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Abstract

One of the important problem of the theory of polynomial identi-
tites in algebra is describe all varieties of algebras with given system of
identities. Our aim is to classify all subvarieties of the variety of bicom-
mutative algebras. Classifying is usually done in the language of lattices.
Of course this problem is equivalent to describing of T -ideals. In order
to construct a lattice of subvarieties of given variety of algebras, we need
to define the following 1) determine the module structure of Pn(M) over
the symmetric group; 2) find for each irreducible Sn-module in Pn(M)
a consequence in Pn+1(M).
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1 Introduction

One of the important problems of modern algebra is to study algebras
satisfying some identities. In the theory of polynomial identities in
algebras there are two main questions: 1) describe algebras with iden-
tities; 2) describe identities in algebras. Studying above the questions
leads us to the study free algebras, construction bases of free algebras,
finding Hilbert series, finding codimension sequences, finding codimen-
sion growth, finding Gelfand-Kirillov dimension, finding cocharacter se-
quences, finding colengths, investigating Specht problem and etc.

In the theory of polynomial identities, identity and algebra are mutu-
ally defining concepts. Their interconnection is determined by varieties
of algebras. The language of varieties of algebras allows one to freely
pass from identity to algebra and conversely. Therefore, studying vari-
eties of algebras is one of important problems of the theory of polynomial
identities.

In 1950, A.I. Malcev [1] and W.Specht [2] first time and indepen-
dently used the representation theory of symmetric group to classify
polynomial identities of algebraic structures. It is known that if K is a
field of characteristic 0, then every polynomial is equivalent to a finite
set of multilinear polynomials. Therefore, in this work we focus on mod-
ule structures of multilinear components (parts) of free algebras. Since
the multilinear parts of a free algebras contain a lot of useful and impor-
tant informations about varieties of algebras. Here the module structure
means modules over the symmetric group and the general linear group.

The methods of representation theory of the symmetric group and
general linear group in many cases are considered to be the best methods
in studying multilinear components of free algebras. There are known
Sn and GLn -module structures of several free algebras. For example,
associative algebra, Leibniz algebra, Zinbiel algebra, Lie algebra, right-
symmetric algebra, Novikov algebra and etc.

In many cases it is more convenient to apply the methods of the the-
ory of representations of general linear group than representation theory
of the symmetric group to varieties of algebras. We may see in the fol-
lowing works. For instance, in [3] there are fullly described varieties
of associative algebras with identity of degree three by methods of the
theory of representations of the general linear group. Criterion for the
distributivity of the lattice of subvarieties of varieties of associative alge-
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bras using the methods of the theory of representations of general linear
group [4]. Criterion to the distributivity of the lattice of subvarieties of
varieties of alternative algebras is given using the methods of the theory
of representations of general linear group as well [5].

Bicommutative algebras first appear in the work of Dzhumadil’daev
and Tulenbaev [6]. In [6] authors proved that if A is a bicommuta-
tive algebra then A2 is commutative and associative. In 2011 Dzhu-
madil’daev, Ismailov and Tulenbaev [7] calculated multiplicities of irre-
ducible Sn-representations in decomposition of multilinear component
via combinatorial method. Moreover, there are given construction of
a basis of free bicommutative algebras, description of multiplication of
basis elements, given cocharacter and codimension sequences, and cal-
culated Hilbert series. It is also proved that bicommutative operad is
not Koszul and the growth of codimension sequence of bicommutative
algebra is equal to 2. Later there was given an alternative proof of the
formula for the cocharacter sequence of bicommutative algebra [8]. In
2018 Drensky and Zhakhayev [9] proved that the Specht problem for va-
rieties of bicommutative algebras is solved positively. The connection of
bicommutative algebra with the filtration and grading of free Novikov
algebra gives us great motivation to study bicommutative algebra in
more depth.

In this work we study variety of bicommutative algebras defined by
identity

γ[(ab)c− 2(ba)c+ (ca)b] + δ[c(ba)− 2c(ab) + b(ac)] = 0,

where γ, δ ∈ K.
One of the important problem of the theory of polynomial identi-

tites in algebra is describe all varieties of algebras with given system of
identities. Our aim is to classify all subvarieties of the variety of bicom-
mutative algebras. Classifying is usually done in the language of lattices.
Of course this problem is equivalent to describing of T -ideals. In order
to construct a lattice of subvarieties of given variety of algebras, we need
to define the following 1) determine the module structure of Pn(M) over
the symmetric group; 2) find for each irreducible Sn-module in Pn(M)
a consequence in Pn+1(M).
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2 Preliminaries

In this section we will consider some definitions that we will use to
formulate a theorem. Sources are indicated next to them.

Definition 2.1. ([10]) A vector space A is called an algebra if A is
equipped with a binary operation · , called multiplication, such that for
any a, b, c ∈ A and any α ∈ K

(a+ b) · c = a · c+ a · b,

a · (b+ c) = a · b+ a · c,
α(a · b) = (αa) · b = a · (αb).

Definition 2.2. ([6]) An algebra (A, ·) is called bicommutative if any
a, b, c ∈ A are satisfied the following identities

a · (b · c) = b · (a · c) (1)

(a · b) · c = (a · c) · b (2)

Let X be a set of generators x1, . . . , xn.

Definition 2.3. ([10]) Let B be a class of algebras and let F (X) ∈ B

be an algebra generated by a set X. The algebra F (X) is called a free
algebra in the class B, if for any algebra A ∈ B, every mapping X −→ A

can be extended to a homomorphism F (X) −→ A.

Let K{X} be a free non-associative algebra generated by set X =
{x1, . . . , xn}.

Definition 2.4. ([10]) Let f = f(x1, ..., xn) ∈ K{X} and let A be a
non-associative algebra. We say that f = 0 is a polynomial identity for
A if f(a1, . . . , an) = 0 for all a1, . . . , an ∈ A

Definition 2.5. ([10]) Let {fi(x1, ..., xn) ∈ K{X} | i ∈ I} be a system
of polynomials. The class V of all non-associative algebras satisfying
the polynomial identities fi, i ∈ I, is called the variety defined by the
system of polynomial identities {fi | i ∈ I}. The variety M is called a
subvariety of V if M ⊂ V

Definition 2.6. ([10]) The set T (V) of all polynomial identities satisfied
by the variety V is called the T-ideal of V. We say, that the T-ideal
T (V) is generated as a T-ideal by the defining set of identities {fi|i ∈ I}
of the variety V.
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Definition 2.7. Let V be a vector space over R and let G be a group.
Then V is a G-module if a multiplication vg (v ∈ V, g ∈ G) is defined,
satisfying the following conditions for all u, v ∈ V, λ ∈ R and g, h ∈ G.

