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We find finite-boost transformations DSR theories in first order of the Planck length lp , by solving 
differential equations for the modified generators. We obtain corresponding dispersion relations for these 
transformations, which help us classify the DSR theories via four types. The final type of our classification 
has the same special relativistic dispersion relation but the transformations are not Lorentz. In DSR 
theories, the velocity of photons is generally different from the ordinary speed c and possess time delay, 
however in this new DSR light has the same special relativistic speed with no delay. A special case 
demonstrates that any search for quantum gravity effects in observations which gives a special relativistic 
dispersion relation is consistent with DSR.
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1. Introduction

DSR theories have been proposed for quantum gravity (QG) modifications to Einstein’s special relativity [1–5]. The transformations of 
the energy and momentum under finite boosts have been obtained in [6]. In this paper, we continue this study by finding the finite-
boost DSR transformations to leading order of the Planck length from the solutions of the differential equations, and by looking at the 
observational consequences of these transformations. We obtain the corresponding dispersion relations, which allow us to classify DSR 
theories to four types with each type resulting in a different specific kind of DSR to first order of the Planck length.

In fact, the first differential equation for DSR was given by Amelino-Camelia [2]. However, despite this paper being one of the pioneering 
works in DSR, the proposal and differential equations were specific and did not contain all DSR theories to first order. Also, by starting 
from κ-Poincaré boost generators [7], Amelino-Camelia and colleagues obtained differential equations for a specific DSR theory. They 
solved the differential equations and found finite transformations for the generators [3]. These finite transformations are important but 
they are not the most general. We generalize their method and results.

Maguijio and Smolin obtained a different realization of DSR theories by non-linear action of the Lorentz group on the energy-
momentum space [4]. Also, they gave a procedure for finding corresponding transformations for any given modified dispersion relation 
[5]. This modified dispersion should leave the Planck scale invariant.

The Amelino-Camelia (AC) [1], and the Maguejo-Smolin (MS) [4] DSR theories are canonical and prototypical, but they are not general 
DSR theories at first order Planck length. They are specific examples of DSR proposals.

Motivated by the DSR proposal, we starting from the boost formula in the κ-Poincaré and DSR theories [7,8], take its leading order 
in Planck length, and find a generalized boost by adding some free parameters βi to this first order boost (βi are real numbers and 
i = 0, ..., 4.) The generalized boost parametrizes the DSR theories to first order. By using this boost, we obtain differential equations 
which govern the evolution of the energy and momentums in momentum space. These differential equations are some extensions of 
the differential equations like d2 p0

dξ2 − p0 = 0, and dp2
dξ

= 0 in special relativity. With perturbative methods, we obtain solutions of the 
aforementioned differentials, which lead us to the finite-boost DSR transformations in (3+1) dimensional momentum space.

We show that the Amelino-Camelia (AC) [1], and the Maguejo-Smolin (MS) [4] DSR theories in first order of the Planck length lp , are 
special cases of our DSR finite-boost transformations. Our study is in the same direction as [11–14], i.e. ‘beyond special relativity theories’ 
and can be regarded as a logical continuation and extension. It may also prove useful for investigating the geometrical nature of DSR [15].

Other approaches, such as the generalized uncertainty principle (GUP) is related to DSR [18]. These is a result of recasting the commu-
tators between p and x by adding modifications involving the Planck energy [16,17]. As is well known, the DSR theories are obtained by 
adding the Planck scale as an invariant to the boost sectors of the Poincaré group. Thus, a general expression for the first order DSR finite 
transformations can assist in finding a consistent GUP theory to first order in the Planck energy.

Observations of quantum gravity effects for astrophysical and cosmological observations are challenging, and finding these tiny effects 
are notoriously difficult in practice [25,26]. On the theoretical side, there many approaches for including quantum gravity effects (see 
e.g. [19,20] for a review). Finite-boost transformation DSR theories and classifications of first order DSR theories (by use of a dispersion 
relation) provide more possibilities for investigating quantum gravity effects in observations. The freedom comes from the use of adjustable 
parameters in the finite-boost transformations.

2. Lorentz transformations from the differential equations

The Lorentz transformations in momentum space are

p′
μ = �μ

ν pν, (1)

where �μ
ν are the components of the Lorentz matrices. The p′

μ are the energy and momenta components for a particle in the primed 
inertial system which moves with velocity v with respect to the unprimed inertial system. For the infinitesimal Lorentz matrices, we 
have

�μ
ν � δμ

ν + ωμ
ν, (2)

where ωμν are the components of the anti-symmetric [ωμν ] matrices. In the (1+1)-dimensional case, we have

ωμ
ν = (δμ

1δ0
ν + δμ

0δ1
ν)ξ. (3)

Here, ξ is the rapidity parameter. Thus, the explicit form of the infinitesimal Lorentz transformations are:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p′
0 = p0 + p1ξ,

p′
1 = p1 + p0ξ,

p′
2 = p2,

p′
3 = p3.

