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Abstract

Recently, several studies have been conducted in a field of machine learning to con-
struct manifolds from data in a complex multidimensional space. Therefore manifold
learning becomes remarkably attractable among researchers. One of the main tools
to identify manifold’s structure is tangent space. In this work, first, we simulate a
method for finding tangent space of manifold at some point from noisy data by Prin-
cipal Component Analysis. In fact, Principal Component Analysis(PCA) provides
dimension reduction by its ‘principal components’. Then we introduce concurrent
method to PCA that is called Maximum Mean Discrepancy distance. It is based on
measuring the distance between smooth distributions.
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Chapter 1

Overview

1.1 Introduction

In recent years, manifold learning has become more widely known due to effective

solutions in machine learning problems. Manifold learning is an approach that based

on constructing manifolds from data that embedded high-dimensional space. Some-

times in the process of fitting data points, it gets complicated to work with them. The

reason behind this is the complexity of interpreting high-dimensional data. There-

fore the main benefit of manifold learning is to simplify the problem by reducing the

dimensionality of the dataset. Thus, manifold learning becomes remarkably attrac-

tive among researchers. Several works have been done in this field [6] [4]. One of

the main tools to identify manifold’s structure is tangent space. This study focuses

on dimension reduction by finding a tangent space to the manifold.
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1.2 Manifold Examples

Before going to the tangent space of a manifold, it is import to understand the struc-

ture and description of a manifold. A manifold is one of the basic ideas in science,

precisely, in mathematics and physics. Manifold resembles the 𝑛- dimensional Eu-

clidean space in local regions while the global structure of R𝑛 has a complex topology

structure. Examples of manifolds are listed below:

∙ the simplest one is R𝑛 whose special cases are a line in 1 - dimension or plane

in 2- dimension and so on.

∙ another one is 𝑛 - dimensional sphere. Imagine the Earth planet, globally it is

sphere nevertheless locally it resembles a plane.

∙ the most absorbing example in topology is 𝑛 - torus that obtained by converting

𝑛 - dimensional cube to the figure like a doughnut. It was done by taking

opposite sides of the cube and it becomes 𝑇 2 surface.

∙ the next example is similar to the previous example even though with two

holes(formally, genus 𝑔) in torus which has the name ‘Riemann surface’. It is

denoted as 𝑆2 if it is Riemann surface with genus 0.
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∙ some abstract things as a rotation of R𝑛 construct manifold and other contin-

uous transformations could forge the manifold. On top of that, the Lie group

also form manifolds.

∙ the product of two manifolds establishes the manifold, more specifically, if we

have two manifolds 𝐴 and 𝐵 with dimensions 𝑛 and 𝑚 respectively, then their

direct product 𝐴 × 𝐵 is a manifold with 𝑛 + 𝑚 dimension which contains

elements (𝑠, 𝑠′) where 𝑠 ∈ 𝐴 and 𝑠′ ∈ 𝐵.

From the given examples, the topic is starting to be stirring and the question ‘what

doesn’t belong to the manifolds?’ appears. Therefore, let’s move to the non-

manifolds. There are certain non-manifold examples and demonstration of some

of them explained below:

∙ one-dimensional line collapses to the plane.

∙ imagine two cones glued together by the sharp corner.

The reason for being non-manifold is discontent of resembling to R𝑛 in some local

regions.
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In order to briefly understand the structure of manifolds, it is recommended to study

the definitions of diffeomorphism, chain rule, Jacobian, chart, open sets and tangent

space in general.

1.3 Diffeomorphism: a natural way to relate mani-

folds

Let’s begin to learn diffeomorphism by introducing the notion of a map. If we are

given with two sets 𝐴 and 𝐵, the map 𝜙 : 𝐴 → 𝐵 matches every element of 𝐴 to

only one element of 𝐵. Here the illustration of the map:

If two maps are known, their composition is defined, e.g. 𝜙 : 𝐴→ 𝐵 and 𝜓 : 𝐵 → 𝐶

are given then (𝜙 ∘ 𝜓)(𝑡) = 𝜓(𝜙(𝑡)) where 𝑡 ∈ 𝐴 and 𝜙(𝑡) ∈ 𝐵, consequently,

(𝜙 ∘ 𝜓)(𝑡) ∈ 𝐶. The arrangement of maps is significant owing to the fact that the

right map behaves first.
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By acting conduction, the map has two types: injective or one-to-one and surjective

or onto. In injective type for every element of 𝐴 maps to exactly one element of 𝐵

whereas in surjective type for every element of𝐵 there exists at least one element from

𝐴. Consider the example where 𝜑 : R → R and 𝜑(𝑥) = 𝑒𝑥 it is one-to-one although

not onto in contrast to the example 𝜑(𝑥) = 𝑥3 − 𝑥 which is onto nevertheless not

one-to-one. In addition, if 𝜑(𝑥) = 𝑥3 is both one-to-one and onto when 𝜑(𝑥) = 𝑥2

neither of them. The visualization of these examples is demonstrated in the next

figure.
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The set 𝐴 is called the domain of the map 𝜑 and the points where elements of 𝐴

that mapped to 𝐵 are known as image of the map 𝜑. The subset of 𝐵, let’s denote

it 𝑆 and write as 𝑆 ⊂ 𝐵. And for this subset 𝑆, the set of elements of 𝐴 which have

connected to the 𝑆 is called preimage of 𝑆 under 𝜑 and denoted as 𝜑−1(𝑆).

There exists a mapping which belongs to both one-to-one and onto and it is

known as invertible or bijective. In bijective type we can find inverse mapping

between two sets write as 𝜙−1 : 𝐴→ 𝐵 and (𝜙−1 ∘ 𝜙)(𝑎) = 𝑎

It is necessary to indicate the continuity between topological spaces,also mani-

folds in our case. If the given map 𝜙 : R𝑛 → R𝑚 where (𝑥1, 𝑥2, ..., 𝑥𝑛) goes to

(𝑦1, 𝑦2, ..., 𝑦𝑚), is a family of 𝑚 functions with 𝑛 variables:

𝑦1 = 𝜙1(𝑥1, 𝑥2, ..., 𝑥𝑛)

𝑦2 = 𝜙2(𝑥1, 𝑥2, ..., 𝑥𝑛)

...