(1) ug ∈ V ;
(2) v(gh) = (vg)h;
(3) v1 = v;
(4) (λv)g = λ(vg);
(5) (u+ v)g = ug + vg.

Definition 2.8. ([11]) A polynomial f = f(x1, . . . , xn) is called linear
in the variable xi if xi occurs in every monomial of f with degree 1. A
polynomial f is called multilinear if it is linear in each variable.
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3 Variety of Bicommutative Algebras defined by

identity γ[(ab)c − 2(ba)c + (ca)b] + δ[c(ba) − 2c(ab) +

b(ac)] = 0

3.1 Main statements

Let M be a variety of bicommutative algebras over a field K of charac-
teristic 0 defined by identity

γ[(ab)c− 2(ba)c+ (ca)b] + δ[c(ba)− 2c(ab) + b(ac)] = 0, (3)

where (γ, δ) ̸= (0, 0), γ, δ ∈ K.
Let F (M) be a free algebra in variety M, and let Fn(M) be a free

algebra in M generated by X = {x1, . . . , xn}.
Let Pn be a space of multilinear polynomials of Fn(M) of degree

n. Further we call the space of multilinear polynomials as multilinear
component.

We have four cases depending on coefficients γ and δ

(I) γδ(γ − δ)(γ + δ) ̸= 0
(II) γ = 0, δ ̸= 0 (γ ̸= 0, δ = 0 analogous)
(III) γ + δ = 0
(IV) γ − δ = 0

3.2 Case I: γδ(γ + δ)(γ − δ) ̸= 0

Let M be a variety of bicommutative algebras defined by identity

γ[(ab)c− 2(ba)c+ (ca)b] + δ[c(ba)− 2c(ab) + b(ac)] = 0 (4)

where γδ(γ + δ)(γ − δ) ̸= 0.
Then we have the following theorem.

Theorem 3.1. As Sn-module

P1(M) ∼= S(1), P2(M) ∼= S(2) ⊕ S(1,1),

P3(M) ∼= 2S(3) ⊕ S(2,1), P4(M) ∼= 2S(4)

Pn(M) ∼= S(n) for n ≥ 5.

Proof. Let n = 3. The number of base elements of the multilinear
component of degree 3 of free bicommutative algebra F (B) is equal to
6. There are 2 types of the base elements.
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First type
V3((∗∗)∗) = {(ab)c, (ba)c, (ca)b}.

Second type

V3(∗(∗∗)) = {c(ba), c(ab), b(ac)}.

In [7] proved that V3((∗∗)∗) and V3(∗(∗∗)) are invariant under action of
symmetric group S3 and as S3-module

V3((∗∗)∗) ∼= S(3) ⊕ S(2,1),

V3(∗(∗∗)) ∼= S(3) ⊕ S(2,1),

P3(B) ∼= V3((∗∗)∗)⊕ V3(∗(∗∗)) ∼=
2S(3) ⊕ 2S(2,1).

Since

(ab)c− 2(ba)c+ (ca)b = −δ

γ
[c(ba)− 2c(ab) + b(ac)]

then we have
P3(M) ∼= 2S(3) ⊕ S(2,1).

Based on result the number of base elements of P3(M) is equal to 4.
Let n = 4. The number of base elements of the multilinear com-

ponent of degree 4 of free bicommutative algebra F (B) is equal to 14.
There are 3 types of the base elements.

First type

V4(((∗∗)∗)∗) = {((ab)c)d, ((ba)c)d, ((ca)b)d, ((da)b)c}.

Second type

V4(∗((∗∗)∗)) = {c((ab)d), b((ac)d), b((ad)c), a((bc)d), a((bd)c), a((cd)b)}.

Third type

V4(∗(∗(∗∗))) = {d(c(ba)), d(c(ab)), d(b(ac)), c(b(ad))}.

In [7] proved that V4(((∗∗)∗)∗), V4(∗((∗∗)∗)) and V4(∗(∗(∗∗))) are
invariant under action of symmetric group S4 and as S4-module

V4(((∗∗)∗)∗) ∼= S(4) ⊕ S(3,1),
10



V4(∗((∗∗)∗)) ∼= S(4) ⊕ S(3,1) ⊕ S(2,2),

V4(∗(∗(∗∗))) ∼= S(4) ⊕ S(3,1),

and
P4(B) ∼= V4(((∗∗)∗)∗)⊕ V4(∗((∗∗)∗))⊕ V4(∗(∗(∗∗))) ∼=

3S(4) ⊕ 3S(3,1) ⊕ S(2,2).

Let W
(4)
2 (∗(∗(∗∗))) be a space. The space V4(∗(∗(∗∗))) as GL4-

module is isomorphic to

V4(∗(∗(∗∗))) ∼= W (4) ⊕W (3,1).

The irreducible GL4-module W (4) is generated by the following poly-
nomial (highest weight vector)

a a a a = a(a(aa)),

and the irreducible GL4-module W (3,1) is generated by the following
polynomial

a a a

b
= a(a(ab))− a(a(ba)).

By substituting a := aa, b := a, c := a into (4) we get a new identity

γ[((aa)a)a−2(a(aa))a+(a(aa))a]+δ[a(a(aa))−2a((aa)a)+a((aa)a)] = 0

γ[((aa)a)a− (a(aa))a] + δ[a(a(aa))− a((aa)a)] = 0

γ((aa)a)a− γa((aa)a) + δa(a(aa))− δa((aa)a)] = 0

γ((aa)a)a− (γ + δ)a((aa)a) = −δa(a(aa)) (5)

Hence, the element a(a(aa)) can be expressed through elements ((aa)a)a
and a((aa)a).

By substituting a := a, b := b, c := a into (4) we get a new identity

γ[(ab)a− 2(ba)a+ (aa)b] + δ[a(ba)− 2a(ab) + b(aa)] = 0

γ[2(aa)b− 2(ba)a] + δ[2b(aa)− 2a(ab)] = 0

γ[(aa)b− (ba)a] + δ[b(aa)− a(ab)] = 0 (6)

We multiply identity (6) by the generator a from the left side

γ[a((aa)b)− a((ba)a)] + δ[a(b(aa))− a(a(ab))] = 0
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γ[a((aa)b)− b((aa)a)] + δ[a((ba))− a(a(ab))] = 0 (7)

Hence, the element a(a(ab)) − a(a(ba)) can be expressed as linear
combinations of elements of the type ∗((∗∗)∗).