(4)

From which, we can write the first order differential equations for the p0 and p1 components as⎧⎨
⎩

dp0
dξ

= p1,

dp1
dξ

= p0.
(5)

The second order differential equations which contains only p0 and p1 are:
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⎧⎪⎨
⎪⎩

d2 p0
dξ2 − p0 = 0,

d2 p1
dξ2 − p1 = 0.

(6)

The first equation of the differential equations in Eq. (6) in the primed system has the solution

p′
0(ξ) = C1 cosh ξ + C2 sinh ξ, (7)

where C1 and C2 are constants, and can be determined from the initial conditions p′
0(ξ = 0) = p0 and dp′

0
dξ

(ξ = 0) = p1.
For the p2 and p3 components, the infinitesimal transformations Eq. (4) give the first order differential equations⎧⎨

⎩
dp2
dξ

= 0,

dp3
dξ

= 0.
(8)

In the primed system, the solution of the first differential equations in Eq. (8) will be

p′
2(ξ) = p2 + C1, (9)

where C1 is a constant. By using the initial condition p′
2(ξ = 0) = p2, one finds that this constant should be zero.

Therefore, from Eq. (7) and Eq. (9), we find the well-known Lorentz transformations in the energy momentum space as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p′
0 = p0 cosh ξ + p1 sinh ξ,

p′
1 = p1 cosh ξ + p0 sinh ξ,

p′
2 = p2,

p′
3 = p3

(10)

In the next section, we will extend this method for finding solutions of the finite-boost DSR in first order of Planck length transformations 
which are nonlinear extensions of the system of differential equations in Eq. (6).

3. DSR theories in first order of Planck length

3.1. DSR boosts

The generator of the DSR theories in (3+1) dimensions is given by

N1 = p1
∂

∂ p0
+

( lp

2
p2 + 1 − e−2lp p0

2lp

) ∂

∂ p1
− lp p1

(
p j

∂

∂ p j

)
. (11)

It originates from the κ-Poincaré group [7–9]. In leading order of lp , this generator will be

N ′
1 = p1

∂

∂ p0
+

(
p0 − lp p2

0 + lp

2
p2

) ∂

∂ p1
− lp p1

(
p j

∂

∂ p j

)
. (12)

In fact, this generator represents only one class of DSRs. In order to include a wider range of theories, we modify this generator by 
generalizing to preserve parity and time-reversal symmetry:

Ñ1 = (p1 + lpβ0 p0 p1)
∂

∂ p0
+

(
p0 + lpβ1 p2

0 + lpβ2p2
) ∂

∂ p1
+ lpβ3 p1

(
p j

∂

∂ p j

)
+ lpβ4ε1 jk p j

∂

∂ pk
, (13)

where β0, ..., β4 are arbitrary real numbers. We parameterize the extended κ-Poincaré symmetry in the first order of the Planck length 
by these real numbers. One cannot obtain MS-DSR and other DSR theories from Eq. (12), but one can obtain them from Eq. (13). This 
generalization gives us DSR theories to the first order in the Planck length. We also have extended freedom in finding more general 
dispersion relations to match observational results. In other words, Eq. (13) generalizes first order κ-Poincaré symmetry. This extension 
obeys the group structure and does not violate the relativity principle [11].

By using the general generator Eq. (13), we can write the infinitesimal transformation in the first order of the Planck length lp [10,11], 
as ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p′
0 = p0 + p1ξ + lpβ0 p0 p1ξ,

p′
1 = p1 + p0ξ + lpβ1 p2

0ξ + lpβ2p2ξ + lpβ3 p2
1ξ,

p′
2 = p2 + lpβ3 p1 p2ξ − lpβ4 p0 p3ξ,

p′ = p + l β p p ξ + l β p p ξ.

(14)
3 3 p 3 1 3 p 4 0 2
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3.2. Generalization of the first order κ-Poincaré symmetry

Majid and Ruegg [7], demonstrated that the κ-Poincaré algebra is a semi-direct product of the classical Lorentz group S O (1, 3) acting 
in a deformed way on the momentum sector. There is a back-reaction of the momentum sector on the Lorentz rotations, while the rotation 
part of the Lorentz sector is not deformed. Amelino-Camelia and Maguijio and Smolin used similar procedures to obtain the AC-DSR and 
MS-DSR theories [1,2,4]. They modified only the boosts of the Poincaré group and kept the rotations unmodified. These modified boosts 
act on the momentum space in a nonlinear way.