𝑦𝑚 = 𝜙𝑚(𝑥1, 𝑥2, ..., 𝑥𝑛)

Let’s determine 𝑝-differentiability and continuity of every function at the same time

and call it 𝐶𝑝. If all elements of functions are no more than 𝐶𝑝 then plead it to
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the map 𝜙 : R𝑛 → R𝑚. It can be seen that 𝐶∞ is either continuous and infinitely

differentiable whereas 𝐶0 is just continuous though not differentiable. Hence it can

be designated new type of mapping, that is diffeomorphism where two sets are

given and 𝐶∞ map with 𝜙 : 𝐴 → 𝐵 can be established, additionally its inverse

𝜙−1 : 𝐵 → 𝐴 also defines.

1.4 Chain rule & Jacobian

To go further, it is needed to propose a chain rule. Consider two maps 𝑓 : R𝑚 → R𝑛

and 𝑔 : R𝑛 → R𝑙, therefore their composition would be (𝑔 ∘ 𝑓) : R𝑚 → R𝑙

From the given information, we can take elements from each space, more precisely,

let 𝑥𝑚′ on R𝑚 , 𝑦𝑛′ on R𝑛 and 𝑧𝑙
′ on R𝑙 here 𝑚′, 𝑛′, 𝑙′ are ranges of corresponding

values. Here the partial derivatives of the composition and functions itself associate

and it defines the chain rule:

𝜕

𝜕𝑥𝑚′ (𝑔 ∘ 𝑓)𝑙
′
=

∑︁
𝑛′

𝜕𝑓𝑛′

𝜕𝑥𝑚′

𝜕𝑔𝑙
′

𝜕𝑧𝑚′
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This equation can be written in the form:

𝜕

𝜕𝑥𝑚′ =
∑︁
𝑛′

𝜕𝑓𝑛′

𝜕𝑥𝑚′

𝜕

𝜕𝑧𝑚′

From Calculus III, it is known that the Jacobian of transformation h : R𝑚 → R𝑛

at point 𝑥 has the following form:

𝜕ℎ

𝜕𝑥
=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝜕ℎ1

𝜕𝑥1

𝜕ℎ1

𝜕𝑥2
... 𝜕ℎ1

𝜕𝑥𝑚

𝜕ℎ2

𝜕𝑥1

𝜕ℎ2

𝜕𝑥2
... 𝜕ℎ2

𝜕𝑥𝑚

... ... ... ...

𝜕ℎ𝑛

𝜕𝑥1

𝜕ℎ𝑛

𝜕𝑥2
... 𝜕ℎ𝑛

𝜕𝑥𝑚

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

In addition, the Jacobian has other representation:

𝜕ℎ

𝜕𝑥
=

[︃
𝜕ℎ𝑖
𝜕𝑥𝑗

]︃
1≤𝑖≤𝑚,1≤𝑗≤𝑛

=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝜕ℎ1

𝜕𝑥

𝜕ℎ2

𝜕𝑥

...

𝜕ℎ𝑛

𝜕𝑥

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

=

[︂
𝜕ℎ

𝜕𝑥1
,
𝜕ℎ

𝜕𝑥2
, ...,

𝜕ℎ

𝜕𝑥𝑚

]︂

1.5 Open ball & open set

The next main fundamental theory is a definition of an open ball. It defines for

𝑎 ∈ R and 𝜖 ∈ R as 𝐵𝜖(𝑎) = {𝑥 ∈ R𝑛 : 𝑑(𝑥, 𝑎) < 𝜖}. Notice that, it could be

visualized as a sphere with the center 𝑎 and radius 𝜖.
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From unions of open balls it could be generated open sets, more formally, consider

some subset 𝑆 ⊂ R𝑛 and we claim that 𝑆 is open, if for 𝑎 ∈ 𝑆 there is an open ball

near 𝑎 that belongs to 𝑆.

1.6 Chart & Atlas

Given arbitrary point 𝑥 in topological space 𝑇 and some open subset of R𝑛 such

that 𝑥 has a neighborhood 𝑆 where exists homeomorphism 𝜑 from 𝑆 to open subset

of R𝑛. Such topological space is called locally Euclidean of dimension n. The pair

(𝑆, 𝜑 : 𝑆 → R𝑛) is called chart [3].

Definition 1. Given two charts (𝑀,𝜑 : 𝑆 → R𝑛) and (𝑁, 𝜑 : 𝑆 → R𝑛) are called

𝐶∞ − 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 if:

𝜙𝛼 ∘ 𝜙𝛽
−1 : 𝜙𝛽(𝑀 ∩𝑁) → 𝜙𝛼(𝑀 ∩𝑁), 𝜙𝛽 ∘ 𝜙𝛼

−1 : 𝜙𝛼(𝑀 ∩𝑁) → 𝜙𝛽(𝑀 ∩𝑁)

where the maps 𝜙𝛼 ∘ 𝜙𝛽
−1 and 𝜙𝛽 ∘ 𝜙𝛼

−1 are 𝐶∞.

Definition 2. Let {𝑀𝛼, 𝜙𝛼} is an indexed collection of charts such that its union

covers a given set 𝐿, more precisely, 𝐿 = ∪𝑀𝛼. This collection is called 𝐶∞ atlas of

a set 𝐿.
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Figure 1-1: Illustration of maps

If atlas N of a set 𝐿 is not contained in any larger atlas of 𝐿, then this type of

atlas is known as 𝑚𝑎𝑥𝑖𝑚𝑎𝑙.

Definition 3. A set 𝑁 with maximal atlas is 𝐶∞ manifold or smooth. If all

elements of manifold have dimension 𝑛, then it is said to be 𝑛−𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑.

To check the smoothness of manifold, it is not needed to define maximal atlas.

Recommend way is to follow the next proposition.

Definition 4. Any atlas M = (𝑀𝛼, 𝜙𝛼) in a locally Euclidean space exists in a

unique maximal atlas.

Proof. Let’s collect all charts (𝑁ß, 𝜙𝑖) that are compatible with M to the atlas M.

All charts are compatible with each other. Thus, the whole collection is an atlas. If

we take any chart that compatible with the new atlas, also compatible with M. And

this chart belongs to a new atlas. Therefore, it can be concluded that the new atlas

is maximal.

In order to prove its uniqueness, let’s take a maximal atlas N that contains atlas

M. If there is exists another maximal atlas N′ that also contains M atlas. Although,

all charts in N′ are compatible with M and it must belong to N. Therefore, N′ < N.