Now we consider elements of type ∗((∗∗)∗).
The irreducible GL4-submodule W (4) is generated by the following

polynomial
a a a a = a((aa)a).

The irreducible GL4-submodule W (3,1) is generated by the following
polynomial

a a a

b
= a((ab)a)− a((ba)a).

The irreducible GL4-submodule W (2,2) is generated by the following
polynomial

a a

b b
= (ab− ba)(ab− ba) =

(ab)(ab)− (ab)(ba)− (ba)(ab) + (ba)(ba) =

a((ab)b)− b((ab)a)− a((ba)b) + b((ba)a) =

a((ab)b)− b((aa)b)− b((aa)b) + b((ba)a)) =

a((ab)b)− 2b((aa)b) + b((ba)a).

We multiply identity (6) by the generator b from the right side

γ[((aa)b)b− ((ba)a)b] + δ[(b(aa))b− (a(ab))b] = 0

Since there is no elements of type ((∗∗)∗)∗ which contains two a and
two b. Therefore we have

((aa)b)b− ((ba)a)b = 0.

Hence, we obtain a new identity

b((aa)b) = a((ab)b). (8)

We multiply identity (6) by the generator b from the left side

γ[b((aa)b)− b((ba)a)] + δ[b(b(aa))− b(a(ab))] = 0.

Since there is no elements of type ∗(∗(∗∗)) which contains two a and
two b. Therefore we have

b(b(aa))− b(a(ab)) = 0.
12



Hence we obtain a new identity

b((aa)b) = b((ba)a). (9)

Using identitties (8) and (9) we get the following identity

a a

b b
= a((ab)b)− 2b((aa)b) + b((ba)a) = 0.

We multiply identity (6) by the generator a from the right side

γ[((aa)b)a− ((ba)a)a] + δ[(b(aa))a− (a(ab))a] = 0

γ[((ab)a)a− ((ba)a)a] + δ[(a(ba))a− a((ab)a)] = 0

γ[((ab)a)a− ((ba)a)a] + δ[a((ba)a)− a((ab)a)] = 0 (10)

Thus the elements a((ab)a) − a((ba)a) can be expressed as linear
combination of elements of the type ((∗∗)∗)∗.

Now we consider elements of type ∗(∗(∗∗)).

a a a a = a(a(aa))

a a a

b
= a(a(ab))− a(a(ba))

By substituting a := aa, b := b, c := a into (4) we get a new identity

γ[((aa)b)a−2(b(aa))a+(a(aa))b]+δ[a(b(aa))−2a((aa)b)+b((aa)a)] = 0

γ((aa)a)b+δb(a(aa))−2γb((aa))a)+(γ−δ)a((aa)b)+δ(−a((aa)b)+b((aa)a)) = 0

γ((aa)a)b+δb(a(aa))−2γb((aa)a)+(γ−δ)a((aa)b)−γ(((aa)a)b−((ba)a)a) = 0

γb((aa)a) + δa((aa)b) = γ((ba)a)a+ δa(a(ab)) (11)

By summing the identities (7) and (10) we obtain

(γ+δ)a((aa)b)−(γ+δ)b((aa)a) = γ((aa)a)b−γ((ba)a)a+δa(a(ab))−δa(a(ba))

(γ+δ)a((aa)b)−(γ+δ)b((aa)a) = (γ+δ)((aa)a)b−γ((ba)a)a−δb(a(aa))

(γ + δ)b((aa)a) = γ((ba)a)a+ δb(a(aa)) (12)

By summing the identities (12) and (7) we obtain

γa((aa)b) + δb((aa)a) = δa(a(ab)) + γ((ba)a)a (13)
13



By subtracting the identities (11) and (13) we obtain

(γ − δ)b((aa)a) + (δ − γ)a((aa)b) = 0

b((aa)a)− a((aa)b) = 0 (14)

By identities (14) and (10) we get that elements ((ab)a)a−((ba)a)a =
0

Based on result we claim that the number of base elements of P4(M)
is equal to 2. They are

{((ab)c)d, a((bc)d)}.

Let n = 5. The number of base elements of the multilinear com-
ponent of degree 5 of free bicommutative algebra F (B) is equal to 30.
There are 4 types of the base elements.

First type

V5((((∗∗)∗)∗)∗) = {(((ab)c)d)e, (((ba)c)d)e, (((ca)b)d)e, (((da)b)c)e, (((ea)b)c)d}.

Second type

V5(∗(((∗∗)∗)∗)) = {a(((bc)d)e), a(((cb)d)e), a(((db)c)e), a(((eb)c)d), b(((ca)d)e),

b(((da)c)e), b(((ea)c)d), c(((da)b)e), c(((ea)b)d), d(((ea)b)c)}.
Third type

V5(∗(∗((∗∗)∗))) = {a(b((cd)e)), a(b((dc)e)), a(b((ec)d)), a(c((db)e)), a(c((eb)d)),

a(d((eb)c)), b(c((da)e)), b(c((ea)d)), b(d((ea)c)), c(d((ea)b))}.
Fourth type

V5(∗(∗(∗(∗∗)))) = {a(b(c(de))), b(c(d(ea))), c(d(e(ab))), d(e(a(bc))), e(a(b(cd)))}.

In [7] proved that V5((((∗∗)∗)∗)∗), V5(∗(((∗∗)∗)∗)), V5(∗(∗((∗∗)∗)))
and V5(∗(∗(∗(∗∗)))) are invariant under action of symmetric group S5

and as S5-module

V5((((∗∗)∗)∗)∗) ∼= S(5) ⊕ S(4,1),

V5(∗(((∗∗)∗)∗)) ∼= S(5) ⊕ S(4,1) ⊕ S(3,2),

V5(∗(∗((∗∗)∗))) ∼= S(5) ⊕ S(4,1) ⊕ S(3,2),

V5(∗(∗(∗(∗∗)))) ∼= S(5) ⊕ S(4,1),
14



and

P5(B) ∼= V5((((∗∗)∗)∗)∗)⊕V5(∗(((∗∗)∗)∗))⊕V5(∗(∗((∗∗)∗)))⊕V5(∗(∗(∗(∗∗)))) ∼=

4S(5) ⊕ 4S(4,1) ⊕ 2S(3,2).

