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Abstract 

Objectives: Kazakhstan is a Central Asian crossroad of European and Asian populations situated along the way of the 
Great Silk Way. The territory of Kazakhstan has historically been inhabited by nomadic tribes and today is the multi-
ethnic country with the dominant Kazakh ethnic group. We sequenced and analyzed the whole-genomes of five eth-
nic healthy Kazakh individuals with high coverage using next-generation sequencing platform. This whole-genome 
sequence data of healthy Kazakh individuals can be a valuable reference for biomedical studies investigating disease 
associations and population-wide genomic studies of ethnically diverse Central Asian region.

Data description: Blood samples have been collected from five ethnic healthy Kazakh individuals living in Kazakh-
stan. The genomic DNA was extracted from blood and sequenced. Sequencing was performed on Illumina HiSeq2000 
next-generation sequencing platform. We sequenced and analyzed the whole-genomes of ethnic Kazakh individuals 
with the coverage ranging from 26 to 32X. Ranging from 98.85 to 99.58% base pairs were totally mapped and aligned 
on the human reference genome GRCh37 hg19. Het/Hom and Ts/Tv ratios for each whole genome ranged from 1.35 
to 1.49 and from 2.07 to 2.08, respectively. Sequencing data are available in the National Center for Biotechnology 
Information SRA database under the accession number PRJNA374772.
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Objective
Recent improvements in sequencing technology (next-
generation and third-generation sequencing platforms) 
have sharply reduced the cost of sequencing. Next-
generation sequencing has been developed in order to 
improve throughput and facilitate the establishment of 
large-scale data sets in a relatively short time [1, 2]. The 
1000 Genomes Project is an international research effort 
to sequence a large number of people and establish the 
most detailed catalogue of human genetic variation [3]. 

There are currently different sources of complete human 
genomes publicly available [4, 5]. Moreover, in most of 
the countries the national initiatives devoted to whole-
genome sequencing, such as 100  K genomes (England) 
have been initiated and ongoing.

Kazakhstan is the multi-ethnic and ninth largest 
country in the world located in Central Asia with the 
dominant Kazakh ethnic group [6]. Kazakhs have been 
strongly influenced by the nomadic lifestyle, and a long 
history of migration has led to admixture of Western 
and Asian populations, which has formed the genetic 
background. Thus, it is crucial to understand the genetic 
architecture of ethnic Kazakhs to properly investigate 
the genetic basis of common traits in Kazakh population. 
Despite the research success on comparative population 
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studies and whole-genome sequencing of different eth-
nic groups, Kazakh population genomes remain absent 
and underrepresented in the majority of available human 
genome databases.

Here, we report the first complete genome sequences 
and analysis based on quality metrics of Kazakh ethnic 
individual’s generated using next-generation sequencing 
platform and available for further investigations. Whole-
genome sequencing data obtained at high coverage (26X-
32X) from four males and one female from Kazakhstan. 
The resulting whole genome sequences and analysis of 
Kazakh individuals represent an important and valuable 
contribution to our knowledge of the genetic landscape 
of the Central Asian region. Moreover these data may 
serve as useful resource for application in biomedicine 
and clinical practice to compare disease specific genetic 
variants with healthy/normal variants. But considering 
significant advancement of next-generation technologies 
and existence of different protocols, it is important to fol-
low the standardized quality management rules for mak-
ing efficient downstream analysis and utilization of same 
dataset for different purposes [7].

Data description
Blood samples from four males and one female have been 
collected from Kazakh individuals living in Kazakhstan. 
Genomic DNA was isolated from peripheral blood using 
Qiagen QIAmp DNA blood mini kit. Concentration 
of DNA was measured using NanoDrop 2000 spectro-
photometer (Thermo Fisher Scientific, USA) and Qubit 
Fluorimeter 2.0 (Thermo Fisher Scientific, USA). DNA 
quality was checked using Bioanalyzer 2100 (Agilent 
Technologies, USA). Paired-end DNA libraries were pre-
pared from 1  μg of gDNA using Illumina TruSeq DNA 
Sample Preparation kit according to manufacturer’s pro-
tocol (Illumina, USA). Input gDNA amounts have been 
sheared by Covaris. End repair and 3′ adenylation steps 

have been performed by End repair mix and A-tailing 
mix, correspondingly. Indexed paired-end adapters were 
purified on a gel with following steps of PCR amplifica-
tion and library validation for fragment size using Agilent 
HS DNA kit and Qubit HS DNA Assay kit. 300–400 base 
pairs library insert size has been selected. gDNA frag-
ments were hybridized to the flow cell surface by TruSeq 
PE Cluster kit v.3 cBot HS and amplified to form clusters 
using Illumina cBot. High-throughput sequencing was 
performed by TruSeq SBS kit v.3 HS. Samples sequenced 
using Illumina HiSeq2000 platform to target 30-fold cov-
erage using paired-end sequencing.