Furthermore, we assumed N and N′ are maximal, then N = N′. It implies that

maximal atlas which consists of M is unique.
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Why was it essential to scrupulously deal with charts and overlapping of them,

rather than cover a manifold with only one chart? To answer this question, let’s

consider some examples.

Example 1. For instance, take 𝑇 1 and let 𝜇 : 𝑇 1 → R, where 𝜇 = 0 turns around to

2𝜋. By definition of the chart, it is compulsory to have an open image 𝜇(𝑇 1) in R.

If we involve 𝜇 = 0 or 𝜇 = 2𝜋, then we get closed interval instead of open interval.

By eliminating both points, it couldn’t be fully covered. Thus, it is needed to take

at least 2 charts.

Figure 1-2: Illustration of Example 1

Example 2. Another example that shows the impossibility of covering a manifold

with a single chart is 𝑇 2. Consider Mercator projection, also known as a cylindrical

map, that passes through North and South poles. Assume 𝑇 2 is a collection of points

that lies in R3 and satisfies this equation: (𝑥1)2+(𝑥2)2+(𝑥3)2 = 1. By "stereographic

projection" there can be created a chart that belongs to open set 𝑀1, which identifies

by subtracting north pole from the sphere.

Therefore, we take a line from the north pole and direct it to a plane that determines

by 𝑥3 = −1. Then, impose a point on 𝑇 2 with a Cartesian coordinate (𝑦1, 𝑦2) that

16



Figure 1-3: Illustration of Example 2

appeared from the intersection of line and plane. The map is defined as:

𝜙1(𝑥
1, 𝑥2, 𝑥3) = (𝑦1, 𝑦2) =

(︂
2𝑥1

1 − 𝑥3
,

2𝑥2

1 − 𝑥3

)︂

Second chart could be obtained by projecting from south pole to the plane 𝑥3 = +1.

Similarly with a case with north pole, the map can be defined as:

𝜙2(𝑥
1, 𝑥2, 𝑥3) = (𝑧1, 𝑧2) =

(︂
2𝑥1

1 + 𝑥3
,

2𝑥2

1 + 𝑥3

)︂

Consequently, 𝜙1 and 𝜙2 together can cover whole manifold and they overlap in

−1 < 𝑥3 < 1. In addition to this, we can check the composition of two maps

𝜙1 ∘ 𝜙−1
2 :

𝑧𝑖 =
4𝑦𝑖

[(𝑦1)2 + (𝑦2)2]

and this is 𝐶∞ in covered region.

By summarising these examples, we can say that some manifolds can not be

overlapped with only one chart or in our case, with one coordinate system.
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1.7 Tangent vector & tangent space

As we mentioned before, locally manifolds look like R𝑛 that emerged in the pro-

cess of building coordinate charts. Therefore, operations such as differentiation and

integration could be analyzed in manifolds. Assume 𝑆 is 𝑚-dimensional and 𝑇 𝑛-

dimensional manifolds with coordinate charts 𝜙 and 𝜓 respectively. Let 𝑔 : 𝑆 → 𝑇

be a function: By considering 𝑆 and 𝑇 as sets, we can’t differentiate 𝑔 owing to the

fact that, operation’s behavior is not known. However, we can use coordinate charts

to build a map (𝜓 ∘ 𝑔 ∘ 𝜙−1) : R𝑚 → R𝑛. It is a simple Euclidean map, it implies

that all principles from calculus can be applied. For instance, 𝑔 can be considered as

function on 𝑆 that has a differentiation 𝜕𝑔
𝑥𝜈 and 𝑥𝜈 introduces R𝑚.

𝜕𝑔

𝑥𝜈
=

𝜕

𝑥𝜈
(𝜓 ∘ 𝑔 ∘ 𝜙−1)𝑥𝜈

After building the above framework, we can go further to define the structure of

manifolds. Thus, we start this process by identifying tangent vectors and tangent

18



spaces. In this study, it is necessary to eliminate a general sense of vectors, i.e. it is

suggested to consider vectors as a single point, rather than thinking that it stretches

from one point of the manifold to the second one. According to this statement, we

can say "the vector points in 𝑥 direction".

Suppose we are dealing with a problem where we want, by using only inherent

things of the manifold 𝑈 to build tangent space at some point 𝑡 in 𝑈 . The first thing

that comes to mind, it is objects "tangent vectors to curves" that lie in tangent

space. Thus, we can take a collection of all parameterized curves that pass through

𝑡, more precisely, it is a space of all maps 𝛽 : R → 𝑈 where our point 𝑡 lies in an

image of 𝛽. Here difficult thing is to determine tangent space by considering the

space of all tangent vectors to mentioned curves at some point 𝑡. However, we still

don’t know what is "tangent vector to a curve", nevertheless, space that constructed

from vectors at 𝑡 point is considered to be tangent space 𝑇𝑡.

1.8 Coordinate-free definition of tangent space

Now we want to give a definition of tangent space without mentioning coordinates.

To this purpose, assume 𝐵 is a space of all smooth functions on a manifold 𝑈 .

Every curve that passes through 𝑡 describes directional derivative with such mapping:

𝑔 → 𝑑𝑔
𝑑𝜇

. According to this, we can declare that, by space of directional derivatives on

curves that passes through 𝑡 there can be determined tangent space 𝑇𝑡. To accomplish

this claim, we need to show two facts:

∙ set of directional derivatives constructs vector space

∙ mentioned vector space is targeted vector space

To demonstrate first item, suppose 𝑑
𝑑𝜇

and 𝑑
𝑑𝜈

are operators that define derivatives

19



along curves across point 𝑡. It couldn’t be an error if we do such changes to obtain

another operator : 𝑐 𝑑
𝑑𝜇

+𝑑 𝑑
𝑑𝜈

. On the one hand, this new operator is also an operator

representing derivative. If operator linear on manifolds and performs usual Leibniz

rule related to products, then such operator counts as good one. Let’s check our

operator.

