sized vectors.

3.3.2 Transformer

Transformer is a special type of neural network architecture based on attention mech-

anism [1]. In our implementation of the attention-based person identification model,

we follow the original Transformer [33] design with some modifications that will be
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listed below. The overview of the model for gait sequence classification is displayed in

Figure 3-3. Self-attention (SA) is the fundamental operation of the transformer archi-

tecture, which is designed to be able to learn the internal information within a given

sequence of data. As the network processes each item within the input sequence, self-

attention examines items in other positions in the input sequence for information that

can help to come up with a better encoding for this item. Self-attention is a weighed

sum over all values v computed for each element in an input sequence s ∈ 𝑅𝑁×𝐷.

The attention weights 𝐴𝑖𝑗 are based on a compatibility function of the query 𝑞𝑖 with

the corresponding key 𝑘𝑗. Formally, the self-attention is computed according to the

following equations:

[q,k,v] = s𝑈, (8)

𝑈 ∈ 𝑅𝐷×3𝐷ℎ

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑞𝑘𝑇/
√︀
𝐷ℎ)

𝑆𝐴(s) = 𝐴𝑣

Multi-head attention is an extension of a self-attention, where multiple self-attention

operations a.k.a heads are computed.

𝑀𝑆𝐴(s) = [𝑆𝐴1(s), 𝑆𝐴2(s), ...𝑆𝐴𝑘(s)]𝑉, (9)

𝑉 ∈ 𝑅𝑘𝐷ℎ×𝐷

We adopt the multi-head attention and general encoder design as depicted in

Figure 3-3. We use 4 heads of attention inside an encoder and use a single encoder.

The output of the encoder is passed to the classifier with a single dense layer and

softmax outputting the predicted label.

The gait features are extracted from a video sequence and preserve their sequential

nature. The order information, namely the position of the gait feature within an

underlying sequence should also be preserved while being processed by Transformer

network. Positional Encoder layer placed before the Multi-Head Attention serves for
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Figure 3-3: Person identity classifier with Transformer Encoder

this purpose, adding the position information to the input gait features.

Furthermore, we will train on several different combinations of the gait features by

concatenating them to a single vector. The detailed comparison of the performance

for each combination of features is presented in Subsection 4.3.2.

3.4 Data augmentation for person identification

In order to increase the number of gait sequences for a single person, we have employed

two types of data augmentation techniques, flipping and rotation. First, knowing

that the human body is vertically symmetrical, we can double the size of the gait

sequences, by flipping the images with gait frames vertically. Second, having a single

skeleton with 3D body joint coordinates, we can generate a set of similar synthetic

skeletons by slightly rotating the joints. While rotating the 3D skeleton joints, we

have adopted the methodology introduced in [35] and the reader is referred to this

work for technical details.

Moreover, in order to increase the number of sequences per person, we follow the

windowed sequence extraction method employed in [15], where a skeleton sequence is
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partitioned into multiple sequences with an overlapping rate of 80%. The reader is

referred to [15] for details regarding this process.
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Chapter 4

Experimental results and discussion

In this section, we evaluate the proposed 3D gait-based person identification methods

on UPCV Gait [17–19], KS20 VisLab Multi-View Kinect Skeleton [23,25] datasets.

4.1 Experimental Setup

In this section, we conduct the following experiments:

• Compare the rank-1 identification accuracy of the proposed methods with sev-

eral baselines and previous approaches on two datasets.

• Analyze performance of the proposed method under different combinations of

gait features.

• Evaluate the proposed networks’ complexity in competition with several modern

existing models in the field of gait-based person identification.

4.2 Datasets

UPCV Gait: The dataset is a benchmark dataset for pose based gender and identity

recognition. It consists of human pose sequences for 30 persons walking in a direct

path with a normal speed. The sequences were extracted through Microsoft Kinect

v1 from a side view and consists of 55 to 120 frames depending on the walking speed.
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There are 5 sequences for each person, totalling 150 sequences. Three sequences of

each person are randomly selected for training while the remaining sequences left for

testing, following the same evaluation protocol used in [15].

