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Abstract

LoRaWAN is becoming the dominant long range protocol for Internet of Things (IoT)
devices. However, LoRaWAN’s performance suffers from a high number of collisions
in saturated LoRa networks. To mitigate the number of collisions that happen due
to the time overlap of transmissions on the same channel, we use an edge machine
learning approach. To do so, Reinforcement learning (RL) is leveraged. RL is a
field of machine learning that aims at maximizing the reward by interacting with
the environment. SARSA is an on-policy RL algorithm that uses previous actions
to update the Q-value. This study aims to improve the performance of congested
LoRa networks by allowing RL-based applications on individual nodes. Specifically, it
explores whether periodic applications driven by SARSA can improve the performance
of the network and adapt the period transmissions of the nodes. In this thesis, two
versions of SARSA have been developed, evaluated, and compared to the baseline
of LoRaWAN. To achieve that, several simulations with different configurations are
performed. The simulations include networks with hundreds of nodes and different
number of maximum retransmissions. The results of the simulations have shown that
networks where SARSA algorithms are used present a better performance compared to
the typical LoRaWAN periodic application in certain examined scenarios. The results
demonstrate that RL-based algorithms can significantly improve the performance of
networks with high load. Nevertheless, there is still room for further improvement and
better understanding of the internal mechanisms of the proposed RL approaches.

Thesis Supervisor: Dimitrios Zorbas
Title: Assistant Professor
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Chapter 1

Introduction

Internet of Things constitutes to the connection of a large number of devices to the

Internet. New developments, protocols, and devices has been recently proposed to

make the concept of IoT a reality but also to facilitate the rapid growth of the number

of devices. IoT finds applications in a large number of every day domains such as the

healthcare, the agriculture, and the smart cities. The main medium used by the IoT

devices to communicate is the air through wireless communications and networks.

Low Power Wide Area Networks (LPWAN) is the type of networks that allow long

range and power efficient communications for IoT devices.

One of the most prominent LPWAN technologies is the LoRa radio technology.

LoRa (Long Range) is a proprietary modulation based on the Chirp Spread Spectrum

technique. According to this technique all the available channel bandwidth is used

while the chirps are spread diagonally during a transmission as it is depicted in Figure

1-1. The amount of spread to use is decided by a parameter called Spreading Factor

(SF). The higher the SF, the longer the range but the longer the transmission time

and, thus, the energy consumption. LoRa is known for its high customizability and

low power consumption compared to other LPWAN technologies.

The LoRaWAN protocol [1] sits on top of LoRa at the MAC and link layers and

it also provides some other functionalities such as end-to-end encryption, back-end

connectivity, and adaptive LoRa settings management. In contrast with LoRa phys-

ical layer, LoRaWAN is an open source networking protocol. LoRaWAN supports
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Figure 1-1: LoRa modulation

three classes of network devices: Class A, Class B, and Class C. Each class has its

own features and use cases, but class A is the dominant one. All LoRaWAN devices

support bi-directional communications, however, the main differences between classes

are the downlink communication time window and energy consumption. In Class A,

uplink communications can be initiated at any time by the end-device, followed by two

receive windows, during which a downlink communication is allowed for acknowledge-

ments and commands. Class B devices open downlink communication periodically

and synchronized, while Class C devices open the downlink communication channel

continuously. The Class A devices are the most power efficient, while Class C devices

usually require continuous power supply. LoRaWAN, since it is at its early stage of

development, there is room for improvements and modifications.

One of the main research challenges of LoRaWAN is the packet collision in highly

populated networks. In the case when there are hundreds or thousands of network

nodes, data may be lost due to collisions. This mostly happens due to the Aloha-based

MAC that has been adopted. Moreover, a LoRaWAN end-node may send messages

that require an ACK response from a gateway. These messages are called confirmed

messages. Therefore, a network that has several nodes that communicate with a
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gateway using confirmed messages is a network with confirmed traffic. According to

the protocol, in confirmed traffic, a node is allowed to perform a maximum number of

retransmissions (𝑟). Basically, a node in confirmed traffic transmits the message and

waits for an ACK packet from a gateway. Then, if no gateway responds, the message

is considered a failure and the node transmits the message again, until the number of

transmissions reaches 𝑟 or the node receives an ACK from the gateway.

