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A B S T R A C T   

Nano-sized zerovalent iron (NZVI) - supported metal catalysts were synthesized to characterize their reactivity 
for the reductive degradation of p-nitrophenol (PNP). Among the tested monometallic catalysts using metal 
promoters, Zn/NZVI showed the highest reactivity with complete reduction of PNP in 5 min (k = 0.0263 s− 1). 
The addition of Pd accelerated the degradation kinetics of PNP with complete reduction in 1 min (k = 0.095 s− 1) 
but promoter’s presence on bimetallic catalyst surfaces simply decreased their reactivity. A proper Pd amount 
(1.5 wt% Pd/NZVI) showed the highest degradation rate (k = 0.248 s− 1), while after its content increased to 10 
wt% the rate was reduced by 5.8 times.   

1. Introduction 

Nowadays, one of the main concerns of global society is public health 
and environmental safety. Industrial and agricultural activities have 
released various organic toxic compounds, which can contaminate sur
face and groundwaters, thus threatening access to fresh drinking water 
[1]. One of the various contaminants coming from anthropogenic ac
tivities is p-nitrophenol (PNP), widely known as a toxic and carcinogenic 
nitroaromatic chemical compound. The primary source of industrial 
activities facilitating the PNP contamination is the production of rub
bers, pesticides, textile, dyes, and pharmaceuticals [1–3]. It can easily 
intoxicate living animals and humans and lead to serious health prob
lems such as confusion, skin and eye irritation, loss of consciousness, and 
even potential carcinoma [2]. Moreover, exposure to the PNP might 
cause a negative effect on blood cells and damage the central nervous 
system and other human organs [4]. 

Various treatment technologies, including advanced oxidation pro
cesses, thermal degradation, photodegradation, electro-coagulation, 
biological treatment, adsorption, and others have been used to effi
ciently remove PNP [1,5,6]. Although biological treatment can effi
ciently degrade PNP, it has several disadvantages, such as a slow start-up 
time and decreased efficiency at low temperatures and high PNP con
centrations [7]. At the same time, purification techniques, such as 

electro-coagulation, photodegradation, and adsorption, also have 
several drawbacks, including high cost, long operation time, and 
reduced efficiency [6]. Moreover, there are conventional methods 
available for the reduction of PNP to p-aminophenol (PAP), such as the 
use of hazardous Sn/HCl, or Fe/HCl, catalytic transfer hydrogenation 
(CTH), or molecular hydrogen (H2) [8]. However, those methods have 
several disadvantages since they demand complex experimental design, 
high pressure, and temperature [8]. 

Recently, metal nanoparticles such as Au, Ag, Ni, Pt, Co, and Pd have 
attracted attention for the catalytic reduction of PNP due to their good 
initial activity [9–14]. However, the agglomeration of the nanoparticles 
resulting in decreased removal efficiency has been reported as a fatal 
defect [15]. Various immobilization techniques have been developed to 
prevent the agglomeration of nanoparticles using support materials such 
as graphene hydrogel, polystyrene beads, graphene oxide, magnetite, 
etc. [10,15–17]. However, no significant study has been conducted to 
use nanoscale zerovalent iron (NZVI) as a support material for the 
immobilization of metal nanoparticles to degrade PNP efficiently. In 
recent years, the well-known advantages of NZVI, such as high reductive 
capacity and economical synthesis method, made it one of the most 
widely studied and used environmental materials for the treatment of 
various surface and groundwater pollutants found in the industrial and 
agricultural sectors [2,7,18]. For example, NZVI has been proven to 
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effectively remove diverse halogenated organic compounds, oxy-onions, 
and heavy metals [19]. However, NZVI has several disadvantages, such 
as rapid oxidation of its surface to Fe oxides, which decreases the ac
tivity of NZVI acting as a reductant. Another serious drawback of NZVI is 
its tendency to agglomerate due to magnetic forces, which also de
creases the reactive surface and reduces the reductive efficiency of the 
material [1]. On the other hand, the magnetic property of NZVI allows 
the easy collection of NZVI-supported catalysts from the suspension 
system after catalytic reaction [7,18]. Hence, NZVI could be a promising 
support material with a great potential for the enhanced reduction of 
PNP. 