(𝑐
𝑑

𝑑𝜇
+ 𝑑

𝑑

𝑑𝜈
)(𝑓𝑔) = 𝑐𝑓

𝑑𝑔

𝑑𝜇
+ 𝑐𝑔

𝑑𝑓

𝑑𝜇
+ 𝑑𝑓

𝑑𝑔

𝑑𝜈
+ 𝑑𝑔

𝑑𝑓

𝑑𝜈
=

= (𝑐
𝑑𝑓

𝑑𝜇
+ 𝑑

𝑑𝑓

𝑑𝜈
)𝑔 + (𝑐

𝑑𝑔

𝑑𝜇
+ 𝑑

𝑑𝑔

𝑑𝜈
)𝑓.

From the above equations, it is clear that Leibniz’s rule satisfies. In fact, evi-

dently, the new operator is linear. Therefore, the collection of directional derivatives

constructs vector space. This learning confirms the first fact.

Then, we should answer to the second question. Whether the vector space we

are looking for has been found. To be confident it is suggested to find a basis for

vector space. Let 𝑥𝜈 coordinates of coordinate charts. At some point 𝑡 there are exist

partial derivatives 𝜕𝜈 at 𝑡. Next, it is necessary to declare that, partial derivatives 𝜕𝜈

at 𝑡 construct a basis for 𝑇𝑡. In order to observe it, we should show that directional

derivatives could be written as a product of summation of real numbers and partial

derivatives. Suppose we have 4 main things : 1) 𝑛 - dimensional manifold 𝑈 , 2)

curve 𝛽 : R → 𝑈 , 3) coordinate chart 𝜙 : 𝑈 → R𝑛, 4) function 𝑔 : 𝑈 → R. Consider
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𝜇 is a parameter on a curve 𝛽, then we should extend the operator 𝑑
𝑑𝜇

by using 𝜕𝜈 .

From Section 1.3, it could be written as:

𝑑

𝑑𝜇
𝑔 =

𝑑

𝑑𝜇
(𝑔 ∘ 𝛽)

=
𝑑

𝑑𝜇
[(𝑔 ∘ 𝜙−1) ∘ (𝜙 ∘ 𝛽)]

=
𝑑(𝜙 ∘ 𝛽)𝜈

𝑑𝜇

𝜕(𝑔 ∘ 𝜙−1)

𝜕𝑥𝜈

=
𝑑𝑥𝜈

𝑑𝜇
𝜕𝜈𝑔

So, let’s explain these equations. In the first equation, we take expression on the

left-hand side and rewrite it with a derivative of (𝑔∘𝛽). Owing to the associativity of

composition we can do such operation as in the second equation. The third equation

obtained by chain rule whereas the last one came from initial notations. There have

taken arbitrarily 𝑔, thus observed results could be written as:

𝑑

𝑑𝜇
=
𝑑𝑥𝜈

𝑑𝜇
𝜕𝜈

In fact, such partials 𝜕𝜈 introduce a basis for vector space that constructed from
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directional derivatives. And these directional derivatives determine tangent space.

𝜕𝜈 is called coordinate basis for 𝑇𝑡 and it is a general formalization of concept

where basis vectors to some point set on coordinate axes. And there is no explanation

of using coordinate bases when some bases could be more advantageous.

1.9 Examples of manifolds in question

In all examples below, we first define 𝑀 ⊆ 𝑅𝑘.

There is a standard topology 𝜏𝑘 on 𝑅𝑘 which is defined as:

𝜏𝑘 = {𝑆|𝑆 ⊆ 𝑅𝑘,where S is an open set}

Given 𝑀 ⊆ 𝑅𝑘, topology on 𝑀 is simply induced by 𝜏𝑘 by the following rule:

𝜏 = {𝑆 ∩𝑀 |𝑆 ∈ 𝜏𝑘}

Let’s consider some examples of tangent space according to mentioned statements.

Example 1. Suppose 𝑓(𝑥) is infinitely differentiable and continuous function, i.e.

𝑓(𝑥) ∈ 𝐶∞(R). And topology on the graph of 𝑓(𝑥) is 𝑇 = (𝑀, 𝜏), where 𝑀 is given

by this rule:

𝑀 = {(𝑥, 𝑓(𝑥))|𝑥 ∈ (𝑎, 𝑏)}

which means that 𝑀 ⊆ R2.

We should construct tangent space on M. For this purpose, assume

𝜏 = (𝑥*, 𝑦*) ∈ 𝑀 . From Calculus of Vector Valued Functions, it is known that,
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derivative of 𝑓(𝑥) is given by:

𝑓 ′(𝑥) = lim
Δ𝑥→0

𝑓(𝑥+ ∆𝑥) − 𝑓(𝑥)

∆𝑥

and ⟨1, 𝑓 ′(𝑥)⟩ is a tangent vector to a graph of 𝑓(𝑥) at point 𝑥.

By shifting 𝑥* by ∆𝑥 we obtain

𝜏 ′ = (𝑥* + ∆𝑥, 𝑓(𝑥* + ∆𝑥)).

Difference between 𝜏 and 𝜏 ′ is

𝜏 ′ − 𝜏 = (∆𝑥, 𝑓 ′(𝑥) · ∆𝑥) = ∆𝑥(1, 𝑓 ′(𝑥))

From observed result, it can be concluded that, desired tangent space 𝑇𝜏 is:

𝑇𝜏 = 𝑠𝑝𝑎𝑛{𝑡}

where 𝑡 = (1, 𝑓 ′(𝑥)).

Figure 1-4: Illustration of tangent space of Example 1

Example 2. Assume 𝑓(𝑥, 𝑦) ∈ 𝐶∞(Ω),Ω ⊆ R2 where Ω is open. As in Example
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1, topology on 𝑓(𝑥, 𝑦) is 𝑇 = (𝑀, 𝜏), where 𝑀 is given by this rule:

𝑀 = {(𝑥, 𝑦, 𝑓(𝑥, 𝑦))|(𝑥, 𝑦) ∈ Ω}

In order to find tangent space, lets define 𝜏 as:

𝜏 = (𝑥*, 𝑦*, 𝑓(𝑥*, 𝑦*))

Small shifting in 𝑥* and 𝑦* will give us following results:

𝜏1 = (𝑥* + ∆𝑥, 𝑦*, 𝑓(𝑥* + ∆𝑥, 𝑦*))

𝜏2 = (𝑥*, 𝑦* + ∆𝑦, 𝑓(𝑥*, 𝑦* + ∆𝑦))

Difference between main 𝜏 and 𝜏1, 𝜏2 is respectively:

𝜏 − 𝜏1 = (∆𝑥, 0,
𝜕𝑓(𝑥*, 𝑦*)