The main metric that is used to evaluate the performance of a network is the

packet delivery rate (PDR). This is a ratio between the number of messages received

by a gateway and the total number of messages sent by the nodes.

packet delivery rate (PDR) =
packets received at the gateway

total number of packets sent

Often, devices in the IoT are responsible for sending small amount of data period-

ically. Thus, they usually support a periodic application that requires data reception

of every few minutes to capture its behavior. In saturated networks, this might be-

come a problem, because the devices do not perform any kind of medium sensing and,

thus, they do not adjust their transmission policy accordingly.

In this study, we investigate the case where the nodes are allowed to individually

select the transmission time depending on the status of previous transmissions, hop-

ing that this technique will improve the PDR in periodic data transmissions. Using

these past pieces of information, the nodes can learn the behavior of the network

(given the ACKs that have been received or not) and choose an eventually better

transmission timing for their next transmission. To do so, we leverage machine learn-

ing (ML). A machine learning approach is used to adjust overlapped transmissions

and choose better timings for future transmissions. Nevertheless, a node only knows

whether the last transmission was successful or not and, moreover, due to their low

computational and memory storage capabilities, they cannot support too complex ap-

proaches. So, data-driven or pre-trained machine learning algorithms cannot be used.

Reinforcement learning (RL) is a field in machine learning where an agent requires no

predetermined information about the environment to increase the reward. It allows
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agents to learn the environment by interacting with it. Despite the popularity of

LoRaWAN, there is not much research done on how the protocol could benefit from

RL algorithms.

The main contributions of the study are the description and classification of re-

cent studies on LoRaWAN, the development of two application-layer RL algorithms

(SARSA-1 and SARSA-2), and the evaluation of performance of the algorithms

against the native LoRaWAN transmission policy for a periodic application.

In the next chapter, the research methodology followed throughout this study

is presented. Chapter 3 surveys the literature, and Chapter 4 describes the system

architecture and system model. In Chapter 5, the results of simulations are provided

and the importance of the results is discussed. Finally, in Chapter 6, some future

directions are considered and the study is concluded with some final remarks.
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Chapter 2

Research Methodology

The main purpose of the study is to analyze the performance of the LoRa network,

where nodes individually adjust their transmission time according to RL algorithm.

To obtain this goal, existing data from similar studies was explored and evaluated,

algorithms were developed conceptually and practically, the performance data from

the algorithms was collected and analyzed, and several conclusions from these results

were drawn.

2.1 Literature Review

To identify the most relevant and important studies, various research papers from

different databases were collected, including the IEEE Xplore, the ACM Digital Li-

brary, and the NU Library. The papers were searched using several keywords related

to the topics above. However, the number of papers found was too high to process

and analyze, moreover, some studies were not relevant to the purposes or were out of

scope of this study, so they were needed to be further filtered.

The filtering was done by using several selective criteria, which can be additionally

split into objective and subjective criteria. The objective criteria were used to narrow

down the studies based on quantitative metrics, such as duplicate papers, publication

date, and availability. Hence, the duplicate papers were excluded from the review.

Papers that are not publicly available or papers written in non-English language were
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also removed from the analysis, the same for studies written before 2015, because the

first version of the LoRaWAN protocol was developed in 2015, so any earlier studies

would not be related to our study.

The subjective criteria are based on more qualitative features of the paper, such

as the relevance to the current research. This type of filtering is based on the title,

the abstract, and the contents of the paper.

Finally, after the final literature selection is identified, a comparative analysis of

the studies was done and missing points of the research were determined. The detailed

analysis and review is presented in the following chapter.

2.2 Algorithmic Design

The literature analysis helped to establish that most of research is focused on optimiz-

ing network performance by either adjusting network parameters or implementing the

algorithms that operate on gateways and manage network processes by sending mes-

sages to end devices. It was recognized that there is little work done on exploring the

influence of application layer parameters of individual nodes on network performance.

This led to the development of a concept that each node individually might learn

the behavioral patterns of network and positively affect network performance. Data-

driven algorithms are not useful for individual nodes as network system is a changing

environment. Machine learning algorithms are particularly useful at recognizing pat-

terns in systems. Usually, end devices in IoT environment are sending their data

periodically. Therefore, theoretically, behavioral patterns of a network can be iden-

tified by individual nodes to optimize data transmission. RL is a machine learning

paradigm that aims at increasing the cumulative reward in a certain environment.