Let’s consider elements of the type ∗(∗(∗(∗∗)))

a a a a a = a(a(a(aa)))

By substituting b := a into (11) we obtain

(γ + δ)a((aa)a) = γ((aa)a)a+ δa(a(aa)) (15)

We multiply identity (15) by the generator a from the left side

(γ + δ)a(a((aa)a)) = γa(((aa)a)a) + δa(a(a(aa)))

−γa(((aa)a)a) + (γ + δ)a(a((aa)a)) = δa(a(a(aa)))

So the element a(a(a(aa))) can be expressed through elements a(((aa)a)a)
and a(a((aa)a)).

a a a a

b
= a(a(a(ab)))− a(a(a(ba))) = 0

(analogous to case n = 4).
Now we consider elements of the type ∗(∗((∗∗)∗))

a a a a a = a(a((aa)a)).

We multiply identity (15) by the generator a from the right side

(γ + δ)(a((aa)a))a = γ(((aa)a)a)a+ δ(a(a(aa)))a

−γ(((aa)a)a)a+ (γ + δ)a(((aa)a)a) = δa((a(aa))a)

−γ(((aa)a)a)a+ (γ + δ)a(((aa)a)a) = δa(a((aa)a))

Thus the element a(a((aa)a)) can be expressed through elements
(((aa)a)a)a and a(((aa)a)a).

a a a a

b
= 0 and

a a a

b b
= 0

(analogous to case n = 4).
Let’s consider elements of the type ∗(((∗∗)∗)∗)

15



a a a a a = a(((aa)a)a).

By substituting b := aa into (11) and using (15) we get

γ(aa)((aa)a) + δa((aa)(aa)) = γ(((aa)a)a)a+ δa(a(a(aa)))

γa(((aa)a)a)+δa(a((aa)a)) = γ(((aa)a)a)a−γa(((aa)a)a)+(γ+δ)a(a((aa)a))

2γa(((aa)a)a)− γa(a((aa)a)a) = γ(((aa)a)a

−γ

δ
(((aa)a)a)a+

γ + δ

δ
a(((aa)a)a) = a(a((aa)a))

2γa(((aa)a)a) +
γ2

δ
(((aa)a)a)a− γ(γ + δ

δ
a(((aa)a)a) = γ(((aa)a)a)a

(2γ − γ(γ + δ)

δ
)a(((aa)a)a) = (

δγ − γ2

δ
)(((aa)a)a)a

(2γδ − γ2 − γδ)a(((aa)a)a) = δγ − γ2(((aa)a)a)a

a(((aa)a)a) = (((aa)a)a)a

Hence, the element a(a((aa)a)) can be expressed through element
(((aa)a)a)a.

a a a a

b
= 0 and

a a a

b b
= 0

(analogous to case n = 4).

Based on result we claim that the number of base elements of P5(M)
is equal to 1. This is

{(((ab)c)d)e}

This implies the number of base elements of Pn(M) is the following

n 1 2 3 4 5 ... n ...

dim(Pn(M)) 1 2 4 2 1 ... 1 ...

Set
fn = (· · · ((xx)x) · · · )x︸ ︷︷ ︸

n

,

16



f ′
n = x(· · · (x(xx︸ ︷︷ ︸

n

)) · · · ),

gn = (· · · ([y, x]x) · · · )x︸ ︷︷ ︸
n−1

.

Theorem 3.2. Let a linearization of f generates an irreducible Sn-
submodule of Pn(M). Then the consequences of higher degrees from
the f are equivalent to the following identities

(a) fn+1 if f = fn, n ≥ 1;
(b) f ′

n+1 if f = fn, n = 1, 2, 3;
(c) f ′

n+1 if f = f ′
n, n = 1, 2, 3;

(d) gn+1 if f = fn, n = 1, 2;
(e) gn+1 if f = gn, n = 1, 2.

This theorem can be illustrated in the following lattice:

...x
f5x
f4 f ′

4x ↗
x

g3 f3 f ′
3x ↖

x ↗

g2 f2

↖
x
f1

Proof. Notice that f1 = f ′
1 = g1 and f2 = f ′

2.
(a) For n = 1 : f1 = x = 0 implies f2 = f1x = xx = 0 · x = 0.
For n = 2 : f2 = xx = 0 implies f3 = (xx)x = 0 · x = 0.
For n = k we have fk = 0 implies fk+1 = fk · x = 0 · x = 0.
(b) For n = 2 : f2 = xx = 0 implies f ′

3 = x(xx) = x · 0 = 0.
For n = 3 : f3 = (xx)x = 0 implies f ′

4 = x((xx)x) = x·f3 = x·0 = 0.
(c) For n = 3 : f ′

3 = x(xx) = 0 implies f ′
4 = x((xx)x) = (xx)(xx) =

(x(xx))x = f ′
3 · x = 0 · x = 0.
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(d) For n = 1: f1 = x = 0 implies g2 = xy − yx = 0 · y − y · 0 = 0
For n = 2: f2 = xx = 0 implies g3 = (xy)x− (yx)x.
By substituting x := x+ y into f2 we obtain

xx = (x+ y)(x+ y) = xx+ xy + yx+ yy = 0

xx and yy are equal to 0 since f2 = 0. This means that xy + yx = 0
and we obtain:

xy = −yx

So g3 = (xy)x− (yx)x = (xy)x+ (xy)x = 2(xx)y = 2f2 · y = 0
(e) For n = 2: g2 = xy − yx = 0 implies g3 = (xy)x − (yx)x =

(xy − yx)x = g2 · x = 0 · x = 0.
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3.3 Case II: γ = 0, δ ̸= 0

Let M be a variety of bicommutative algebras defined by identity

c(ba)− 2c(ab) + b(ac) = 0 (16)

Then we have the following theorem.

Theorem 3.3. As Sn-module

P1(M) ∼= S(1), P2(M) ∼= S(2) ⊕ S(1,1),

Pn(M) ∼= 2S(n) ⊕ S(n−1,1), for n ≥ 3.

Proof. By replacing b and c in the identity (16) we get b(ca)− 2b(ac) +
c(ab) = 0. Subtracting (16) from this equation

3c(ab) = 3b(ac)

c(ab) = b(ac)

We get a new identity

a(bc) = c(ba) (17)

Returning to the equation (16) and inserting c(ab) instead of b(ac)
by identity (17)

c(ba)− 2c(ab) + c(ab) = 0

c(ba)− 2c(ab) = 0

c(ba) = c(ab)

Based on result we get one more new identity

a(bc) = a(cb) (18)

Let n = 3.
We get b(ac) = c(ab) and c(ba) = c(ab) by identities (17) and (18)

respectively.
We obtain the following base elements of P3(M)

{(ab)c, (ba)c, (ca)b, c(ab)}.

Based on result we claim that the number of base elements of P3(M)
is equal to 4.