𝜕𝑥
∆𝑥) = ∆𝑥(1, 0,

𝜕𝑓(𝑥*, 𝑦*)

𝜕𝑥
)

And

𝜏 − 𝜏2 = (0,∆𝑦,
𝜕𝑓(𝑥*, 𝑦*)

𝜕𝑦
∆𝑦) = ∆𝑦(0, 1,

𝜕𝑓(𝑥*, 𝑦*)

𝜕𝑦
)

Lets denote 𝑓(𝑥*, 𝑦*) as 𝑓 . Then desired tangent space will be:

𝑇𝜏 = 𝑠𝑝𝑎𝑛

{︃⎡⎢⎢⎢⎢⎣
1

0

𝜕𝑓
𝜕𝑥

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎣

0

1

𝜕𝑓
𝜕𝑦

⎤⎥⎥⎥⎥⎦
}︃

Example 3. Instead of considering one function lets consider 2 functions. Suppose
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𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦) ∈ 𝐶∞(Ω) where Ω ⊆ R2 and open.

To find tangent space, we should first define 𝑀 .

𝑀 = {(𝑥, 𝑦, 𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦)|(𝑥, 𝑦) ∈ Ω}

Given 𝑀 ⊆ R4, some point in 𝑀 :

𝜏 = (𝑥*, 𝑦*, 𝑓(𝑥*, 𝑦*), 𝑔(𝑥*, 𝑦*))

To find tangent space, we change 𝑥* and 𝑦* a little by ∆𝑥,∆𝑦 respectively. These

changes obviously will affect on 𝜏 and it gives following results:

𝜏1 = (𝑥* + ∆𝑥, 𝑦*, 𝑓(𝑥* + ∆𝑥, 𝑦*), 𝑔(𝑥* + ∆𝑥, 𝑦*))

𝜏2 = (𝑥*, 𝑦* + ∆𝑦, 𝑓(𝑥*, 𝑦* + ∆𝑦), 𝑔(𝑥*, 𝑦* + ∆𝑦))

Lets calculate the difference between 𝜏 and changed ¯𝑡𝑎𝑢1, ¯𝑡𝑎𝑢2. And denote

𝑓(𝑥*, 𝑦*) as 𝑓 and 𝑔(𝑥*, 𝑦*) as 𝑔 for convenience.

𝜏 − 𝜏1 = (∆𝑥, 0,
𝜕𝑓

𝜕𝑥
∆𝑥,

𝜕𝑔

𝜕𝑥
∆𝑥) = ∆𝑥(1, 0,

𝜕𝑓

𝜕𝑥
,
𝜕𝑔

𝜕𝑥
)

𝜏 − 𝜏2 = (0,∆𝑦,
𝜕𝑓

𝜕𝑦
∆𝑦,

𝜕𝑔

𝜕𝑦
∆𝑦) = ∆𝑦(0, 1,

𝜕𝑓

𝜕𝑦
,
𝜕𝑔

𝜕𝑦
)

Tangent space is a set of tangent vectors. Thus, from above equations, it is seen
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that tangent space has this form:

𝑇𝜏 = 𝑠𝑝𝑎𝑛

{︃
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

0

𝜕𝑓
𝜕𝑥

𝜕𝑔
𝜕𝑥

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0

1

𝜕𝑓
𝜕𝑦

𝜕𝑔
𝜕𝑦

⎤⎥⎥⎥⎥⎥⎥⎥⎦
}︃

Example 4. Now lets increase number of parameters and functions. So we have

𝑓1(𝑥1, 𝑥2, ..., 𝑥𝑛), 𝑓2(𝑥1, 𝑥2, ..., 𝑥𝑛), ..., 𝑓𝑚(𝑥1, 𝑥2, ..., 𝑥𝑛), where 𝑓𝑖 ∈ 𝐶∞(R𝑛), 𝑖 = 1,𝑚.

𝑀 is given by this rule:

𝑀 = {(𝑥1, ..., 𝑥𝑛, 𝑓1(𝑥1, ..., 𝑥𝑛), ..., 𝑓𝑚(𝑥1, ..., 𝑥𝑛)|(𝑥1, ..., 𝑥𝑛) ∈ Ω}

As in previous examples, to find tangent space, first we should take a point:

𝜏 = (𝑥*1, ..., 𝑥
*
𝑛, 𝑓1(𝑥

*
1, ..., 𝑥

*
𝑛), ..., 𝑓𝑚(𝑥*1, ..., 𝑥

*
𝑛))

If we make small shifting in 𝑥*1, ..., 𝑥*𝑛, we get:

𝜏1 = (𝑥*1 + ∆𝑥1, ..., 𝑥
*
𝑛, 𝑓1(𝑥

*
1 + ∆𝑥1, ..., 𝑥

*
𝑛), ..., 𝑓𝑚(𝑥*1 + ∆𝑥1, ..., 𝑥

*
𝑛))

𝜏2 = (𝑥*1, 𝑥
*
2 + ∆𝑥2..., 𝑥

*
𝑛, 𝑓1(𝑥

*
1, 𝑥

*
2 + ∆𝑥2, ..., 𝑥

*
𝑛), ..., 𝑓𝑚(𝑥*1𝑥

*
2 + ∆𝑥2, ..., 𝑥

*
𝑛))

...

𝜏𝑛 = (𝑥*1, ..., 𝑥
*
𝑛 + ∆𝑥𝑛, 𝑓1(𝑥

*
1, ..., 𝑥

*
𝑛 + ∆𝑥𝑛), ..., 𝑓𝑚(𝑥*1, ..., 𝑥

*
𝑛 + ∆𝑥𝑛))
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It diverges from original 𝜏 in this way:

𝜏 − 𝜏1 = ∆𝑥1
(︀
1, 0, ..., 0,

𝜕𝑓1
𝜕𝑥1

, ...,
𝜕𝑓𝑚
𝜕𝑥1

)︀
𝜏 − 𝜏2 = ∆𝑥2

(︀
0, 1, ..., 0,

𝜕𝑓1
𝜕𝑥2

, ...,
𝜕𝑓𝑚
𝜕𝑥2

)︀
...