RL is usually applied in gaming environments, where an agent has to make different

decisions from action space in order to maximize the reward (points, in-game cur-

rency, etc.). It is also effective in changing environments as the agents learn while

making decisions. The key idea of RL algorithms is to make decisions based on prior

knowledge. The RL algorithm that has gained much popularity in the last decade is
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Q-learning. It is a model-free algorithm that does not require prior knowledge about

an environment to operate.

2.3 Implementation

Once the ML algorithm design was identified, it was needed to implement the code

for the algorithm and test it. Before implementing the algorithm, it was needed to

determine the testing environment that was going to be used to test the approach.

There are several ways to test the network system: developing a mathematical model,

perform simulations, and conduct real-world experiments. Though the last method

is the most effective, it is not feasible to implement, because it is needed to test

a densely populated network with hundreds of devices which is not possible due to

budget and time limitations of the study. The mathematical model might effectively

predict the outcomes and results of the algorithm, however, simulations construct a

closer to real-world environment, which can be easily controlled via network variables.

For the purposes of this study, it was decided to use the NS-3 simulator. NS-3

is an open-source simulator designed for building various network environments. It

also has a LoRaWAN module [22] that implements different classes and functions to

thoroughly set up LoRa network environment. The algorithm was developed as an

application layer and the results were recorded by modifying some code parts of the

module and simulator. The detailed algorithm description and implementation are

given in Chapter 4.

2.4 Evaluation

After the algorithm was implemented, it was needed to run a series of experiments

(simulations) under different conditions using the NS-3 simulator to evaluate the

performance. According to the hypothesis, the algorithm should improve the overall

performance of the network (i.e., the PDR) in high node populations. Hence, before

running the simulations, there were a few things that were needed to be determined.
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Firstly, it was needed to identify a baseline approach which would be used as a

comparison with our approach, and thus, to prove or reject the hypothesis and address

the research question. Secondly, it was needed to establish the main metric, which

will be used to compared the approaches.

For the baseline approach, a simple periodic application set up on the nodes that

periodically sends a fixed-size packet throughout the simulation was selected. This

is a quite basic application that is expected to be used on a typical IoT device. To

evaluate the results of the approaches, the packet delivery rate (PDR) was selected.

It is one of the most popular metrics to evaluate network performance because it

gives a clear picture of how many packets are delivered or not in the network. The

results of the algorithmic performance and their description are presented in detail in

Chapter 5.

2.5 Conclusions

Finally, once the results are analyzed, their implications and the applications of the

algorithm are discussed. The general remarks are made based on the outcome and

future work is also pinpointed.
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Chapter 3

Literature Review

Despite the novelty of the LoRaWAN protocol, version 1.0.0 was published in early

2015, its promising potential facilitated many researchers to study the applications

of LoRaWAN as well as to examine and improve the protocol. To develop a sufficient

knowledge of existing trends in the field and to find out useful research methodologies,

the most recent studies related to the topic were selected and described.

3.1 Classification

The classification of literature serves several purposes. Firstly, it helps to understand

the main trends in the field and find out what areas might be improved with the

study. Secondly, it is a good source for other researchers’ methodologies that can be

used in this research work. Thus, it was decided to classify the literature by research

focus and by methodology.

3.1.1 Research Focus

In the past decade, the increased interest in the IoT led to exploration of new pro-

tocols to efficiently transfer data between devices over long distances. Due to its

promising features, LoRaWAN became one of the most popular protocols in the area

of LPWAN. The studies can be classified as practical and theoretical research. The
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first type of research focuses on different applications and deployments of LoRaWAN

in various domains, while the theoretical research studies the limitations and opti-

mization techniques of the protocol in a more mathematical way.

Practical research

LoRaWAN is highly customized protocol that can be applied in different fields, such

as smart cities ([10], [18], [4]), data monitoring ([20], [2], [10]), and search and rescue

operations ([9]). In [10], the author used a sensor that collects temperature data from

the environment and transmits it to the gateway over a long distance. The author

concludes that the LoRaWAN is suitable for city-like environments, however, the

study is quite limited in scope as it only considers one ED that communicates with

the gateway. A more extensive study was done by [18] and [4], where the authors

deployed networks as part of a smart city application in Hamburg and Bristol. The

authors came to similar conclusions that the LoRaWAN is suitable for smart cities

due to its long range and resilience against interference.