We continue this procedure for modifying the boost generator by adding the parameters βi , but we keep the other generators 
{p0, pi, Mi} unmodified. We have added only some parameters to Eq. (12) to obtain more general modifications in the resulting new 
boost in Eq. (13). The new boosts (arbitrary directions) and rotations should be satisfied in an extended group like the κ-Poincaré group 
to first order. We will check the group properties for the modified boost Eq. (13) in subsection 3.5.

Some comments are warranted with respect to the motivation of the new modified boost in Eq. (13) from the boost in Eq. (12). 
Adding free parameters enlarges the symmetry of the κ-Poincaré group. There is mathematical motivation to study the extension of the 
κ-Poincaré group and its interesting nonlinear actions. Moreover, the relevant differential equations involve nonlinear solutions of second 
order which are important for more general dynamical systems and their symmetries.

To obtain the corresponding algebra for this extended group, we rewrite the general generator in Eq. (13) for any arbitrary direction

Ñi = (pi + lpβ0 p0 pi)
∂

∂ p0
+

(
p0 + lpβ1 p2

0 + lpβ2p2
) ∂

∂ pi
+ lpβ3 pi

(
p j

∂

∂ p j

)
+ lpβ4εi jk p j

∂

∂ pk
. (15)

We find the commutators of this generator with pμ and the commutators of this generator with Mi (the generators of the rotations). We 
also find the commutators of this generator with itself. This modified algebra is given in the following,

[Ñi, p j] = (p0 + lpβ1 p2
0 + lpβ2p2)δi j + lpβ3 pi p j − lpβ4εi jk pk, (16)

[Ñi, p0] = pi + lpβ0 p0 pi . (17)

The other commutators are

[Mi, Ñ j] = εi jk Ñk − lpβ4 p0εi jk Mk, (18)

[Ñi, Ñ j] = −εi jk Mk − lp(β0 + 2β1 + 3β2 − β3)εi jk Mk − 2lpβ4 p0εi jk ÑK , (19)

and the rotations of momentums which remain unmodified are

[Mi, M j] = εi jk Mk, (20)

[Mi, p j] = εi jk pk, [Mi, p0] = 0. (21)

The algebraic structure of our extended κ-Poincaré group is important for studying symmetries of this group.

3.3. Differential equations and finite-boost transformations

From Eq. (14), we find differential equations which govern the evolution of energy and momentums in momentum space, and we 
solve the differential equations for the p0 and p1 components together and for the p2 and p3 components together. For the p0 and p1

components we solve the second order equations which are more simple, but for the p2 and p3 components it is best to find the solutions 
of the first order differential equations. For the p0 and p1 components the first order differential equations are⎧⎨

⎩
dp0
dξ

= p1 + lpβ0 p0 p1,

dp1
dξ

= p0 + lpβ1 p2
0 + lpβ2p2 + lpβ3 p2

1.
(22)

By introducing the constants

a0 = β0 + β2, a1 = β0 + β2 + β3, and a3 = 2β0 + 2β1 + 2β2 + β3, (23)

we obtain the second order differential equations,⎧⎪⎨
⎪⎩

d2 p0
dξ2 = p0 + lpa0 p2

0 + lpa1(
dp0
dξ

)2 + β2(p2
2 + p2

3),

d2 p1
dξ2 = p1 + lpa3 p1

dp1
dξ

.

(24)

For the p2 and p3 components the differential equations are⎧⎨
⎩

dp2
dξ

= lpβ3 p1 p2 − lpβ4 p0 p3,

dp3
dξ

= lpβ3 p1 p3 + lpβ4 p0 p2.
(25)

Solutions of the differential equations in Eq. (24) and Eq. (25) give us the finite-boost DSR transformations for all orders of the rapidity 
parameter ξ , but only in the first order of the Planck length. Solutions of these differential equations are given in Appendix A.1.
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The finite-boost transformations to the first order in lp are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′
0 = p0 cosh ξ + p1 sinh ξ

+ lp(α1 p2
0 + α2 p2

1) sinh2 ξ + lp(α2 p2
0 + α1 p2

1) cosh2 ξ

+ 2lp(α1 + α2)p0 p1 sinh ξ cosh ξ − lp(α2 p2
0 + α1 p2

1) cosh ξ − lpα3 p0 p1 sinh ξ

+ lpβ2(p2
2 + p2

3)(cosh ξ − 1),

p′
1 = p1 cosh ξ + p0 sinh ξ

+ lpα3 p0 p1 sinh2 ξ + lpα3 p0 p1 cosh2 ξ

+ lpα3(p2
0 + p2

1) sinh ξ cosh ξ − lpα3 p0 p1 cosh ξ − lp(α2 p2
0 + α1 p2

1) sinh ξ

+ lpβ2(p2
2 + p2

3) sinh ξ,

p′
2 = p2 + lp(β3 p1 p2 − β4 p0 p3) sinh ξ + lp(β3 p0 p2 − β4 p1 p3)(cosh ξ − 1),

p′
3 = p3 + lp(β3 p1 p3 + β4 p0 p2) sinh ξ + lp(β3 p0 p3 + β4 p1 p2)(cosh ξ − 1),