𝜏 − 𝜏𝑛 = ∆𝑥𝑛
(︀
0, 0, ..., 1,

𝜕𝑓1
𝜕𝑥𝑛

, ...,
𝜕𝑓𝑚
𝜕𝑥𝑛

)︀
Finally, tangent space is

𝑇𝜏 = 𝑠𝑝𝑎𝑛

{︃

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

...

0

𝜕𝑓1
𝜕𝑥1

...

𝜕𝑓1
𝜕𝑥1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

...

0

𝜕𝑓1
𝜕𝑥2

...

𝜕𝑓1
𝜕𝑥2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ...,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

1

𝜕𝑓1
𝜕𝑥𝑛

...

𝜕𝑓1
𝜕𝑥𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}︃

The columns of 𝑇𝜏 form basis for 𝑅𝑛. Therefore it can be concluded that, 𝑇𝜏 is

𝑛-dimensional vector space and 𝑀 ∈ R𝑛+𝑚.

Example 5. We can complicate example by removing variables in topology, i.e. we

have only functions in our topology 𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦) ∈ 𝐶∞(R2). Assume 𝜙 : Ω → 𝑀

which is one - to - one mapping. And

𝜙
(︁⎡⎢⎣𝑥

𝑦

⎤⎥⎦)︁
=

⎡⎢⎣𝑓(𝑥, 𝑦)

𝑔(𝑥, 𝑦)

⎤⎥⎦ ∈ 𝐶∞
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Here

(Ω, 𝜙 : Ω →𝑀) − chart

In other words, 𝑀 is given by single chart. Lets fix condition on 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦):

𝜕(𝑓, 𝑔)

𝜕(𝑥, 𝑦)
̸= 0, where (𝑥, 𝑦) ∈ Ω

According to these statements, 𝑀 is given by:

𝑀 = {𝜙(𝑥, 𝑦)|(𝑥, 𝑦) ∈ Ω, 𝜙− one-to-one mapping}

Take a point on 𝑀 :

𝜏 = (𝑓(𝑥*, 𝑦*), 𝑔(𝑥*, 𝑦*))

We do same things as in previous examples, by shifting 𝑥* and 𝑦* we get:

𝜏1 = (𝑓(𝑥* + ∆𝑥, 𝑦*), 𝑔(𝑥* + ∆𝑥, 𝑦*))

And

𝜏2 = (𝑓(𝑥*, 𝑦* + ∆𝑦), 𝑔(𝑥*+, 𝑦* + ∆𝑦))

In order to find tangent vectors, we do such operation:

𝜏 − 𝜏1 = ∆𝑥(
𝜕𝑓

𝜕𝑥
,
𝜕𝑔

𝜕𝑥
)

𝜏 − 𝜏2 = ∆𝑦(
𝜕𝑓

𝜕𝑦
,
𝜕𝑔

𝜕𝑦
)
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Set of tangent vectors :

𝑇𝜏 = 𝑠𝑝𝑎𝑛

{︃⎡⎢⎣𝜕𝑓
𝜕𝑥

𝜕𝑔
𝜕𝑥

⎤⎥⎦ ,
⎡⎢⎣𝜕𝑓

𝜕𝑦

𝜕𝑔
𝜕𝑦

⎤⎥⎦}︃

It is valid when 𝑑𝑒𝑡

⎡⎢⎣𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑦

𝜕𝑔
𝜕𝑥

𝜕𝑔
𝜕𝑦

⎤⎥⎦ ̸= 0. And due our assumptions tangent space is

definable.
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Chapter 2

Main resluts

2.1 Problem formulation

As mentioned before, finding a tangent space of a manifold at a certain point con-

tributes to an effective solution to the dimension reduction problem.

In real-world problems, some data could be looking like manifold, although it is

not manifold yet. This study works with this kind of data.

Our manifold 𝑀 is not given directly. And we assume that the manifold 𝑀 is

equipped with probabilistic space structure Ω = (𝑀,𝜎, 𝑃 ) where 𝜎 ⊆ 2𝑀 is the sigma

algebra of events and 𝑃 : 𝜎 → R is a probability function, such that 𝑃 (𝑆) = 1.

What does it mean that manifold 𝑀 is not given directly? Probably, some noise

appears in data. According to this statement, suppose that points z1, · · · , z𝑁
iid∼ 𝑃

are random points on the manifold 𝑀 and 𝜖1, · · · , 𝜖𝑁
iid∼ 𝑁(0, 𝛿2𝐼𝑛) are noise vectors.

Therefore, any point in our data could be written in this way:

𝑥𝑖 = 𝑧𝑖 + 𝜖𝑖, where 𝑖 = 1, ..., 𝑁
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From above statement, it is seen that points z1, · · · , z𝑁
iid∼ 𝑃 are not given directly,

but with a little noise!

Now given a point 𝑥* ∈ 𝑀 and data 𝑥1, ..., 𝑥𝑁 our goal is to reconstruct the

tangent space at the point 𝑥*.

There are several ways to find tangent space to the manifold at some point. In

this work, first, we are working with the Principal Component Analysis method.

2.2 Principal components analysis

Principal Component Analysis(PCA) is a one of the basic methods to reduce dimen-

sion of a complex data. Main useful side of PCA is losing less information about

data when reducing dimension of the data.

The main target of PCA is to find principal components that construct collection

of projections which are ordered in variance.

In this section, we represent principal components as linear manifolds approaching

family of 𝑁 points 𝑥𝑖 ∈ R𝑚.

Before going to PCA algorithm, first, recall that, a linear subspace 𝑉 ∈ R𝑛 is

subset 𝑉 that contains zero vector and closed under addition and scalar multiplica-

tion. While an affine subspace is a set 𝑃 = {𝑎 + 𝑥|𝑥 ∈ 𝑄 = 𝑎 + 𝑄} where 𝑎 ∈ R𝑛

and 𝑄 ∈ R𝑛.