KS20 VisLab Multi-View Kinect Skeleton: The dataset is a collection of

pose sequences of 20 persons captured using Microsoft Kinect v2 from five viewpoints,

including left lateral at 0°, left diagonal at 30°, frontal at 90°, right diagonal at 130°,

and right lateral at 180°. In total, it contains 300 pose sequences, with 3 sessions per

person at particular viewpoint. Two sequences per person in a particular viewpoint

are randomly selected for training while the remaining sequences left for testing,

following the same evaluation protocol used in [15].

4.3 Results and Discussions

In this chapter, the numerical results are presented along with the discussion of ad-

vantages and drawbacks of the proposed methods.

4.3.1 Method comparison

We evaluate the performance of the proposed person identification methods using a

rank-1 accuracy rate and in terms of processing time and model complexity. We com-

pare the proposed methods against the baseline and previous methods for 3D skeletal

gait recognition. In performance comparison, we include a list of baseline methods

like k-Nearest Neighbors (kNN), Support Vector Machines (SVM), and Random For-

est (RF), which are also trained and evaluated on the gait features extracted from the

datasets mentioned above. We also compare with several deep learning-based meth-

ods such as Covariance Dissimilarity [20], SRC in Dissimilarity Space [32], Euclidean-

Riemannian Fusing [18], Context-Unaware Score-level Fusion [23], and Context-Aware

Score-level Fusion [23]. We also included the ST-CNN model [15], which is trained

on descriptive statistics of joint distance and joint orientation features. The detailed

quantitative results of the experiments are demonstrated in Table 4.1.

We report the results of the proposed LSTM and Transformer models with several
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different combinations of the gait features i.e. joint coordinates (JC), joint distance

(JD), joint orientation (JO), and joint velocity (JV). The methods were trained on the

augmented dataset, where the windowing technique is used as described in Section

3.4. We have additionally applied the rotation and flipping techniques to the training

set for the methods employing the combination of gait features, including JC, JV,

JD, and JO, labeled (rot. & flip.) in Table 4.1.

Baseline models, including kNN, SVM, and RF were trained and evaluated to test

the validity and effectiveness of the gait features. While kNN achieves an accuracy

rate of above 60% for the UPCV1 Gait dataset, SVM and RF methods show superior

performance at 94.24% and 94.56% respectively. SVM is an effective baseline model

because of its ability to generalize well under a limited number of training samples

and high dimensions. RF is composed of multiple random decision trees that help to

efficiently train a generalizable classification model. However, the baseline models fail

to capture temporal dependencies and dynamics of sequential data simply by their

design. They will not preserve their performance for higher-dimensional features and

are not robust for intra-class variances introduced by multiple viewpoints as in KS20.

To address these issues, we have designed and modelled the LSTM and Trans-

former methods, the effectiveness of which is proved to be superior to conventional

machine learning methods. Specifically, the LSTM method evaluated with different

feature combinations on the UPCV Gait dataset has achieved an accuracy rate of

over 80%, except for the joint velocity (JV) feature, showing its highest rate with

the joint orientation feature at 92.56%. Similar metrics for the KS20 VisLab dataset

did not extend beyond 85% due to the fact that the dataset contains gait sequences

from multiple views, thereby introducing intra-class variations. Combination of three

best performing features, JC, JD, JO, further improves the accuracy of LSTM up to

95.50% and 72.17% on UPCV Gait and KS20 VisLab respectively. However, the per-

formance of the LSTM remains inferior to the previous methods, achieving around

4% less accuracy rate on UPCV Gait and KS20 datasets. Only the join distance

feature shows a high accuracy rate which is close to the state-of-the-art performance

by Context-Aware Score-level Fusion [23] (88.67%). Joint coordinates, joint velocity,
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(a) Learning curve of Transformer
with normalized joint coordinates
from UPCV Gait dataset i.e JC +
Transformer

(b) Learning curve of Transformer
with the combination of gait features
from UPCV Gait dataset i.e JC, JD,
and JO + Transformer

Figure 4-1: Learning curves of the Transformer model with different features from
UPCV Gait dataset

and joint orientation must be thoroughly evaluated together with the LSTM model in

order to determine what stages of training LSTM pose limitations in learning discrim-

inative characteristics of the human gait. In particular, one can evaluate the model

with gait sequences with more frames, in order to capture dynamics at a longer time

range.