(26)

where

α1 ≡ β0 + 2β1 − β2 − β3

3
, α2 ≡ β0 − β1 + 2β2 + 2β3

3
, and α3 ≡ β0 + 2β1 + 2β2 + 2β3

3
, (27)

for convenience. These transformations are finite-boost DSR transformations to first order in lp but for all orders of rapidity ξ . We confirm 
they are the same as the transformations in [6], which have been obtained using commutators.

3.4. Dispersion relation and its classifications

Taking pμ = (p0, p) = (m, 0) for the initial pμ in the transformations in Eq. (26), we obtain general expressions for the cosh ξ and 
sinh ξ as

cosh ξ = p0 − lpα1p2 − lpα2 p0

m
, sinh ξ = |p| − lpα3 p0|p|

m
. (28)

Here, m is the rest mass of the particle. Using cosh2 ξ − sinh2 ξ = 1, we find the corresponding dispersion relation for the transformations 
of Eq. (26) to first order in lp as

p2
0 − p2 − 2lpα2 p3

0 + 2lp(α3 − α1)p0p2 = m2. (29)

Expressing this dispersion relation in terms of βi yields

p2
0 − p2 − 2lp

(β0 − β1 + 2β2 + 2β3

3

)
p3

0 + 2lp(β2 + β3)p0p2 = m2. (30)

Thus, if we know the infinitesimal transformations for every given DSR in first order of Planck length as in Eq. (14) we can read the β0, 
..., β4 parameters from them. Then we can compute α1 to α3 parameters in Eq. (27). By putting them in Eq. (26), we can construct the 
corresponding finite-boost transformations for the given infinitesimal transformations. Moreover, the corresponding modified dispersion 
relation can be found from Eq. (29). This approach highlights the fact that an infinite number of the finite-boost DSR transformations in 
first order of Planck length theories are possible [9].

We can classify the finite-boost DSR transformations in first order with respect to the different types of modified dispersion relations. 
In first order of lp , the modified dispersion relation is given by Eq. (29) which contains the p0 p2

1 and the p3
0 additional terms. The 

dispersion relation for MS-DSR in Eq. (38) contains these two additional terms as well, which we regard as a first type of classification. 
The dispersion relation for AC-DSR in Eq. (41) to the first order in lp contains only the coupling p0 p2

1 additional term, which is the second 
type. The third type of the classification contains only the p3

0 additional term. The fourth type, which is our final type of classification has 
no additional term but the transformations are different from Lorentz.

3.5. Composition of boosts and Wigner rotation

For testing the group properties of the boosts in Eq. (26), we check that the composition of two boosts is a new different boost similar 
to Lorentz. The composition of boosts for two parallel boosts should be a new boost, and for two perpendicular boosts we should have 
a new boost with a rotation (Wigner rotation). These properties have been checked in [6] for the generalized boost in Eq. (13). Here, we 
check and confirm in detail some of these properties.

First we check combination property for the infinitesimal transformations Eq. (14). We assume another infinitesimal transformations 
like Eq. (14), but from p′

μ to p′′
μ with rapidity parameter ξ ′ in the same direction which is given by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p′′
0 = p′

0 + p′
1ξ

′ + lpβ0 p′
0 p′

1ξ
′,

p′′
1 = p′

1 + p′
0ξ

′ + lpβ1 p′2
0 ξ ′ + lpβ2p′2ξ ′ + lpβ3 p′2

1 ξ ′,

p′′
2 = p′

2 + lpβ3 p′
1 p′

2ξ
′ − lpβ4 p′

0 p′
3ξ

′,

p′′ = p′ + l β p′ p′ ξ ′ + l β p′ p′ ξ ′.

(31)
3 3 p 3 1 3 p 4 0 2
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Combinations of the infinitesimal transformations in Eq. (14) and Eq. (31) will give us other similar infinitesimal transformations from 
pμ to p′′

μ in the same direction with rapidity parameter ξ ′′ , which is the sum of two rapidity parameters,

ξ ′′ = ξ + ξ ′. (32)

In the finite-boosts transformations case, as given by Eq. (26), we have expressions that include cosh ξ , sinh ξ , cosh2 ξ , sinh2 ξ , and 
cosh ξ sinh ξ , which yield the same transformations after two successive boosts in the same direction and the rapidity parameters satisfy 
Eq. (32) as in the infinitesimal transformations case.