Let 𝑥1, 𝑥2, ..., 𝑥𝑁 be our observations and the linear model with rank 𝑛 that

corresponds to this observation is given by:

𝑔(𝜇) = 𝜈 + 𝑉𝑛𝜇

where 𝜇 stands for an𝑚-dimensional vector of parameters. A matrix 𝑉𝑛 = {𝑣1, 𝑣2, ..., 𝑣𝑚}
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is an orthogonal matrix with 𝑛×𝑚 dimension and 𝜈 is a location vector. Here

𝑉𝑛𝜇 =
∑︀𝑚

𝑖=1 𝑣𝑖𝜇𝑖 ∈ 𝐶𝑜𝑙(𝑉𝑛) and 𝑑𝑖𝑚 𝐶𝑜𝑙(𝑉𝑛) ≤ 𝑚. Therefore 𝑉𝑛𝜇 is a linear sub-

space, whereas 𝜈 + 𝑉𝑛𝜇 is an affine subspace of rank 𝑛. The illustration of PCA is

seen in Figure 1-5, where 𝑛 = 1 and 𝑛 = 2 : According to Least Square Estimation,

Figure 2-1: Demonstration of the best linear approximation to the "half-sphere" data.
In the second panel it can be seen the projected points of the given data. The rank of
approximation is 2.

our goal is to minimize the error:

min
𝜈,{𝜇𝑖},𝑉𝑛

𝑁∑︁
𝑖=1

||𝑥𝑖 − 𝜈 − 𝑉𝑛𝜇𝑖||2

From Calculus II, to minimize some function, we should take partial derivatives

of above expression with respect to 𝜈 and 𝜇𝑖:

𝜈 = �̄�,

𝜇𝑖 = 𝑉 𝑇
𝑛 (𝑥𝑖 − �̄�).
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Then our goal is to find 𝑉𝑛:

min
𝑉𝑛

𝑁∑︁
𝑖=1

||𝑥𝑖 − �̄�) − 𝑉𝑛𝑉
𝑇
𝑛 (𝑥𝑖 − �̄�)||2.

To simplify above expression we take �̄� = 0. Let’s denote by 𝑆𝑛 the expression

𝑆𝑛 = 𝑉𝑛𝑉
𝑇
𝑛 . It is a "projection matrix" of dimension 𝑚 ×𝑚 that maps all 𝑥𝑖 onto

𝑆𝑛𝑥𝑖. By putting the transformed observations (recall, �̄� = 0 ) into a matrix 𝑋 with

dimension 𝑁 ×𝑚 as rows, we can form singular value decomposition of 𝑋:

𝑋 = 𝑈𝐷𝑉 𝑇

where 𝑈 has orthogonal columns 𝑢𝑗 which are known as "left singular vectors".

Therefore, 𝑈 is an orthogonal matrix of size 𝑛×𝑚. And 𝑉 is also orthogonal matrix

of size 𝑚×𝑚 that has columns 𝑣𝑗 which are known as "right singular vectors" and

𝐷 is a diagonal matrix of size 𝑚×𝑚 that has positive nonzero singular values in its

diagonal. From above equation, we say that the principal components of 𝑋 are the

columns of 𝑈𝐷. The 𝑛 columns of 𝑉 contain solution of 𝑉𝑛 [1].

In the figure below, it can be seen a demonstration of the one-dimensional prin-

cipal component in R2. By projecting each of 𝑥𝑖 onto the line 𝑢𝑖𝑑1𝑣1 we can find the

minimum distance between the point and line. The multiplication 𝑢𝑖𝑑1 is a distance

between the origin and points along this line whereas 𝑣𝑖 is direction vector of the

line.

In fact, the first principal component gives the highest variance and the second

one is the second highest and so on.
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Figure 2-2: The first principal component. The points are projected to the line and
these distances are minimum.

2.3 Baseline method (using PCA)

In this section, we present a Principal Components Analysis method. However,

first we should find a tangent space to a manifold by using directional derivative to

compare with the PCA method for efficiency.

The tangent space to a manifold is considered to be a set of all possible directional

derivatives. In some sense, the tangent space 𝑇𝑝(𝑀) of a manifold 𝑀 with dimension

𝑛 at a point 𝑝 is a hyperplane which approximates the manifold 𝑀 in the best way.

Before finding tangent space on an 𝑛 dimensional manifold, first, let’s try to work

with three-dimensional case.

Let 𝑆 ⊆ R3 be a plane spanned by a set of vectors {�̄�1, �̄�2}, where ||𝑢|| = 1 and

�̄�1, �̄�2 are orthogonal, i.e. �̄�1 · �̄�2 = 0. Also 𝑂 is a mapping 𝑂 : R3 → R3 with such

operation 𝑂(�̄�) = 𝑃�̄� where 𝑃 ∈ R3×3 . Our goal is to find this operator 𝑃 .

Let 𝑣 ∈ R3 and we project this 𝑣 onto 𝑆. From Linear Algebra, the projection of

the vector to a plane 𝑣 → 𝑣′ will be 𝑣 → 𝑃𝑣:

𝑣′ = 𝑃𝑟𝑜𝑗�̄�1𝑣 + 𝑃𝑟𝑜𝑗�̄�2𝑣
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By using the formula of projection we get:

𝑣′ = (𝑣 · �̄�1)�̄�1 + (𝑣 · �̄�2)�̄�2

= �̄�1�̄�
𝑇
1 𝑣 + �̄�2�̄�

𝑇
2 𝑣

= (�̄�1�̄�
𝑇
1 + �̄�2�̄�

𝑇
2 )𝑣

= 𝑃𝑣

𝑃 = �̄�1�̄�
𝑇
1 + �̄�2�̄�

𝑇
2 is a projection operator and 𝑣, �̄�1, �̄�2 ∈ R3. Therefore we can

generalize formula for 𝑖 = 𝑛 as follows:

𝑃 =
𝑛∑︁

𝑖=1

�̄�𝑖�̄�
𝑇
𝑖

At the end, the multiplication 𝑃 · 𝑣 gives us desired tangent space. As we mentioned

before, this traditional method of finding tangent space is needed to check the results

of the PCA method.

To use the PCA method our data should be close to 0 (Section 1.10). For this

reason, we choose 𝜖 and find all the points x𝑖 such that ||x𝑖|| < 𝜖 : x𝑖1 , · · · ,x𝑖𝑙 .

For deep understanding, let us do the PCA algorithm for a lower dimensional

cases as in general way. Let �̄�1, �̄�2, ..., �̄�𝑙 ∈ R3.