The Transformer achieves much higher accuracy rates compared to the LSTM,

showing up to 98.26% for UPCV Gait and 90.86% for KS20 VisLab datasets. This

supports our hypothesis that the self-attention layers help better capture the temporal

dependencies within a sequence of gait features. Moreover, Transformer method in

combination with JC, JD, and JO features is superior to other previous methods

evaluated in KS20 VisLab dataset, outperforming previous methods by around 3.0%.

However, on UPCV Gait dataset, Transformer’s highest accuracy rate, 98.26%, is

around 0.6% less than that of ST-CNN.

4.3.2 Performance sensitivity

We also have investigated the contribution of every feature type separately with the

Transformer model. Specifically, we have trained and tested the model separately

with normalized joint coordinates (JC), joint distance (JD), joint orientation (JV),
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Table 4.1: Method and Feature Comparison on UPCV Gait and KS20 VisLab Multi-
View Kinect Skeleton Datasets.

Method Accuracy (%) Accuracy (%)
UPCV Gait KS20 VisLab

JC, JV, JD, and JO + kNN 61.14% 38.56%
JC, JV, JD, and JO + SVM 94.24% 88.37%
JC, JV, JD, and JO + RF 94.56% 88.21%

Covariance Dissimilarity [20] 89.60% NA
SRC in Dissimilarity Space [32] 94.50% NA

Euclidean-Riemannian Fusing [18] 95.67% NA
Context-Unaware Score-level Fusion [23] NA 79.33%
Context-Aware Score-level Fusion [23] NA 88.67%

ST-CNN [15] 98.86% 87.63%
JC + LSTM 84.42% 67.60%
JV + LSTM 67.99% 34.34%
JD + LSTM 89.79% 84.34%
JO + LSTM 92.56% 69.13%

JC, JD, JO + PCA(512) + LSTM 93.24% 69.13%
JC, JV, JD, JO + PCA(512) + LSTM 92.56% 70.34%

(rot. & flip.) JC, JD, JO + PCA(512) + LSTM 95.50% 71.95%
(rot. & flip.) JC, JV, JD, JO + PCA(512) + LSTM 94.46% 72.17%

JC + Transformer 96.71% 86.73%
JV + Transformer 75.45% 25.86%
JD + Transformer 97.40% 90.43%
JO + Transformer 97.23% 88.26%

JC, JD, JO + Transformer 97.40% 87.17%
JC, JV, JD, JO + Transformer 96.42% 89.52%

JC, JD, JO + PCA(512) + Transformer 97.40% 90.65%
JC, JV, JD, JO + PCA(512) + Transformer 96.23% 89.52%

(rot. & flip.) JC, JD, JO + PCA(512) + Transformer 98.26% 90.86%
(rot. & flip.) JC, JV, JD, JO + PCA(512) + Transformer 97.23% 90.65%
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and joint velocity (JV) features. The models trained on the joint distance and orien-

tation features show the highest predictive accuracy on both of the datasets compared

to joint coordinates and joint velocity features. The reason for this might be that

the joint distance and orientation features better captures the mutual dynamics of

multiple pairs of joints throughout the gait sequence. The detailed results of the

experiments are shown in Table 4.1. While the Transformer model with joint coor-

dinates requires around 50 epochs to achieve its highest accuracy, the same method

with the the combination of the gait features requires around 8 epochs to achieve the

same performance. This is mainly because joint distance and joint orientation serve

as a well-constructed and intuitive features of human gait. The learning curves are

displayed in Figure 4-1.

After augmenting the training data by flipping the joint coordinates horizontally

and applying slight rotation in 3D as described in Section 3.4, we have increased the

training set size by 56 times. Then we have trained and evaluated the LSTM and

Transformer methods on the combinations of gait features (JC, JV, JD, JO). The

accuracy of the methods has increased by around 1%, as shown in the rows labelled

(rot. & flip.) in Table 4.1. The improved methods are still inferior to ST-SNN [15]

on UPCV Gait dataset, Transformer showing 98.26% accuracy against 98.86% of

ST-CNN. However, on KS20 VisLab Transformer outperforms the previous methods,

advancing up to 90.86% against 88.67% of Context-Aware Score-level Fusion [23].