One of the key advantages of LoRa is the ability to transmit data packets over

long distances. This feature is perfect for data monitoring applications in rural areas.

This is because the radio utilizes only a small portion of battery, which is important

if the sensors are placed in hard-to-reach locations. This benefit is explored in [20],

where the authors installed LoRa end-devices on weather stations that inform about

the weather conditions. Usually these weather stations are placed in remote areas to

inform about upcoming disasters. Thus, long range networks are extremely useful in

such situations.

Theoretical

LoRaWAN is a novel protocol but it has many limitations, hence, many researchers

aim to improve different aspects of its functionality. For example, there are several

studies ([14], [25], [13], [27]) that focus on the security procedures of LoRaWAN.

Despite that each transaction is encrypted with AES encryption, there might still be

potential to crack the network. In [14], the authors consider two types of attacks on
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the network and determine the possible methods to prevent such types of attacks.

Probably, the most popular type of attack on the networks are the Denial-of-Service

(DoS) attacks. The authors of [25] investigate the protection against DoS attacks in

LoRaWAN. However, the authors do not provide any solutions for preventing DoS

attacks.

Another field of LoRa networks optimization is energy efficiency optimization. The

key feature of LoRa is that it consumes a small amount of energy, thus, it extensively

extends the end devices’ battery lifetime compared to other long range solutions.

However, there are still ways to improve energy efficiency of LoRaWAN devices. In

[6], the authors implemented a model of capacitor that may store accumulated energy

and supply it as needed for end devices. In [5], the authors investigated how to

improve energy consumption using a slotted ALOHA approach in a highly populated

LoRaWAN network.

Finally, there are many studies that focus on the improvement of the LoRaWAN’s

throughput. Many sources point out the decreasing performance of LoRaWANs in

highly-populated environments ([16], [7], [3]). Thus, there is a need for optimization

of networks with many nodes in a small area. The problem manifests itself notably

in congested network with confirmed traffic. Authors of [7] suggest that incorrect

use of confirmed traffic might severely degrade the performance in a highly congested

network. The authors of [17] draw similar conclusions by conducting a survey on

recent work to optimize confirmed traffic in LoRaWAN. In the study, authors inves-

tigate common factors that affect the performance of confirmed traffic, such as, the

spreading factor, the number of re-transmissions, and the ACK timeout time. They

found out that in its current state LoRaWAN support confirmed traffic well in small

networks, however, as the number of communication links increases and as the data

is sent more frequently, the performance drops significantly.

To accommodate the demand for optimization techniques in dense networks, re-

searchers examined the problem and tried to implement optimization techniques.

Many studies mention the significance of selecting the SF ([29], [16], [8], [17], [23])

and its influence on the average performance of the network. They attempted to
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optimize it for different use cases and demonstrate that a better selection of SF pa-

rameter positively affects the PDR and allows to outperform the traditional ADR

used in LoRaWAN. For example, in [8], the authors were able to identify the traffic

type (more or less aggressive) and adapted the SF value individually for each device,

which resulted in an improved performance of the network. This is similar to [23],

where the authors utilized machine learning to select an optimal SF depending on

the number of nodes in the network.

Speaking of machine learning, it opens great possibilities in a variety of fields in

computer science. Computer networks is definitely one of the fields that benefit from

ML algorithms. Possible applications of ML are shown in [24], where the authors

compiled a survey on different ML approaches to improve the performance of wireless

networks. In this study, a variety of applications were investigated, including 5G,

WiFi and Bluetooth, which are key for the development of IoT. However, the survey

does not contain any information about LPWA Networks. Nevertheless, it is impor-

tant to understand how ML algorithms could be implemented in different layers of

wireless networking. The paper contain thorough analysis of various ML algorithms

such as Q-learning, Collaborative Filtering, Deep Learning, which are also described

in [15] and [11], K-Means Clustering, and applications in resource management and

network performance.

In the last few years, some attempts to apply ML algorithms in LoRaWAN ap-

peared in the literature ([23] [19], [11]). The authors of [19] explore the specific use

case of LPWAN, where network nodes are located indoor and the signal might be

blocked by walls. The authors compare the LoRaWAN performance with existing

indoor wireless solutions such as the WiFi, the Bluetooth, and the Zig-Bee, and they

came to the conclusion that LPWANs, especially LoRaWAN, supersede existing so-

lutions in many IoT applications. Also, they exploited deep learning approach in

LoRaWAN to predict indoor location with 98% accuracy. However, the data col-

lected from the study is quite small to make any conclusive results. An interesting

approach was taken by the [11], where the authors applied deep reinforcement learn-

ing algorithm installed on the gateway to optimize the network. The results show
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that the performance increases to up to 500% in some cases.