Let n = 4.
19



Let’s consider elements of the type ∗(∗(∗∗)). By using (2), (17) and
(18) identities we get

b(c(da)) = c(b(da)) = c(b(ad)) = a(b(cd))

c(d(ab)) = a(d(cb)) = a(b(cd))

d(a(bc)) = a(d(bc)) = a(c(bd)) = a(b(cd))

It follows that we can consider only one element a(b(cd)) of the type
∗(∗(∗∗)).

Now we consider elements of the type ∗((∗∗)∗). By using (18) identity
we obtain following equalities.

a((bc)d) = a(d(bc)); a((cb)d) = a(d(cb)); a((db)c) = a(c(db));

b((ca)d) = b(d(ca)); b((da)c) = b(c(da)); c((da)b) = c(b(da))

All these elements are elements of the type ∗(∗(∗∗). This means we
can express elements of the type ∗((∗∗)∗) through elements of the type
∗(∗(∗∗).

First type ((∗∗)∗)∗ has all 4 elements and we can not eliminate them.
We obtain the following base elements of P4(M)

{((ab)c)d, ((bc)d)a, ((cd)a)b, ((da)b)c, a(b(cd))}.

Based on result we claim that the number of base elements of P4(M)
is equal to 5.

Let n = 5.
Let’s consider elements of the type ∗(∗(∗(∗∗))). By using (2), (17)

and (18) identities we get

b(c(d(ea))) = b(c(d(ae))) = a(b(c(de)))

c(d(e(ab))) = c(d(b(ae))) = a(b(c(de)))

d(e(a(bc))) = d(a(b(ec))) = d(a(b(ce))) = a(b(c(de)))

e(a(b(cd))) = a(b(c(ed))) = a(b(c(de)))

It follows that we can consider only one element a(b(c(de))) of the
type ∗(∗(∗(∗∗))).

Let’s consider elements of the type ∗(∗((∗∗)∗)). By using (18) iden-
tity we obtain following equalities
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a(b((cd)e)) = a(b(e(cd))); a(b((dc)e)) = a(b(e(dc)));

a(b((ec)d)) = a(b(d(ec))); a(c((db)e)) = a(c(e(db)));

a(c((eb)d)) = a(c(d(eb))); a(d((eb)c)) = a(d(c(eb)));

b(c((da)e)) = b(c(e(da))); b(c((ea)d)) = b(c((dea)));

b(d((ea)c)) = b(d(c(ea))); c(d((ea)b)) = c(d(b(ea))).

All these elements are elements of the type ∗(∗(∗(∗∗))). This means
we can express elements of the type ∗(∗((∗∗)∗)) through elements of the
type ∗(∗(∗(∗∗))).

Now consider elements of the type ∗(((∗∗)∗)∗). By using (18) identity
we obtain following equalities

a(((bc)d)e) = a(e((bc)d)) = a(e(d(bc)))

a(((cb)d)e) = a(e((cb)d)) = a(e(d(cb)))

a(((db)c)e) = a(e((db)c)) = a(e(c(db)))

a(((eb)c)d) = a(d((eb)c)) = a(d(c(eb)))

b(((ca)d)e) = b(e((ca)d)) = b(d(e(ca)))

b(((da)c)e) = b(e((da)c)) = b(e(c(da)))

b(((ea)c)d) = b(d((ea)c)) = b(d(c(ea)))

c(((da)b)e) = c((e(da)b)) = c(e(b(da)))

c(((ea)b)d) = c(d((ea)b)) = c(d(b(ea)))

d(((ea)b)c) = d(c((ea)b)) = d(c(b(ea)))

All these elements are elements of the type ∗(∗(∗(∗∗))). This means
we can express elements of the type ∗(((∗∗)∗)∗) through elements of the
type ∗(∗(∗(∗∗))).

First type (((∗∗)∗)∗)∗ has all 5 elements and we can not eliminate
them.

We obtain the following base elements of P5(M)

{(((ab)c)d)e, (((bc)d)e)a, (((cd)e)a)b, (((de)a)b)c, (((ea)b)c)d, a(b(c(de)))}.

Based on result we claim that the number of base elements of P5(M)
is equal to 6.
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This implies the number of base elements of Pn(M)

n 1 2 3 4 5 6 ... n ...

dim(Pn(M)) 1 2 4 5 6 7 ... n+ 1 ...

Theorem 3.4. Let a linearization of f generates an irreducible Sn-
submodule of Pn(M). Then the consequences of higher degrees from
the f are equivalent to the following identities

(a) fn+1 if f = fn, n ≥ 1;
(b) f ′

n+1 if f = fn, n ≥ 1;
(c) f ′

n+1 if f = f ′
n, n ≥ 1;

(d) gn+1 if f = gn, n ≥ 1.

This theorem can be illustrated in the following lattice

... ... ...x ↖
x x

f ′
5 f5 g5x ↖

x x
f ′
4 f4 g4x ↖

x x
f ′
3 f3 g3

↖
x x
f2 g2x ↗

f1

Proof. Notice that f1 = f ′
1 = g1 and f2 = f ′

2.
(a) For n = 1 : f1 = x = 0 implies f2 = xx = 0 · x = 0.
For n = 2 : f2 = xx = 0 implies f3 = (xx)x = 0 · x = 0.
For n = k: fk = 0 implies fk+1 = fk · x = 0 · x = 0.
(b) For n = 2 : f2 = xx = 0 implies f ′

3 = x(xx) = x · 0 = 0.
For n = 3 : f3 = (xx)x = 0 implies f ′

4 = x(x(xx)) = x((xx)x) =
x · f3 = x · 0 = 0.

For n = k we have fk = 0 implies f ′
k+1 = x · fk = x · 0 = 0.
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(c) For n = 3 : f ′
3 = x(xx) = 0 implies f ′

4 = x(x(xx)) = x · f ′
3 =

x · 0 = 0.
For n = 4 : f ′

4 = x(x(xx)) = 0 implies f ′
5 = x(x(x(xx))) = x · f ′

4 =
x · 0 = 0.

For n = k we have f ′
k = 0 implies f ′

k+1 = x · f ′
k = x · 0 = 0.

(d) f1 = x = 0 implies g2 = xy − yx = 0 · y − y · 0 = 0
For n = 2: g2 = xy − yx = 0 implies g3 = (xy)x − (yx)x = (xy −

yx)x = g2 · x = 0 · x = 0.
For n = 3: g3 = (xy − yx)x = 0 implies g4 = ((xy)x)x− ((yx)x)x =

((xy − yx)x)x = g3 · x = 0 · x = 0
For n = k we have gk = 0 implies gk+1 = gk · x = 0 · x = 0.
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3.4 Case III: γ + δ = 0

Let M be a variety of bicommutative algebras defined by identity

(ab)c− 2(ba)c+ (ca)b− c(ba) + 2c(ab)− b(ac) = 0 (19)

Then we have the following theorem.