Conversion of generated bcl files to fastq format has 
been performed using Bcl2fastq tool. We generated 
473.4 Gb of data and 4,743,332,930 short reads with aver-
age coverage 29X for five sequenced samples. The qual-
ity assessment of raw sequence reads was performed with 
FastQC v.0.11.7 [8]. Reads were aligned and assembled 
on the human reference genome (NCBI GRCh37, hg19) 
and reference mitochondrial DNA rCRS (NC_012920) 
using Burrows-Wheeler Aligner v.0.7.12 [9]. Alignments 
corresponding to specific samples were merged into a 
single BAM file (Data files 1 to 5—Table 1) and marked 
for duplicates using Picard tools v.1.130. The alignment 
quality was assessed using SAMtools v.1.2 [10].

From 98.85 to 99.58% base pairs were totally mapped 
with properly mapped 99.06% on average. Het/Hom 
and Ts/Tv ratios for each whole genome ranged from 
1.35 to 1.49 and from 2.07 to 2.08, respectively (Data 
file 6—Table  1). As a measure of the quality of our 
whole-genome sequencing data, human genome stud-
ies particularly from the 1000 Genomes project have 
been showing that for whole genomes, a Ts/Tv ratio 
of around 2–2.1 is generally a good quality ratio [3, 11, 
12]. Het/Hom ratio also can be used for whole genome 
sequencing quality metric, but highly depends on 
ancestry and varies in different populations [13, 14]. 

Table 1 Overview of data files/data sets

Label Name of data file/data set File types
(file extension)

Data repository and identifier (DOI or accession number)

Data file 1 SRX2563808/PRJNA374772 BAM file (.gz) NCBI SRA https ://ident ifier s.org/ncbi/insdc .sra:SRX25 63808  [15]

Data file 2 SRX2563806/PRJNA374772 BAM file (.gz) NCBI SRA https ://ident ifier s.org/ncbi/insdc .sra:SRX25 63806  [16]

Data file 3 SRX2563805/PRJNA374772 BAM file (.gz) NCBI SRA https ://ident ifier s.org/ncbi/insdc .sra:SRX25 63805  [17]

Data file 4 SRX2563804/PRJNA374772 BAM file (.gz) NCBI SRA https ://ident ifier s.org/ncbi/insdc .sra:SRX25 63804  [18]

Data file 5 SRX2563803/PRJNA374772 BAM file (.gz) NCBI SRA https ://ident ifier s.org/ncbi/insdc .sra:SRX25 63803  [19]

Data file 6 SuppTable_S1-SeqAndMappingSummary.docx Word file (.docx) https ://githu b.com/LabBa ndSB/wgs_pipel ine_on_hg19/raw/maste r/
SuppT able_S1-SeqAn dMapp ingSu mmary .docx

[20]

Data file 7 SuppTable_S2-MappingOf UnmappedRead-
sToNCBIscaffolds.docx

Word file (.docx) https ://githu b.com/LabBa ndSB/wgs_pipel ine_on_hg19/raw/maste 
r/SuppT able_S2-Mappi ngOf%20Unm apped Reads ToNCB Iscaff olds 
.docx [21]
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Additionally we mapped unmapped sequencing reads 
to unanchored NCBI human scaffolds and reported 
that from 411 to 629 unmapped sequencing reads were 
mapped what corresponds from 0.021 to 0.037 percent-
age from total number of unmapped sequences (Data 
file 7—Table 1). The rest of unmapped sequencing reads 
may suggest for ethnical or individual uniqueness and 
could be other factors affecting the mapping such as 
contamination or sequencing errors.

Here we described high-coverage whole genome 
sequencing data and analysis based on quality metrics 
of Kazakh individuals representing a valuable resource 
for the research community complementing the world’s 
genomics map on a global population scale.

Limitations
Small sample size of described individuals as well as 
the only next-generation sequencing approach applied 
without replication performed using the other technol-
ogies such genotyping by microarray or third-genera-
tion sequencing are limitations of our work.
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