For two perpendicular boosts, as mentioned, we have a new boost and a rotation. In special relativity this rotation is the well-known 
Wigner rotation θW as discussed in [21,22] and is given by

tanh θW = −γ γ ′ξξ ′

γ + γ ′ . (33)

In DSR theories, the rotation part of the Poincaré group is unmodified and only the boosts are changed. Therefore no correction will be 
added to the Wigner rotation [6].

The interesting consequences of the Wigner rotation in special relativity have been studied before in [21–23]. An important effect is 
related to the spin of a composite system such as a proton which is a composite system of quarks. The sum of the spins for a composite 
system can violate Lorentz invariance. In fact, spin is related to the Poincaré group, or, to the κ-Poincaré group and its extensions, such 
as the extension in subsection 3.2. The spin S of a moving particle with mass m can be defined by transforming its Pauli-Lubinski 4-
vector wμ = (1/2)ενρσμ Jρσ pν to its rest frame by a rotationless DSR boost D(p), where D(p)p = (m, 0), and (0, S) = D(p)w/m. Under 
an arbitrary DSR transformation �̃, the spin and momentum of a particle will be transformed via

S′ = R w(�̃, p)S, p′ = �̃p, (34)

where

R w(�̃, p) = D(p′)�̃D−1(p), (35)

is the Wigner rotation [23]. By using Eq. (35), we can show that the Wigner rotation for DSR is equal to the Lorentz case.
In the primed moving frame, the proton is boosted with a rotationless DSR transformation along its spin direction. Each quark spin 

will be affected by a Wigner rotation, and these rotations can change the vector spin sum of the quarks and antiquarks. This changing of 
the spin sum has consequences for the parton model of the proton. However, the proton spin in the moving frame will be the same as in 
the rest frame [23]. Since the Wigner rotation in DSR is the same as the special relativistic case, there are no new consequences (i.e. no 
new kinds of spin) of the Wigner rotations besides the usual special relativistic effects.

The group of the DSR theories is the κ-Poincaré group [7–9], and our extension of this group in Eq. (13) in first order Planck length, 
is an extension of the κ-Poincaré symmetry. The commutators between generators for every two boosts in one direction, or in two 
different directions satisfy Eq. (19), which shows that combinations of two boosts will give another boost, or a boost and a rotation. We 
do not check these properties in full detail; however, they can be tested with the transformations in Eq. (26) by long but straightforward 
calculations.

We have tested the group property and find the generator in Eq. (13) satisfies an extension of the κ-Poincaré algebra as given in 
subsection 3.2. This is assurance that the finite-boost transformations in Eq. (26) are not just reparameterizations of the compact Lie 
groups as discussed in [30].

4. Special examples of the finite-boost DSR transformations

In this section, we provide some examples of the finite-boost DSR transformations in first order of Planck length by finding finite-boost 
transformations and their corresponding dispersion relations to first order in lp from the general formalism. The first two examples are 
the well-known MS and AC-DSR theories, which help confirm the validity of the formalism. The last final two examples are of particular 
importance, because they have special form dispersion relations.

4.1. MS-DSR

For the MS-DSR we have

β0 = −1, β1 = 0, β2 = 0, β3 = −1, and β4 = 0, (36)

and we can compute the constants α1 to α3 from the relations in Eq. (27) as

α1 = 0, α2 = −1, and α3 = −1. (37)

By putting these values in Eq. (29) we find the dispersion relation of the MS-DSR to the first order in lp ,

p2
0 − p2 + 2lp p3

0 − 2lp p0p2 = m2. (38)

Transformations for this DSR in first order is given in Appendix A.2.
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4.2. AC-DSR

For the AC-DSR we have

β0 = 0, β1 = −1, β2 = 1

2
, β3 = −1, and β4 = 0, (39)

and we can compute the constants α1 to α3 by use of the relations in Eq. (27) as

α1 = −1

2
, α2 = 0, and α3 = −1. (40)

By using these values, we find dispersion relation of the AC-DSR in the first order of lp as

p2
0 − p2 − lp p0p2 = m2, (41)

and transformations for this DSR is given in Appendix A.3.

4.3. Dispersion relation with the cubic term

Using the conditions α1 = α3, and α2 �= 0 in Eq. (29) one finds a modified dispersion relation with a cubic term,

p2
0 − p2 − 2lpα2 p3

0 = m2. (42)

Transformations for this type of DSR is given in Appendix A.4.