Theorem 3.5. As Sn-module

P1(M) ∼= S(1), P2(M) ∼= S(2) ⊕ S(1,1),

P3(M) ∼= 2S(3) ⊕ S(2,1), P4(M) ∼= 2S(4)

Pn(M) ∼= S(n) for n ≥ 5.

Proof. Let n = 3.
By replacing a and b in identity (19) and substracting (19) from this

equation

3(ba)c− 3(ab)c = 3c(ab)− 3c(ba)

(ba)c− (ab)c = c(ab)− c(ba) (20)

From identity (19) we have

(ba)c− (ab)c = (ca)b− (ba)c− c(ba) + 2c(ab)− b(ac)

Using identity (20)

c(ab)− c(ba) = (ca)b− (ba)c− c(ba) + 2c(ab)− b(ac)

(ca)b− (ba)c = b(ac)− c(ab) (21)

From identities (20) and (21) respectively we have

c(ab) = (ba)c+ c(ba)− (ab)c

b(ac) = (ca)b+ c(ab)− (ba)c

= (ca)b+ (ba)c+ c(ba)− (ab)c− (ba)c

= (ca)b+ c(ba)− (ab)c

This means that we can represent elements c(ab) and b(ac) by others.
So we obtain the following base elements of P3(M)

{(ab)c, (ba)c, (ca)b, c(ba)}
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Based on result we claim that the number of base elements of P3(M)
is equal to 4.

By substituting a := a, b := a, c := b into (19) we get new identity

(aa)b− 2(aa)b+ (ba)a = b(aa)− 2b(aa) + a(ab)

(ba)a− (aa)b = a(ab)− b(aa) (22)

Let n = 4.
We can get new identity using (1) and (2) that we’ll use further

(a(bc))d = (b(ac))d = (bd)(ac) = a((bd)c) = a((bc)d)

Thus we get new identity

(a(bc))d = a((bc)d) (23)

a a a

b
= ((ab)a)a− ((ba)a)a = ((aa)a)b− ((ba)a)a

a a a

b
= a((ab)a)− a((ba)a) = a((aa)b)− b((aa)a)

a a a

b
= a(a(ab))− a(a(ba)) = a(a(ab))− b(a(aa))

We multiply identity (22) by the generator a from the right side

((ba)a)a− ((aa)b)a = (a(ab))a− (b(aa))a

((ba)a)a− ((aa)a)b = a((aa)b)− b((aa)a) (24)

We multiply identity (22) by the generator a from the left side

a((ba)a)− a((aa)b) = a(a(ab))− a(b(aa))

b((aa)a)− a((aa)b) = a(a(ab))− b(a(aa)) (25)

We multiply identity (19) by the generator d from the right side

((ab)c)d− 2((ba)c)d+ ((ca)b)d = (c(ba))d− 2(c(ab))d+ (b(ac))d

((ab)c)d− 2((ba)c)d+ ((ca)b)d = c((ba)d)− 2c((ab)d) + b((ac)d)

We multiply identity (19) by the generator d from the left side

d((ab)c)− 2d((ba)c) + d((ca)b) = d(c(ba))− 2d(c(ab)) + d(b(ac))
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d((ab)c)− 2d((ba)c) + d((ca)b) = d(c(ba))− 2d(c(ab)) + d(b(ac))

By substituting a := a, b := b, c := cd into (19) we get new identity

(ab)(cd)− 2(ba)(cd) + ((cd)a)b = (cd)(ba)− 2(cd)(ab) + b(a(cd))

c((ab)d)− 2c((ba)d) + ((cd)a)b = b((cd)a)− 2a((cd)b) + b(a(cd))

3c((ab)d) + ((cd)a)b = 3b((cd)a) + b(a(cd)) (26)

By substituting a := ad, b := b, c := c into (19) we get new identity

((ad)b)c− 2(b(ad))c+ (c(ad))b = c(b(ad))− 2c((ad)b) + b((ad)c)

((ad)b)c− 2b((ad)c) + c((ad)b) = c(b(ad))− 2c((ad)c)

3c((ad)b) + ((ad)b)c = 3b((ad)c) + c(b(ad)) (27)

By substituting a := a, b := bd, c := c into (19) we get new identity

(a(bd))c− 2((bd)a)c+ (ca)(bd) = c((bd)a)− 2c(a(bd)) + (bd)(ac)

a((bd)c)− 2((bd)a)c+ b((ac)d) = c((bd)a)− 2c(a(bd)) + a((bd)c)

−2((bd)a)c = −2c(a(bd))

((bd)a)c = c(a(bd)) (28)

Using the last identity we get

a a a

b
= ((ab)a)a− ((ba)a)a = ((aa)a)b− ((ba)a)a =

= b(a(aa))− b(a(aa)) = 0

((ab)a)a = ((ba)a)a (29)

Using identities (28) and (29) we get that elements of the type ((∗∗)∗)∗
eliminate elements of the type ∗(∗(∗∗)).

From identities (26) and (28) we get

3c((ab)d) = 3b((cd)a)

c((ab)d) = c((ba)d) (30)

a a

b b
= (ab− ba)(ab− ba) =
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(ab)(ab)− (ab)(ba)− (ba)(ab) + (ba)(ba) =

a((ab)b)− b((ab)a)− a((ba)b) + b((ba)a) =

a((ab)b)− 2b((aa)b) + b((ba)a) =

2b((aa)b− 2b((aa)b) = 0

This means that elements of the type ∗((∗∗)∗) can be represented by
only one of them.

We obtain the following base elements of P4(M)

{((ab)c)d, c((ab)d)}

Based on result we claim that the number of base elements of P4(M)
is equal to 2.

Let n = 5. Using identities we get we can claim that the number of
base elements of P5(M) is equal to 1

{(((ab)c)d)e}

This implies the number of base elements of Pn(M)

n 1 2 3 4 5 ... n ...

dim(Pn(M)) 1 2 4 2 1 ... 1 ...

Theorem 3.6. Let a linearization of f generates an irreducible Sn-
submodule of Pn(M). Then the consequences of higher degrees from
the f are equivalent to the following identities

(a) fn+1 if f = fn, n ≥ 1;
(b) f ′

n+1 if f = fn, n = 1, 2, 3;
(c) f ′

n+1 if f = f ′
n, n = 1, 2, 3;

(d) gn+1 if f = fn, n = 1, 2;
(e) gn+1 if f = gn, n = 1, 2.