Previous studies showed that a variety of metallic catalysts with the 
promoter and noble metals on the surface of NZVI were successfully 
applied to remove nitrate, trichloroethylene, and tetrabromobisphenol 
[18,20–24]. The type of the promoter metal highly affects the degra
dation kinetics of the nitrate removal [25]. Hence, promoter metals 
including Cu, Sn, In, and Zn on the surface of various supports were 
extensively tested and evaluated for the degradation of nitrates in 
combination with noble metals such as Pd, Pt, and Au, where Pd was the 
most widely and successfully used noble metal [7,25–28]. However, the 
combination of metal catalytic components deposited on the NZVI sur
face have not been used and investigated for the reductive degradation 
of PNP. 

The present work aimed to investigate the reduction of PNP by NZVI- 
supported metal catalysts. First, different types of promoter metals have 
been tested for the enhancement of the rate of reduction of PNP. Then, 
more suitable promoter metals (Cu, In, Ni, Zn, Sn) have been tested 
along with a noble metal (Pd). Finally, the effect of significant factors 
such as catalyst loading, nature of chemical promoter, and noble metal 
loading were investigated. Based on the present results, the reaction 
mechanism was suggested. 

2. Experimental 

2.1. Synthesis of NZVI supported bimetallic catalyst 

NZVI was synthesized by a well-established method [18]. 50 mL of 
NaBH4 solution (0.9 M) was first prepared using deaerated and deion
ized water (DDIW). An exact concentration of FeCl3. 6H2O (0.11 M) was 
prepared in ethanol and DDIW (1:8 v/v) and the NaBH4 solution was 
added dropwise into FeCl3. 6H2O under constant mixing for >15 min to 
remove the remaining H2 gas. The suspension was sonicated for 2 min 
and washed with DDIW three times. The resulted suspension was used 
for the synthesis of bimetallic catalysts. Precursors for the promoter and 
noble metals were prepared by dissolving an appropriate amount of the 
relevant metal salt in DDIW, respectively. The solution was then added 
dropwise into the NZVI suspension under vigorous stirring. After addi
tion of precursors, the suspension was stirred for 3 min to ensure 
reduction of metals by NZVI, and then washed with DDIW three times. 
The resultant slurry was used for the batch catalytic experiments. 

2.2. Catalysts characterization and testing 

A morphological analysis of the catalyst was conducted using Scan
ning Electron Microscopy (SEM) with Energy-dispersive X-ray spec
troscopy (EDX, Hitachi S-4700). Dried catalysts were placed onto metal 
sample holders and covered with a gold film. Catalytic activity experi
ments were conducted in a batch reactor (20 mL amber vial), and details 
are provided in the ESI. 

3. Results and discussion 

3.1. Catalysts characterization 

SEM/EDX analysis was conducted to investigate the morphological 
characteristics of NZVI and the dispersion of Pd particles on its surface. 

Fig. S1a-b (Electronic Supporting Information, ESI) illustrates the SEM 
images of 1.5%Pd/NZVI particle surface with magnifications of 20 k and 
100 k, respectively. Fig. S1a shows that plate-shaped NZVI particles 
were synthesized. During the synthesis of NZVI, an ultrasonication 
process was applied [29], and thereby, round-shaped NZVI particles 
(~50 nm) can also be seen in Fig. S1b. The results indicate a successful 
synthesis of nano-sized iron particles. In addition, EDX mapping of 
surface elements of the catalyst was carried out to investigate Pd dis
tribution on the NZVI surface. Fig. S1c-d shows e EDX mapping images 
of Pd and Fe, respectively, indicating that the chemical elements were 
well-mixed. It is also shown that Pd particles were uniformly dispersed 
on the surface of NZVI support. These results suggest that the applied 
synthesis method of Pd/NZVI provides proper dispersion and distribu
tion of metal catalysts on the surface of NZVI support. 