4.4. Special relativistic dispersion relation

The final interesting example utilizes α1 = α3, and α2 = 0 in Eq. (29). These conditions lead us to the unmodified special relativistic 
dispersion relation

p2
0 − p2 = m2. (43)

In terms of the βi parameters these conditions will be

β2 = −β3 and, β0 = β1, (44)

which is valid for many general DSR theories in first order of Planck length. By putting the conditions of Eq. (44) into Eq. (27) we find

α1 = B, α2 = 0, α3 = B. (45)

Here, we have taken B ≡ β0, which is the free parameter. There also two other free parameters β2 and β4, which are taken to be zero for 
the following transformations. By using the values of α1 to α3 parameters in Eq. (26), we find the following transformations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′
0 = p0 cosh ξ + p1 sinh ξ

+lp B
[
(p0 sinh ξ + p1 cosh ξ)2 − p2

1 cosh ξ − p0 p1 sinh ξ
]
,

p′
1 = p1 cosh ξ + p0 sinh ξ

+lp B
[

p0 p1(sinh2 ξ + cosh2 ξ)

+(p2
0 + p2

1) sinh ξ cosh ξ − p0 p1 cosh ξ − p2
1 sinh ξ

]
,

p′
2 = p2,

p′
3 = p3.

(46)

These transformations are the finite-boost DSR transformations in the first order of Planck length lp , with an unmodified special relativistic 
dispersion relation. Despite this, they are not the usual Lorentz transformations. It is surprising that the special relativistic dispersion 
relation accompanies these non-Lorentz transformations.

4.5. Dispersion relation family

The transformations Eq. (46) which corresponds to the dispersion relation for the special relativity are not unique. In condition Eq. (44), 
there are three free parameters: β0, β2, and β4. A second example of the transformations which have the special relativistic dispersion 
relation in the first order of the Planck length is found by taking β4 = 1 instead while keeping β0 = B and β2 = 0 as before. These 
transformations are given in Appendix A.5.

We refer to these transformations as the second finite-boost DSR transformations with special relativistic dispersion relation. Of course, 
for other choices of the free parameters one can find other transformations. Thus, one has a family of transformations of the DSR theories 
in first order. For the dispersion relation with a cubic term, one has another similar family.
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5. Observational consequences of the first order DSR

The proposal for observation of quantum gravity effects in gamma ray bursts was given initially by Amelino-Camelia and his colleagues 
in [24]. They assumed a deformed dispersion relation for the photons in the form of

p2
1 = E2

[
1 + f

( E

E Q G

)]
, (47)

where E Q G is an effective quantum gravity scale, and f is a model dependent function of E/E Q G . One can find an upper limit on the 
scale with observations and it may be different from the Planck energy M � 1.22 × 1019 GeV. This dispersion relation to first order in 
E/E Q G is

p2
1 = E2

(
1 + η

E

E Q G

)
, (48)

where η is some number. The proposal is that the velocity of the gamma ray bursts should be different from c, which is given by

v = ∂ E

∂ p1
= c

(
1 − η

E

E Q G

)
. (49)

Moreover, a signal which is coming from distance D with energy E will be received with time delay

�tLI V = η
E

E Q G

D

c
, (50)

different than the ordinary case with the speed c. A linear correction to the velocity of high energy photons like Eq. (49) has been 
suggested in many papers for testing quantum gravity effects [25–32].

We find the velocity of photons and time delay for the photons in our formalism for finite-boost DSR transformations. By using the 
dispersion relation in Eq. (29), the velocity of the photons will be

v � c
[

1 + (α1 + α2 − α3)lp E
]
, (51)

and the time delay will be

�tLI V = (α1 + α2 − α3)
lp E D

c
. (52)

As can be seen, the η parameter in Eq. (48) has been replaced by (α1 + α2 − α3) in the finite-boost DSR transformations. To be clear, the 
distance D is a cosmological distance that depends on the redshift z, matter density �m , cosmological constant density �� , and Hubble 
constant H0. The time delay is

�tLI V = (α1 + α2 − α3)lp E

H0

z∫
0

(1 + z′)dz′√
1 + �m(1 + z′)3 + ��

. (53)

Here, we take �m = 0.3, �� = 0.7, H0 = 72 km s−1 Mpc−1 for the cosmological parameters [31].
The time delay in Eq. (52) and Eq. (53) is the only Lorentz invariance violating (LIV) term for time delay between a high energy 

astrophysical photon source and receiver. The general expression for time delay is

�t = �tLI V + �tint + �tspe + �tDM + �tgrav , (54)

where �tint is the time delay due to the fact that photons with high and low energies do not leave the source simultaneously. �tspe is 
a result of the special relativistic effects if the photons have non-zero mass and �tDM is due to dispersion by the line-of-sight of free 
electron content, which is non-negligible especially for low energy photons. Finally, �tgrav is due to the gravitational potential contribution 
along the photons propagation paths for possible violation of Einstein’s equivalence principle [32].