This theorem can be illustrated in the following lattice
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...x
f5x
f4 f ′

4x ↗
x

g3 f3 f ′
3x ↖

x ↗

g2 f2

↖
x
f1

Proof. Notice that f1 = f ′
1 = g1 and f2 = f ′

2.
(a) For n = 1 : f1 = x = 0 implies f2 = xx = 0 · x = 0.
For n = 2 : f2 = xx = 0 implies f3 = (xx)x = 0 · x = 0.
For n = k we have fk = 0 implies fk+1 = fk · x = 0 · x = 0.
(b) For n = 2 : f2 = xx = 0 implies f ′

3 = x(xx) = x · 0 = 0.
For n = 3 : f3 = (xx)x = 0 implies f ′

4 = x((xx)x) = x·f3 = x·0 = 0.
(c) For n = 3 : f ′

3 = x(xx) = 0 implies f ′
4 = x((xx)x) = (xx)(xx) =

(x(xx))x = f ′
3 · x = 0 · x = 0.

(d) For n = 1: f1 = x = 0 implies g2 = xy − yx = 0 · y − y · 0 = 0
For n = 2: f2 = xx = 0 implies g3 = (xy)x− (yx)x.
By substituting x := x+ y into f2 we obtain

xx = (x+ y)(x+ y) = xx+ xy + yx+ yy = 0

xx and yy are equal to 0 since f2 = 0. This means that xy + yx = 0
and we obtain

xy = −yx

So g3 = (xy)x− (yx)x = (xy)x+ (xy)x = 2(xx)y = 2f2 · y = 0
(e) For n = 2: g2 = xy − yx = 0 implies g3 = (xy)x − (yx)x =

(xy − yx)x = g2 · x = 0 · x = 0.
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3.5 Case IV: γ − δ = 0

Let M be a variety of bicommutative algebras defined by identity

(ab)c− 2(ba)c+ (ca)b+ c(ba)− 2c(ab) + b(ac) = 0 (31)

Then we have the following theorem.

Theorem 3.7. As Sn-module

P1(M) ∼= S(1), P2(M) ∼= S(2) ⊕ S(1,1),

Pn(M) ∼= 2S(n) ⊕ S(n−1,1), for n ≥ 3.

Proof. Let n = 3.
By replacing a and b in identity (31) and subtracting (31) from this

equation
3(ba)c− 3(ab)c+ 3c(ab)− 3c(ba) = 0

(ba)c+ c(ab) = (ab)c+ c(ba) (32)

From identity (31) we have

(ab)c+ c(ba) = 2(ba)c+ 2c(ab)− (ca)b− b(ac)

Using identity (32)

(ba)c+ c(ab) = 2(ba)c+ 2c(ab)− (ca)b− b(ac)

(ca)b+ b(ac) = (ba)c+ c(ab) (33)

(ca)b+ b(ac) = (ab)c+ c(ba) (34)

From identities (34) and (33) respectively we have

b(ac) = (ab)c+ c(ba)− (ca)b

c(ab) = (ca)b+ b(ac)− (ba)c

= (ca)b+ (ab)c+ c(ba)− (ca)b− (ba)c

= (ab)c+ c(ba)− (ba)c

We obtain the following base elements of P3(M)

{(ab)c, (ba)c, (ca)b, c(ba)}

Based on result we claim that the number of base elements of P3(M)
is equal to 4.
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Let n = 4.
We can get new identity using (1) and (2) that we’ll use further

(a(bc))d = (b(ac))d = (bd)(ac) = a((bd)c) = a((bc)d)

So we get new identity

(a(bc))d = a((bc)d) (35)

We multiply identity (31) by fourth element d by the right side(
(ab)c− 2(ba)c+ (ca)b+ c(ba)− 2c(ab) + b(ac)

)
d = 0 · d = 0

((ab)c)d− 2((ba)c)d+ ((ca)b)d+ (c(ba))d− 2(c(ab))d+ (b(ac))d = 0

((ab)c)d− 2((ba)c)d+ ((ca)b)d+ c((ba)d)− 2c((ab)d) + b((ac)d) = 0

We multiply identity (31) by the geberator d from the left side

d
(
(ab)c− 2(ba)c+ (ca)b+ c(ba)− 2c(ab) + b(ac)

)
= d · 0 = 0

d((ab)c)− 2d((ba)c) + d((ca)b) + d(c(ba))− 2d(c(ab)) + d(b(ac)) = 0

By substituting a := ad, b := b, c := c into (31) we get new identity

((ad)b)c− 2(b(ad))c+ (c(ad))b+ c(b(ad))− 2c((ad)b) + b((ad(c) = 0

((ad)b)c− 2b((ad)c) + c((ad)b) + c(b(ad))− 2c((ad)b) + b((ad)c) = 0

((ad)b)c+ c(b(ad))− b((ad)c)− c((ad)b) = 0 (36)

By substituting a := a, b := bd, c := c into (31) we get new identity

(a(bd))c− 2((bd)a)c+ (ca)(bd) + c((bd)a)− 2c(a(bd)) + (bd)(ac) = 0

a((bd)c)− 2((bd)a)c+ b((ca)d) + c((bd)a)− 2c(a(bd)) + a((bd)c) = 0

2b((ca)d) + 2a((bd)c)− 2((bd)a)c− 2c(a(bd)) = 0 (37)

By substituting a := a, b := b, c := cd into (31) we get new identity

(ab)(cd)− 2(ba)(cd) + ((cd)a)b+ (cd)(ba)− 2(cd)(ab) + b(a(cd)) = 0

c((ab)d)− 2c((ba)d) + ((cd)a)b+ b((cd)a)− 2a((cd)b) + b(a(cd)) = 0

((cd)a)b+ b(a(cd))− c((ab)d)− c((ba)d) = 0 (38)

a a

b
= (ab)a− (ba)a = (aa)b− (ba)a
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a a

b
= a(ab)− a(ba) = a(ab)− b(aa)

a a

b
+

a a

b
= (aa)b− (ba)aa(ab)− b(aa) = 0

= (aa)b− (ba)a = b(aa)− a(ab) (39)

a a a

b
= ((ab)a)a− ((ba)a)a = ((aa)a)b− ((ba)a)a

a a a

b
= a((ab)a)− a((ba)a) = a((aa)b)− b((aa)a)

a a a

b
= a(a(ab))− a(a(ba)) = a(a(ab))− b(a(aa))