Nonetheless, most of research is focused on improving the network as a whole,

from the perspective of the gateway or network servers. Studies that attempted

to increase network performance by tweaking application level parameters were not

identified. The work in [26] focuses on application layer parameters, however, the

study is quite limited in scope and does not provide sufficient knowledge on the

influence of application-layer parameters on the network performance.

3.1.2 Evaluation Methods

Every study has different approaches to apply and test LoRaWAN. The cases vary

from employing the protocol in smart city environment, such as in [4], or testing in

a localized environment like in [19]. In general, the studies can be classified by eval-

uation approach into three types: mathematical models, simulations and real-world

testing. For example, in [3], authors construct a mathematical model that analyzes

the relation between the network population and the packet error rate. Another ex-

ample is the attempt to optimize LoRa parameters using ML techniques in [23]. The

authors of [12] develop an analytical model that computes the energy consumption

and delay for uplink transmissions. They also suggest that there is a need for develop-

ing mathematical models, because it is more time effective compared to other types of

evaluation techniques. However, this type of evaluation requires sufficient mathemat-

ical knowledge and might miss various nuances of the real-world environment, such

as buildings, mobility of end-devices and different obstacles. Thus, it is sometimes

difficult to construct a sound mathematical model for specific environments.

Another way of evaluating LoRa networks is the real-world tests ([2], [4], [10],

[18], [19], [20], [26]). This approach gives a more accurate representation of the en-

vironment and does not omit the factors described above. For example, LoRaWAN

was utilized in a Things network in Bristol ([4]) and Hamburg ([18]). In [19], authors

placed a temperature sensor in an indoor location to compare the performance with

traditional wireless networks (5G, WiFi, Bluetooth). In application-focused practi-

cal studies ([2], [10], [20]), the authors used real-devices to communicate with the
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gateway. Nevertheless, constructing a real-world environment might be too cost inef-

fective and it is difficult to simulate a highly congested network, because there are not

many suitable environments with many end devices. Also, it might be challenging to

perform extensive simulations with altering network parameters in such environments

as it will take too much time.

The third evaluation method is performing simulations. Understandably, this

method is the most popular among researchers ([5], [7], [6], [8], [9], [25], [16]) be-

cause it is easily scalable, flexible and time efficient. Moreover, most of the modern

simulators are advanced enough to provide relatively accurate representation of the

environment. There are many network simulators that are used by the researchers

and each simulator serves the purpose of the research. For example, the work by [5]

is focused on improving energy efficiency of LoRa devices. Therefore, the authors

use Python-based LoRaEnergySim simulator to assess the results of their approach.

In [25], the authors used CPNTools to develop a model of LoRaWAN using Colored

Petri Nets (CPNs) and analyze the vulnerabilities to DoS attacks. However, these

tools are quite narrow in scope and are focused for a specific set of objectives. So,

more general network simulators that might help in assessing network performance

are needed to be considered. In the selected literature, authors often rely on the

following tools: MATLAB ([9], [16], [21]), SimPy ([8], [28]), LoRaFREE ([29]) and

NS-3 ([6], [7]). Each tool comes with a special module for developing and evaluating

LoRaWAN.

To sum up, existing literature on network optimization was reviewed. Specifically,

attempts at improving LoRa networks were investigated. Also, the techniques used

to evaluate the results of research were analyzed. As a result of the analysis, it

was identified that there is little research conducted on the influence of application-

layer parameters on network performance. In addition, it was concluded that using

simulations to assess the results is the most practical and convenient to evaluate the

network performance in congested environments.
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Chapter 4

System Architecture

4.1 System Model

In simulations, a highly congested network with a single gateway located in the middle

of the terrain and 𝑁 nodes spread uniformly in radius 𝑅 = 7500𝑚, where 𝑁 varies

from 100 to 500 nodes, is considered. Examples of the nodes distribution for 100,

200, and 500 nodes can be seen in Figure 4-1. All nodes are static devices and

periodically transmit confirmed messages over time 𝑇 = 20 days within a period 𝑝 =

600𝑠 within a time window defined by the algorithm (hereafter defined as the delay).