5.1. Special relativistic dispersion relation and null results in observations for QG effects

For α1 = α3, and α2 = 0, which gives the special relativistic dispersion in Eq. (43), the velocity of the photons will be the unchanged 
special relativistic c, and the time delay in Eq. (52) will be zero. Therefore, the transformations in Eq. (46) (and also all transformations 
in the special relativistic dispersion relation family such as Eq. (A.10)) are different from the Lorentz transformations in first order of the 
Planck length, but the velocity of the photons are the same as special relativity. These photons will be received in the same time as in the 
usual special relativistic case. Simply put, as has been done e.g. in [25,26], measuring the velocity and time delay of GRB photons is not 
sufficient for investigating quantum gravity effects to first order.
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6. Conclusion

Finding general expressions for DSR to first order is an interesting and important matter both mathematically and physically. In this 
paper we started with the boost from the κ-Poincaré group, adding free parameters βi , useful for generalization. The new generalized 
boost gives finite-boost transformations which allow us to obtain the general expressions for DSR theories in the first order of the Planck 
length. After finding the dispersion relation for these general finite-boost transformations, we classify the resulting DSR theories to four 
types. The well-known MS and AC theories are the first two types of this classification. The second two types are the DSR theories with a 
cubic term in the dispersion relation and the DSR theories with special relativistic dispersion.

There are important observational consequences of these different DSR types. Perhaps the most notable consequence is the expectation 
that the speed of light should be different from the usual speed c. In fact, the speed of high energy photons and low energy photons 
should be different and depends on their energy content. In this study, we have found an interesting possibility where DSR theories with 
transformations different from Lorentz transformations, can also correspond to an unmodified special relativistic dispersion relation. Thus, 
any search for quantum gravity effects in astrophysical and cosmological observations which give a special relativistic result can also be 
interpreted as consistent with DSR. A null result is not enough for investigating corresponding quantum gravity effects to first order in 
Planck length.

There are two possible extensions and applications of these finite-boost DSR transformations. First, the solutions of the extended second 
order differential equations can be investigated for a better understanding of their dynamics and behavior [33,34]. Second, the possible 
extensions of the Poincaré or κ-Poincaré group may be fruitful for investigations (e.g. dual DSR theory [35,36]) of quantum gravitational 
effects.
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Appendix A. Appendixes

A.1. Finding solutions of the differential equations

For obtaining the finite-boost transformations, first we solve the differential equations for the p0 and p1 components. In the primed 
inertial system, the form of Eqs. (24) are the same. We introduce the perturbative solutions of these differential equations in first order of 
the Planck length lp as

{
p′

0 = p0 cosh ξ + p1 sinh ξ + lp A(ξ),

p′
1 = p1 cosh ξ + p0 sinh ξ + lp D(ξ).

(A.1)

The unknown function A(ξ) should also satisfy the following additional differential equation

d2 A

dξ2
− A = (a0 p2

1 + a1 p2
0) sinh2 ξ + (a0 p2

0 + a1 p2
1) cosh2 ξ + 2(a0 + a1)p0 p1 sinh ξ cosh ξ. (A.2)

The general solution for A(ξ) is

A(ξ) = λ1 sinh2 ξ + λ2 cosh2 ξ + λ3 sinh ξ cosh ξ + λ4 cosh ξ + λ5 sinh ξ − β2(p2
2 + p2

3), (A.3)

where λ1 = 2a0−a1
3 p2

0 + 2a1−a0
3 p2

1, λ2 = 2a1−a0
3 p2

0 + 2a0−a1
3 p2

1, and λ3 = 2(a0+a1)
3 p0 p1. To find λ4, and λ5 multipliers we use the initial 

conditions p′
0(0) = p0, and dp′

0
dξ

(0) = p1 + lpβ0 p0 p1, which yield λ4 = −λ2 + β2(p2
2 + p2

3), and λ5 = β0 p0 p1 − λ3. The other unknown 
function D(ξ) can be found in a similar way. By putting A(ξ) and D(ξ) in Eq. (A.1) we can find the transformations for the p0 and p1
components.