3.2. Catalytic activity towards PNP reduction 

Kinetic experiments in a batch reactor mode were conducted to 
evaluate the catalytic reduction of PNP by the bimetallic 4%Zn-1.5%Pd/ 
NZVI, and the monometallic 1.5%Pd/NZVI and 4%ZnNZVI catalysts 
(Fig. 1). The reduction kinetics of PNP by bare-NZVI is also shown in 
Fig. 1 and compared to that obtained by the other catalysts. The control 
test (absence of catalyst) showed no removal of PNP throughout the 
experiment, indicating that no adsorption of PNP on the reactor’s wall 
and no reduction by photolysis in the amber vial (reactor) occurred 
during the reaction. The reduction of PNP by bare NZVI reached 93.7% 
in 5 min, while a monometallic catalyst (4%Zn/NZVI) can completely 
degrade PNP in 3 min. The presence of promoter metal (Zn) could 
facilitate an electron transfer from the NZVI surface compared to the 
relatively slow direct electron transfer from the bare-NZVI surface, 
resulting in the accelerated catalytic reduction kinetics of PNP [7]. The 
complete reduction of PNP by 4%Zn-1.5%Pd/NZVI occurred in 1 min, 
and its pseudo-first-order kinetic rate constant k1 (0.0954 s− 1, R2 =

0.979) was found to be 3.6 and 11.8 times higher than that of 4%Zn/ 
NZVI and bare-NZVI, respectively. Much faster reduction kinetics of PNP 
by the 4%Zn-1.5%Pd/NZVI solid could be originated from the addi
tional formation of activated hydrogen on the surface of noble metal 
(Pd) during the facilitated electron transfer at the Zn/NZVI interface. 
This can rapidly and strongly degrade PNP on the Pd surface inducing 
much higher catalytic activity for the enhanced PNP reduction 
[4,30,31]. Hence, the addition of promoter and noble metal to the bare- 
NZVI can increase the catalytic reduction rate of PNP by facilitating 
electron transfer and subsequent hydrogenation [32]. In contrast, 1.5% 
Pd/NZVI showed the fastest reduction kinetics of PNP (k1 = 0.248 s− 1, 
R2 = 1), of which the kinetic rate constant k1 is 4.1 times higher than 
that of 4%Zn-1.5%Pd/NZVI. It indicates how the hydrogenation 
occurred on the Pd surface could overwhelmingly contribute to the 
enhanced reductive catalysis of PNP with the fastest reduction kinetics. 
We show here the superiority of NZI-supported mono noble metal (Pd) 
catalyst over the bimetallic one for the enhanced reduction of PNP. 

The batch kinetic experimental results for the removal of PNP by the 
1.5%Pd/NZVI catalytic system were compared to those obtained by 
other catalysts recently reported. Table S1 summarizes the kinetic rate 
constant for the removal of PNP by each of the catalysts under diverse 
experimental conditions. It can be seen that the 1.5%Pd/NZVI has the 
highest catalytic activity for the PNP reduction among the catalysts re
ported to date. Most of the previously reported catalysts for the PNP 
removal used passive support materials that cannot donate electrons and 
facilitate the electron transfer from the support, while NZVI-supported 
catalysts can actively donate electrons to the promoter metal or 
directly to the contaminant [1,15,33–35]. For instance, Chen et al. [35] 
investigated the performance of Au/Pd bimetallic catalyst deposited on 
the surface of graphene nanosheets, which did not possess any reductive 
capacity, and they were simply used to prevent the agglomeration of the 
nanoparticles. Here, NZVI-supported mono- and bimetallic catalysts 
showed high activity for the enhanced PNP removal. It can be concluded 
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that the synthesized Pd/NZVI catalyst appears as one of the most 
promising nanocatalysts for the enhanced PNP removal. 

3.3. Evaluation of environmental factors on the catalytic reduction of 
PNP 

NZVI-supported monometallic catalysts with different promoter 
metals including Cu, Sn, Zn, Ni, and In were tested for the reduction of 
PNP. 4%Zn/NZVI showed the fastest reduction kinetics; hence, it was 
selected for further experimental studies. An increase in the catalyst 
loading resulted in the saturation point of its catalytic reactivity at a 
concentration of 500 mg/L. Monometallic Pd/NZVI catalyst showed a 
faster reduction kinetics than bimetallic Zn-Pd/NZVI since Zn particles 
could block available reactive surface sites of Pd. However, an increase 
in Pd loading of Pd/NZVI catalyst led to a decreased reduction kinetics 
of the catalyst. The details of the section are provided in the ESI. 