Also, LoRaWAN allows to set the maximum number of retransmissions. If a packet

is not successfully acknowledged after this predefined number of retransmissions, it

is dropped. The results are evaluated according to the achieved packet delivery rate

(PDR).

4.1.1 Baseline

The study aims to develop an application layer algorithm that optimizes saturated

networks, and the results will be compared to the results of the baseline approach,

which is the typical LoRaWAN periodic application that transmits a packet every 𝑝

amount of time, where 𝑝 is constant. For example, if the the first packet was trans-

mitted at time 𝑑1, then the next packet will be sent at time 𝑑1+𝑝. In the simulations,
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Figure 4-1: Nodes Distribution (a. 100 nodes, b. 200 nodes, c. 500 nodes)
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the transmission delay is defined randomly in range [0, 𝑝) for each individual node.

4.1.2 The SARSA-based RL algorithms

The main approach will be based on the State-Action-Reward-State-Action (SARSA)

algorithm, which is a RL algorithm. The algorithm adjusts 𝑑 to select the transmission

time of the next packet. The idea is that at the beginning of each period, the node

will select the transmission delay based on the status of the previous transmissions.

SARSA is a Q-learning algorithm, however, while the Q-learning algorithm’s policy is

based on the maximum reward, the SARSA is an on-policy algorithm that may define

its own policy. Nevertheless, both use a so-called Q-table or a state-action table based

on which the next action is selected. The reward formula is given as follows:

𝑄(𝑠𝑖, 𝑎𝑖) = 𝑄(𝑠𝑖, 𝑎𝑖) + 𝛼(𝑟𝑖 + 𝛾𝑄(𝑠𝑖+1, 𝑎𝑖+1)−𝑄(𝑠𝑖, 𝑎𝑖))

Here, 𝑠𝑖 and 𝑎𝑖 are the previous state and the action taken on that state, respectively;

𝑟𝑖 is the reward received after taking the action 𝑎𝑖; the 𝑠𝑖+1 is the state, which an

agent (or a node) enters after selecting the action 𝑎𝑖; and the 𝑎𝑖+1 is the next action

that the agent takes on the state 𝑠𝑖+1. The 𝑠𝑖+1 and the 𝑎𝑖+1 values will be used in

the next iteration of the algorithm as the 𝑠𝑖 and the 𝑎𝑖. The 𝛼 and 𝛾 parameters

are fixed throughout simulation and are responsible for the algorithm’s learning rate

and the discount factor, respectively. The learning rate defines the importance of the

most recent rewards compared to the old information. The discount factor defines

the significance of the future rewards.

To properly set up the SARSA algorithm, it is needed to define the state space (𝑆),

the action space (𝐴) and the reward (𝑟) in the current environment. Two versions of

the algorithm were developed, which differ in the number of actions available. As we

mentioned, the reward 𝑟 is based on the status of the previous transmission. Since,

the nodes transmit confirmed messages, each node awaits for an ACK packet from

the gateway. If a node successfully receives an ACK, 𝑟 is set to 1, otherwise is set to

0.
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Both versions use the same state space 𝑆, which divides the available time range

(𝑝) into slots of 10 seconds each.Also, unlike the typical LoRaWAN periodic appli-

cation, the SARSA algorithm may select any time to transmit the packet. Since the

next selected transmission may happen while the previous packet is still on air, some

restrictions have been applied. Due to duty cycle restrictions and the reward-based

nature of the algorithm, it is not allowed to transmit several packets within a very

short amount of time. For example, 20 seconds will be deducted from a total period

of 600 seconds (𝑝 = 600𝑠) before and after the transmission, which will leave 560

second window to transmit a packet. This window is further split into 56 slots, which

constitutes the state space 𝑆. So, the state space 𝑆 can be defined as:

𝑆 ∈ [0,
𝑝− 2𝑠𝑎𝑓𝑒𝑇 𝑖𝑚𝑒

10
).

As it was mentioned before, two versions of the algorithm were developed. The two

versions differ in the definition of the action space. The first algorithm, or SARSA-1,

has the following action space:

𝐴 ∈ {don’t change delay = 0, increase delay = 1, decrease delay = 2}

This definition of the action space is inspired by other applications of Q-learning

algorithms in gaming environments that uses maps to define the state space and the

{left, up, right, down} movements to define the action space. In our environment, 𝑆 is

represented as a single-dimensional map and the actions are to move to the previous

slot, to the next slot or not to move at all.