By substituting a = b = c = d into (25) we get

((aa)a)a+ a(a(aa))− a((aa)a)− a((aa)a) = 0

a(a(aa)) = 2a((aa)a)− ((aa)a)a

We multiply identity (26) by the generator b from the right side

((aa)b)b− ((ba)a)b = (b(aa))b− (a(ab))b

((aa)b)b− ((ba)a)b = b((aa)b)− a((ab)b)

We multiply identity (26) by b by the generator from the left side

b((aa)b)− b((ba)a) = b(b(aa))− b(a(ab))

By substituting a := aa, b := b, c := b into (31) we get new identity

((aa)b)b− 2(b(aa))b+ (b(aa))b+ b(b(aa))− 2b((aa)b) + b((aa)b) = 0

((aa)b)b+ b(b(aa))− b((aa)b)− b((aa)b) = 0

((aa)b)b+ b(b(aa))− 2b((aa)b) = 0 (40)

By substituting a := a, b := bb, c := a into (31) we get new identity

(a(bb))a− 2((bb)a)a+ (aa)(bb) + a((bb)a)− 2a(a(bb)) + (bb)(aa) = 0
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a((bb)a)− 2((ba)a)b+ b((aa)b) + a((bb)a)− 2b(a(ab)) + a((bb)a) = 0

4b((aa)b)− 2((ba)a)b− 2b(a(ab)) = 0

2b((aa)b)− ((ba)a)b− b(a(ab)) = 0 (41)

Using identities (27) and (28) we get

((aa)b)b+ b(b(aa)) = ((ba)a)b+ b(a(ab))

By substituting a := ab, b := b, c := a into (6) we get a new identity

((ab)b)a− 2(b(ab))a+ (a(ab))b+ a(b(ab))− 2a((ab)b) + b((ab)a) = 0

((aa)b)b− 2b((aa)b) + a((ab)b) + b(a(ab))− 2a((ab)b) + b((aa)b) = 0

((aa)b)b+ b(a(ab))− a((ab)b) = 0 (42)

By substituting a := a, b := ba, c := b into (31) we get new identity

(a(ba))b− 2((ba)a)b+ (ba)(ba) + b((ba)a)− 2b(a(ba)) + (ba)(ab) = 0

b((aa)b)− 2((ba)a)b+ b((ba)a) + b((ba)a)− 2b(b(aa)) = 0

2b((aa)b) + 2((ba)a)b− 2((ba)a)b− 2b(a(ba)) = 0

b((aa)b) + b((ba)a) = ((ba)a)b+ b(a(ba)) (43)

a a

b b
= (ab− ba)(ab− ba)a =

(ab)(ab)− (ab)(ba)− (ba)(ab) + (ba)(ba) =

a((ab)b)−b((ab)a)−a((ba)b)+b((ba)a) = a((ab)b)−2b((aa)b)+b((ba)a) =

((aa)b)+b(a(ab))− ((ba)a)b−b(a(ab))+((ba)a)b+b(a(ba))−b((aa)b) =

((aa)b) + b(b(aa))− b((aa)b)

2b((aa)b) = ((aa)b)b+ b(b(aa))

2b((aa)b) = ((ba)a)b+ b(a(ab))

We obtain the following base elements of P4(M)

{((ab)c)d, ((bc)d)a, ((cd)a)b, ((da)b)c, a(b(cd))}.

Based on result we claim that the number of base elements of P4(M)
is equal to 5.

Let n = 5. By the same way we claim that the number of base
elements of P5(M) is equal to 6.
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We obtain the following base elements of P5(M)

{(((ab)c)d)e, (((bc)d)e)a, (((cd)e)a)b, (((de)a)b)c, (((ea)b)c)d, a(b(c(de)))}.

Based on result we claim that the number of base elements of P5(M)
is equal to 6.

This implies the number of base elements of Pn(M)

n 1 2 3 4 5 6 ... n ...

dim(Pn(M)) 1 2 4 5 6 7 ... n+ 1 ...

Theorem 3.8. Let a linearization of f generates an irreducible Sn-
submodule of Pn(M). Then the consequences of higher degrees from
the f are equivalent to the following identities

(a) fn+1 if f = fn, n ≥ 1;
(b) f ′

n+1 if f = fn, n ≥ 1;
(c) f ′

n+1 if f = f ′
n, n ≥ 1;

(d) gn+1 if f = gn, n ≥ 1.

This theorem can be illustrated in the following lattice

... ... ...x ↖
x x

f ′
5 f5 g5x ↖

x x
f ′
4 f4 g4x ↖

x x
f ′
3 f3 g3

↖
x x
f2 g2x ↗

f1

Proof. Notice that f1 = f ′
1 = g1 and f2 = f ′

2.
(a) For n = 1 : f1 = x = 0 implies f2 = xx = 0 · x = 0.
For n = 2 : f2 = xx = 0 implies f3 = (xx)x = 0 · x = 0.
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For n = k we have fk = 0 implies fk+1 = implies fk · x = 0 · x = 0.
(b) For n = 2 : f2 = xx = 0 implies f ′

3 = x(xx) = x · 0 = 0.
For n = 3 : f3 = (xx)x = 0 implies f ′

4 = x(x(xx)) = x((xx)x) =
x · f3 = x · 0 = 0.

For n = k we have fk = 0 implies f ′
k+1 = x · fk = x · 0 = 0.

(c) For n = 3 : f ′
3 = x(xx) = 0 implies f ′

4 = x(x(xx)) = x · f ′
3 =

x · 0 = 0.
For n = 4 : f ′

4 = x(x(xx)) = 0 implies f ′
5 = x(x(x(xx))) = x · f ′

4 =
x · 0 = 0.

For n = k we have f ′
k = 0 implies f ′

k+1 = x · f ′
k = x · 0 = 0.

(d) f1 = x = 0 implies g2 = xy − yx = 0 · y − y · 0 = 0
For n = 2: g2 = xy − yx = 0 implies g3 = (xy)x − (yx)x = (xy −

yx)x = g2 · x = 0 · x = 0.
For n = 3: g3 = (xy − yx)x = 0 implies g4 = ((xy)x)x− ((yx)x)x =

((xy − yx)x)x = g3 · x = 0 · x = 0
For n = k we have gk = 0 implies gk+1 = gk · x = 0 · x = 0.
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4 Conclusion

The main task of this thesis was to classify all subvarieties of the variety
of bicommutative algebras defined by the following identity

γ[(ab)c− 2(ba)c+ (ca)b] + δ[c(ba)− 2c(ab) + b(ac)] = 0.

We have built bases by constructing theorems and proved theorems
by using

• The methods of linear algebra;
• The methods of the representation theory of groups.
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