4.3.3 Complexity analysis

In the last experiment, we benchmark the network complexity by measuring the train-

ing time based on a system equipped with NVIDIA GeForce GTX 1650. The training

time per epoch on UPCV Gait dataset of the Transformer model with different gait

features is plotted on Fig 4-4. All the methods were trained under the same config-

uration for 50 epochs. Although, some features take more time to train because of

their complexity (number of dimensions, etc), all the features except JC show the

accuracy rate higher than 96% as shown in 4.1. For instance, by concatenating the

joint distance, joint orientation, and joint coordinates features, we trained the Trans-
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(a) Learning curve of LSTM with
normalized joint coordinates from
UPCV Gait dataset i.e. JC + LSTM

(b) Learning curve of LSTM with
the combination of gait features from
UPCV Gait dataset i.e JC, JD, and
JO + LSTM

Figure 4-2: Learning curves of the LSTM method with different feature combinations
from UPCV Gait dataset

(a) UPCV Gait (b) KS20 VisLab Multi-View

Figure 4-3: Confusion matrices of person identification results by the Transformer
models on UPCV Gait and KS20 VisLab Multi-View Kinect Skeleton datasets

31



Figure 4-4: Training time per epoch. Transformer with different features from UPCV
Gait dataset

former model for 50 epochs and obtained above 97% accuracy, so did we by using

only the joint orientation feature in almost three times less time. When multiple

features are combined by concatenating, the size of a single feature vector increases

appropriately. For instance, for UPCV Gait dataset, the size of the feature vector

will be 1260 after concatenating JC, JV, JO, JD, whose sizes are 60, 60, 570, and

570 respectively. In order to keep the complexity of the model small we have applied

Principal Component Analysis (PCA) to reduce the dimensionality of the combined

feature vectors down to 512, to be comparable to the dimensionality of JO and JD

features. More importantly, this trick had no negative effect on the model’s perfor-

mance and preserved the accuracy rates almost identical to the ones achieved with

original dimensions.

In contrast to Transformer model, LSTM model requires much more time to train

and converge to show a stable performance. For instance, as depicted in Figure 4-1a

and Figure 4-2a, LSTM reached the accuracy rate over 95% after 300 epochs, while

Transformer achieved the same performance after 50 epochs.

Using a combination of joint coordinates, distance and orientation features with

the Transformer model we achieved a leading performance in a few minutes of training.

However, the UPCV Gait and KS20 Multi-View datasets contain very few number of

subjects (20 and 30), and in order to investigate further the complexity and capabil-

ities of the LSTM and Transformer model, we should evaluate the methods on more
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challenging datasets with skeletal joints. For instances. those with more subjects and

those collected under unconstrained environments.

4.3.4 Model deployment

The proposed models have several limitations. First, the human skeleton-based gait

recognition models require the availability of algorithms that would provide the joint

coordinates data. Second, the current versions of the models were trained on the

datasets that were collected in a constrained environment, where the human gait se-

quences were recorded from a single or a limited number views in a relatively short

distances. In real-world systems, depending on the distance and the viewpoint of the

cameras, the scale and quality of the collected data will vary hugely, which may re-

duce the models’ effectiveness unless the model was trained on similar gait datasets.

Moreover, it should be noted that in an unconstrained environment, cameras may

capture several persons in a single session, so preliminary steps for partitioning differ-

ent skeletal data may also be required. We plan to evaluate the proposed sequential

models on more challenging datasets. For instance, skeletal gait datasets with a large

population, recorded from multiple views and collected under unconstrained envi-

ronments. In absence of the 3D depth cameras, we can collect skeletal data using

real-time pose estimation algorithms as Open Pose or Alpha Pose, which could be

more affordable and equally effective. Moreover, we can place several RGB cameras

to capture subjects from multiple viewpoints, which in turn helps to improve the

detection and further recognition accuracy.
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Chapter 5

Conclusion

In this paper, we have investigated several gait features derived from 3D body joint

coordinates. Using these gait features, we then trained a compact deep sequential

models based on LSTM and Transformer networks. The proposed models fully gain

the spatial correlation of body joints within a single frame and the temporal dynamics

of joints from frame to frame. We have also introduced data augmentation steps,

which enriched the dataset when working with a limited number of gait sequences for

an individual. According to the experimental results, the proposed models achieved

high person identification results on the UPCV Gait (98.26%) and KS20 VisLab

Multi-View (90.86%) datasets. Our further work will focus on testing our models on

more challenging datasets and involve more advanced gait features while keeping the

model compact enough to stay efficient.
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