The second version of the algorithm, SARSA-2, makes use of the whole state space

𝑆 and instead of moving across the map slot-by-slot, as in the SARSA-1, it selects

the action from the state space. Thus, the action space is identical to the state space:

𝐴 = 𝑆 = [0,
𝑝− 2𝑠𝑎𝑓𝑒𝑇 𝑖𝑚𝑒

10
)

The pseudo-code of the algorithms is presented below. They contain several high-
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level descriptions of other methods used by the algorithm. However, their implemen-

tation is not relevant to the study. Generate-Packet() method creates a random-size

packet to send to the gateway and Send-Packet() is responsible for transferring the

packet through physical layer.

Algorithm 1: SARSA-1
Input: 𝑄, packet 𝑝0, 𝑎0, 𝑠0, 𝛼, 𝛾, 𝜖
𝑝1 = Generate-Packet();
if 𝑝0.success then

reward = 1
else

reward = 0
switch 𝑎0 do

case 0 do
𝑠1 = 𝑠0

case 1 do
if 𝑠0 < 55 then

𝑠1 = 𝑠0 + 1
else

𝑠1 = 𝑠0

case 2 do
if 𝑠0 > 0 then

𝑠1 = 𝑠0 − 1
else

𝑠1 = 𝑠0

𝑑 = random number in range [10𝑠1; 10𝑠1 + 10);
Send-Packet(𝑑);
𝑎1=Select-Action(𝑄, 𝑠1, 𝜖);
𝑄(𝑠0, 𝑎0) = 𝑄(𝑠0, 𝑎0) + 𝛼(reward + 𝛾𝑄(𝑠1, 𝑎1)−𝑄(𝑠0, 𝑎0));
𝑠0 = 𝑠1;
𝑎0 = 𝑎1;
𝑝0 = 𝑝1;

Finally, as the SARSA algorithm does not use a greedy policy as in the Q-learning

method, it is important to explain the policy used by the implementation of the

algorithm in this study. A so-called 𝜖-greedy policy was used, which is defined below

in Select-Action() algorithm.

Here, the 𝜖 is constant and represents how much the algorithm will rely on the

previous rewards. If 𝜖 = 1, then each next action will be defined randomly, whereas

if 𝜖 = 0, the actions will always be defined by the previous rewards.
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Algorithm 2: SARSA-2
Input: 𝑄, packet 𝑝0, 𝑎0, 𝑠0, 𝛼, 𝛾, 𝜖
𝑝1 = Generate-Packet();
if 𝑝0.success then

reward = 1
else

reward = 0
𝑠1 = 𝑎0 𝑑 = random number in range [10𝑠1; 10𝑠1 + 10);
Send-Packet(𝑑);
𝑎1=Select-Action(𝑄, 𝑠1, 𝜖);
𝑄(𝑠0, 𝑎0) = 𝑄(𝑠0, 𝑎0) + 𝛼(reward + 𝛾𝑄(𝑠1, 𝑎1)−𝑄(𝑠0, 𝑎0));
𝑠0 = 𝑠1;
𝑎0 = 𝑎1;
𝑝0 = 𝑝1;

Algorithm 3: Select-Action
Input: 𝑄, 𝑠, 𝜖
Output: action 𝑎
p = random variable from 0 to 1;
a = -1;
if p < 𝜖 then

a = random action from 𝑄(𝑠, :);
else

a = max(𝑄(𝑠, :));

return a;
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Chapter 5

Results & Discussion

5.1 Results

In this chapter, the simulation results of the developed RL algorithms are presented.

The simulations provide the performance data of a LoRa network for 20 days under

various conditions. First, a typical LoRaWAN periodic application was set up on

each node and the performance was recorded. These results will serve as the baseline

approach and include performance metrics for network simulations with 100, 200, and

500 nodes. The average PDR for a period of every 2 hours was recorded throughout

the simulation. The scenario was repeated using the SARSA approaches. Finally,

the results of the baseline approach were compared to the developed RL algorithms.

Also, due to the learning mechanism, the RL algorithms are expected to improve

the performance over some time. Thus, the average PDR for the second half of the

simulation was also included.