For the p2 and p3 components, we take{
p′

2 = p2 + lp A1 sinh ξ + lp A2 cosh ξ + A3,

p′
3 = p3 + lp A4 sinh ξ + lp A5 cosh ξ + A6,

(A.4)

where A1, ..., A6, are unknown functions of p0, ..., p3. By putting these solutions in the differential equations for p2 and p3 in Eq. (25), 
we can find the unknown functions A1, ..., A6, which lead us to the transformations for the p2 and p3 components.
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A.2. MS transformations in the first order of the Planck length

By using the values of constants in Eq. (36) and Eq. (37) in Eq. (26), we find the MS-DSR transformations to first order in lp as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′
0 = p0 cosh ξ + p1 sinh ξ

−lp p2
1 sinh2 ξ − lp p2

0 cosh2 ξ

−2lp p0 p1 sinh ξ cosh ξ + lp p2
0 cosh ξ + lp p0 p1 sinh ξ,

p′
1 = p1 cosh ξ + p0 sinh ξ

−lp p0 p1 sinh2 ξ − lp p0 p1 cosh2 ξ

−lp(p2
0 + p2

1) sinh ξ cosh ξ + lp p0 p1 cosh ξ + lp p2
0 sinh ξ,

p′
2 = p2 + lp p0 p2 cosh ξ − lp p1 p2 sinh ξ + lp p1 p2,

p′
3 = p3 + lp p0 p3 cosh ξ − lp p1 p3 sinh ξ + lp p1 p3.

(A.5)

If we expand the expressions for the transformations and dispersion relation of the MS-DSR theory which have been given in [4], we 
will find the same expressions as in Eq. (A.5) and Eq. (38) to first order in the Planck length.

A.3. AC transformations in the first order of the Planck length

Using the parameters in Eq. (39) and Eq. (40), we find transformations for the AC-DSR to the first order in lp as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′
0 = p0 cosh ξ + p1 sinh ξ

− 1
2 lp p2

0 sinh2 ξ − 1
2 lp p2

1 cosh2 ξ

−lp p0 p1 sinh ξ cosh ξ + 1
2 lp p2

1 cosh ξ + lp p0 p1 sinh ξ,

+ 1
2 lp(p2

2 + p2
3)(cosh ξ − 1)

p′
1 = p1 cosh ξ + p0 sinh ξ

−lp p0 p1 sinh2 ξ − lp p0 p1 cosh2 ξ

−lp(p2
0 + p2

1) sinh ξ cosh ξ + lp p0 p1 cosh ξ + 1
2 lpp2 sinh ξ,

p′
2 = p2 + lp p0 p2 cosh ξ − lp p1 p2 sinh ξ + lp p1 p2,

p′
3 = p3 + lp p0 p3 cosh ξ − lp p1 p3 sinh ξ + lp p1 p3.

(A.6)

These transformations and dispersion relation Eq. (41) are in agreement with AC-DSR theory [1].

A.4. Transformations for the DSR with cubic term

For the DSR with the cubic term, the conditions α1 = α3, and α2 �= 0 are equivalent to the conditions

β2 = −β3, and β0 �= β1, (A.7)

for the βi parameters, which is valid for many DSR theories. There are also two other free parameters β2 and β4, which are taken to be 
zero for the following transformations. By putting these conditions in Eq. (27) we find

α1 = β0 + 2β1

3
, α2 = β0 − β1

3
, and α3 = β0 + 2β1

3
. (A.8)

As a specific case, we can take β0 = 0, and B ≡ β1/3. From which, we have α1 = 2B , α2 = −B , and α3 = 2B . Therefore, an example of the 
transformations for this type in first order of Planck length is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′
0 = p0 cosh ξ + p1 sinh ξ

+lp B(2p2
0 − p2

1) sinh2 ξ + lp B(2p2
1 − p2

0) cosh2 ξ

+2lp Bp0 p1 sinh ξ cosh ξ − lp B(2p2
1 − p2

0) cosh ξ − 2lp Bp0 p1 sinh ξ,

p′
1 = p1 cosh ξ + p0 sinh ξ

+2lp Bp0 p1 sinh2 ξ + 2lp Bp0 p1 cosh2 ξ

+2lp B(p2
0 + p2

1) sinh ξ cosh ξ − 2lp Bp0 p1 cosh ξ + lp B(2p2
1 − p2

0) sinh ξ,

p′
2 = p2,

p′ = p .

(A.9)
3 3
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A.5. Transformations for special relativistic dispersion relation family

The transformations for the special relativistic dispersion relation family which has been discussed in subsection 4.5, are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′
0 = p0 cosh ξ + p1 sinh ξ

+lp B
[
(p0 sinh ξ + p1 cosh ξ)2 − p2

1 cosh ξ − p0 p1 sinh ξ
]
,

p′
1 = p1 cosh ξ + p0 sinh ξ

+lp B
[

p0 p1(sinh2 ξ + cosh2 ξ)

+(p2
0 + p2

1) sinh ξ cosh ξ − p0 p1 cosh ξ − p2
1 sinh ξ

]
,

p′
2 = p2 − lp p0 p3 sinh ξ − lp p1 p3(cosh ξ − 1),

p′
3 = p3 + lp p0 p2 sinh ξ + lp p1 p2(cosh ξ − 1).

(A.10)
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