3.4. Reaction mechanism of PNP reduction on Pd/NZVI 

Fig. 2 shows the variation of UV–Vis spectra during the reduction of 
PNP by Pd/NZVI. Once PNP was added to a weak basic aqueous solution 
(pH ~7.5), it could be easily deprotonated to form p-nitrophenolate. The 
catalytic reduction is initiated by the addition of Pd/NZVI. As the cat
alytic reaction proceeds, the peak at 400 nm corresponding to p-nitro
phenolate is decreased, while a peak at 300 nm corresponding to p- 
aminophenol (PAP) is increased [2]. It indicates that the main reduction 
product of the catalytic reduction of PNP by Pd/NZVI is PAP. 

The catalytic reduction of PNP to PAP on the surface of Pd/NZVI can 
be explained via two main reduction pathways: (i) direct reduction of 
PNP to PAP via electron transfer from the reactive NZVI support in the 
form of Fe(II) and Fe(0) (Eqs. (1), (2)) and (ii) indirect reduction (hy
drogenation) via reactive Hads generated on the Pd surface (Eqs. (2)–(4)) 
[4,7,31]. 

Fe2+→Fe3+ + e− (1) 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

C/
C0

Time, min

Control

1.5%Pd/NZVI

4%Zn 1.5%Pd/NZVI

4%Zn/NZVI

NZVI

Fig. 1. Catalytic reduction of PNP by bare NZVI and NZVI-supported metal catalysts.  
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Fig. 2. Variation of UV–Vis spectra of aqueous samples during the catalytic reduction of PNP (50 mg/L) by the 1.5%Pd/NZVI catalyst.  
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Fe0→Fe2+ + 2e− (2)  

2H+ + 2e− →2Hads→H2 (3)  

Pd0 +H2→Pd − 2Hads (4) 

The surface of NZVI could be oxidized to Fe(II) oxides with the 
generation of electrons until its surface reached complete passivation by 
Fe(III) oxides. They could further react with aqueous H+ forming the 
reactive Hads adsorbed species on the Pd surface that is the main over
whelming driving force to vigorously reduce PNP to PAP in the mono
metallic system (Eq. (3)). Pd particles were able to continuously activate 
H2 to the reactive Hads species on their surface (Eq. (4)), leading to the 
enhanced PNP reduction kinetics by the continuous catalytic reduction 
system of PNP. Lai et al. [31] demonstrated that the generation of Hads 
was the main reducing power in the reductive degradation of PNP by Fe/ 
Cu catalyst. It could not completely reduce the PNP under high pH 
conditions since low H+ concentration limited the generation of Hads 
[31]. Moreover, since the addition of promoter metal and its loading 
increase have deteriorated the catalytic reduction kinetics of PNP, we 
can conclude that the indirect reduction of PNP via hydrogenation 
pathway with the reactive Hads species played the main role in the re
action mechanism of the catalytic PNP reduction. 

4. Conclusions 

The study provided insights on the proper synthesis of NZVI- 
supported metal catalysts for the enhanced catalytic reduction of PNP. 
The effect of significant factors such as catalyst loading, promoter type 
and loading, and noble metal loading on the performance of catalytic 
PNP reduction were evaluated for the optimal operation of the batch 
catalytic system. Monometallic catalyst with a noble metal (1.5%Pd/ 
NZVI) showed the fastest PNP reduction kinetics (k1 = 0.248 s− 1, R2 = 1) 
among the catalysts reported to date, while bimetallic catalyst (4%Zn- 
1.5%Pd/NZVI) has shown much faster PNP reduction kinetics (k1 =

0.095 s− 1, R2 = 0.979) than the Pd monometallic catalysts with different 
promoters. The optimal catalyst loading was observed at 500 mg/L for 
the enhanced catalytic reduction of PNP. Indirect reductive trans
formation of PNP to PAP via hydrogenation with reactive Hads on Pd 
surface was suggested as the main reduction pathway since 1.5%Pd/ 
NZVI has shown the highest rate for the catalytic reduction of PNP to 
PAP. The type and content of noble metal influencing the catalytic ac
tivity for an application to practical water treatment systems need to be 
carefully selected and evaluated by considering its role and behavior in 
the catalytic reduction of PNP. The limitations of this study are the 
absence of activity tests under different pHs of the suspensions and the 
absence of stability test of the catalyst during repeated cycles, which will 
be both our near-future research tasks. 
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