Tables 5.1, 5.2, and 5.3 present the simulation results for 100, 200, and 500 nodes,

respectively. The results reveal that SARSA-1 does not significantly improve the

PDR when the number of retransmissions is set to 1, 2, or 4. When this number is

equal to 8, the improvement is high for 100 nodes. SARSA-2 performs better when

𝑟 = 8 but struggles to adapt in scenarios with a lower number of retransmissions for

all node populations. What we can see from the results is that when the network is

heavily saturated (𝑟 = 8), the search of the entire state space of SARSA-2 performs
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better. However, it fails to adapt for simpler traffic scenarios. In those scenarios,

SARSA-1 performs better.

# of retransmissions [𝑟]
1 2 4 8

Baseline 81.62% 94.65% 94.52% 73.17%
SARSA-1 83.53% 94.45% 95.43% 94.50%
SARSA-2 81.39% 90.30% 94.77% 93.06%

Table 5.1: Average PDR (100 nodes)

# of retransmissions [𝑟]
1 2 4 8

Baseline 73.31% 90.53% 89.05% 64.49%
SARSA-1 77.65% 90.54% 91.27% 58.95%
SARSA-2 69.98% 83.55% 88.79% 77.96%

Table 5.2: Average PDR (200 nodes)

# of retransmissions [𝑟]
1 2 4 8

Baseline 72.51% 83.64% 70.38% 64.27%
SARSA-1 68.15% 80.57% 78.62% 64.21%
SARSA-2 50.88% 70.18% 74.99% 71.74%

Table 5.3: Average PDR (500 nodes)

A more detailed view is given by Figure 5-1, where the PDR trend over time is

displayed for a scenario with 100 nodes and 8 retransmissions. It is clear that both

SARSA approaches outperform the baseline in this case. Two other cases are also

presented. In Figure 5-2, it can be observed that the baseline results gradually fall

over time, whereas the RL algorithms maintain the performance during the simulation

time. Similarly, in Figure 5-3, it can be seen that the performance decreases over time

for all the applications. Nonetheless, the SARSA-2 experiences the least amount of

loss in PDR, whereas the SARSA-1 and the baseline perform similarly.
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Figure 5-1: PDR throughout the simulation (100 nodes, 𝑟 = 8)
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Figure 5-2: PDR throughout the simulation (500 nodes, 𝑟 = 4)
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Figure 5-3: PDR throughout the simulation (500 nodes, 𝑟 = 8)

5.2 Discussion

The results presented in the previous chapter suggest that LoRa networks could ben-

efit from the RL driven applications installed on the nodes, however, the performance

varies in different conditions.

Based on the results, a clear decrease in performance in regular periodic appli-

cations in highly saturated networks can be observed. The SARSA algorithms also

experience similar losses, however it is notably less significant. It is suggested that the

SARSA algorithms can greatly raise the performance in networks with high number

of end devices. A significant improvement at high 𝑟 values can be noticed, however,

the performance at lower 𝑟 values is either similar or sometimes worse than the base-

line. Therefore, the typical LoRaWAN periodic transmission can still be used when

the network is not too congested. Nevertheless, the performance in networks with

more load can be improved considerably.

A more extensive simulation with more end-devices and different settings might

provide a better understanding of the algorithms’ behavior in congested networks.

Also, the influence of 𝛼, 𝛾 and 𝜖 parameters is still to be determined. These two

observations will be assessed in the near future as an extension of this research.
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Chapter 6

Conclusion

This research aimed to demonstrate that a saturated network performance can be im-

proved by modifying application layer parameters on individual nodes using reinforce-

ment learning. While analyzing the literature, it was determined that the influence

of application layer parameters in EDs is not thoroughly investigated. Therefore, this

dissertation was aimed to address this issue. Based on the evaluation of the simula-

tion results, it has been shown that the proposed SARSA-1 and SARSA-2 algorithms

improve the performance of the network when compared to the typical LoRaWAN

periodic application. In several cases, the RL algorithms were able to almost double

the performance of the baseline algorithm.

Nevertheless, there is still room for improvement as it might be needed to optimize

constant parameters for certain conditions. The results have shown that certain

selection of the parameters might significantly affect the performance. In this study,

static nodes that transmit only confirmed messages were investigated. In future works,

the influence of mobile devices and unconfirmed traffic will also be investigated.
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