�̄�𝑖 =

⎡⎢⎢⎢⎢⎣
𝑥𝑖1

𝑥𝑖2

𝑥𝑖3

⎤⎥⎥⎥⎥⎦
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Let

𝑋 = [�̄�1, ..., �̄�𝑙] =

⎡⎢⎢⎢⎢⎣
𝑥11 𝑥21 · · · 𝑥𝑙1
𝑥12 𝑥22 · · · 𝑥𝑙2
𝑥13 𝑥23 · · · 𝑥𝑙3

⎤⎥⎥⎥⎥⎦
As it is seen, 𝑋 ∈ R3×𝑙. From Section 1.10 we know that to find principal compo-

nents, first, we should construct SVD by this formula 𝑋 = 𝑈Σ𝑉 𝑇 .

Σ =

⎡⎢⎢⎢⎢⎣
𝜎1 0 0

0 𝜎2 0

0 0 𝜎3

⎤⎥⎥⎥⎥⎦ 𝑈 = [𝑟1 𝑟2 𝑟3]

where 𝜎1 ≥ 𝜎2 ≥ 𝜎3 > 0 and ||𝑟𝑖|| = 1 and 𝑟𝑖 · 𝑟𝑗, 𝑖 ̸= 𝑗.

Let’s find a two dimensional principal components space.

𝑋 = 𝑈Σ𝑉 𝑇 ≈ 𝑈Σ′𝑉 𝑇 = 𝑋 ′

where Σ′ is obtained by truncation. The last singular value 𝜎3 is very close to 0.

Σ′ =

⎡⎢⎢⎢⎢⎣
𝜎1 0 0

0 𝜎2 0

0 0 0

⎤⎥⎥⎥⎥⎦
The 𝑟𝑎𝑛𝑘𝑋 = 3, in other words, dimension of column space of X is equal to 3 while

the 𝑟𝑎𝑛𝑘𝑋 ′ = 2. It can be easily proved by property of the rank:

𝑟𝑎𝑛𝑘𝑋 ′ = 𝑟𝑎𝑛𝑘(𝑈Σ′𝑉 𝑇 ) = 𝑟𝑎𝑛𝑘Σ′ = 2

36



By taking the first two columns of 𝑈 matrix we define first two principal compo-

nents.

𝑃 ′ = 𝑟1𝑟
𝑇
1 + 𝑟2𝑟

𝑇
2 = 𝑈 ′(𝑈 ′)𝑇

By multiplying 𝑃 ′ to elements of 𝑋 we get projected .

So we have 𝑋 = [�̄�1, �̄�2, · · · �̄�𝑙] and 𝑋 ′ = [𝑥′1, 𝑥′2, · · ·𝑥′𝑙]. Also, we have the correct

𝑃 and estimated 𝑃 ′ with �̄�→ 𝑃�̄�, �̄�→ 𝑃 ′�̄�, respectively.

To check performance of PCA algorithm, we take Frobenius norm:

𝑑(𝑃, 𝑃 ′) = ||(𝑃 − 𝑃 ′)||𝐹

where Frobenius norm is computed by this formula ||𝐴||𝐹 =
√︀∑︀𝑚

𝑖=1

∑︀𝑛
𝑖=1 |𝑎𝑖𝑗|.

2.4 Maximum Mean Discrepancy distance

Let

𝑘(𝑥) =
1√︀

(2𝜋𝜎2)𝑛
𝑒−

|𝑥|2

2𝜎2

be the gaussian kernel on R𝑛

Let ℬ be a set of Borel probability measures 𝜇 defined on R𝑛 such that their weighted

Fourier transform is square integrable:

𝑒−
𝜎2|𝑥|2

2 ℱ [𝜇] = 𝑒−
𝜎2|𝑥|2

2

∫︁
𝑒−𝑖𝑦𝑇 𝑥𝑑𝜇(𝑦) ∈ 𝐿2(R𝑛)

After applying Weierstrass transform we get :

𝜇 ∈ ℬ → 𝜑(𝜇) = E𝑦∼𝜇𝑘(𝑥− 𝑦)
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Then Maximum Mean Discrepancy (MMD) distance is defined as the distance

induced by metrics on 𝐿2(R𝑛), i.e. for 𝜇, 𝜈 ∈ ℬ:

𝑑𝑀𝑀𝐷(𝜇, 𝜈) = ||𝜑(𝜇) − 𝜑(𝜈)||𝐿2(R2

Here, 𝜑(𝜇) depends on the distribution type 𝜇: discrete or continuous.

𝜑(𝜇) =
1

𝑁

𝑁∑︁
𝑖=1

𝑘(𝑥− 𝑥𝑖) for discrete

𝜑(𝜇) =

∫︁
𝑘(𝑥− 𝑦) for continuous

Let 𝑥1, ..., 𝑥𝑁 ∈ R𝑛 be our dataset points. This dataset defines the empirical

probabilistic measure 𝜇𝐷𝑎𝑡𝑎:

∀𝐴
𝐵𝑜𝑟𝑒𝑙

: 𝜇𝐷𝑎𝑡𝑎(𝐴) =
|𝑥𝑖|𝑥𝑖 ∈ 𝐴|

𝑁

As it is seen, by smoothing our empirical probability measure 𝜇𝐷𝑎𝑡𝑎 we obtain:

𝜑(𝜇𝐷𝑎𝑡𝑎) =
1

𝑁

𝑁∑︁
𝑖=1

𝑘(𝑥− 𝑥𝑖)

This result is the same as kernel density estimation.

Now we need to find 𝜈 with such restrictions:

∙ 𝜈 is close to empirical probability measure 𝜇

∙ 𝒢𝑘 = {𝜇 ∈ ℬ|∃𝑣1, ..., 𝑣𝑘 ∈ R𝑛 ∀𝐴
𝐵𝑜𝑟𝑒𝑙

: 𝜇(𝐴) = 𝜇(𝐴 ∩ span (𝑣1, ..., 𝑣𝑘))}

i.e. is a set of probability measures with all probability concentrated in some

𝑚-dimensional subspace span(𝑣1, ..., 𝑣𝑘) where 𝑚 ≤ 𝑘.
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We will study the method concurrent to PCA that is based on solving the problem:

𝐼(𝜈) = 𝑑𝑀𝑀𝐷(𝜇𝐷𝑎𝑡𝑎, 𝜈) = ||𝜑(𝜇𝐷𝑎𝑡𝑎) − 𝜑(𝜈)||𝐿2(R𝑛) → 𝑚𝑖𝑛
𝜈∈𝒢𝑘

i.e. we want to approximate the empirical probabilistic measure 𝜇𝐷𝑎𝑡𝑎 by another

probabilistic measure 𝜈 which is supported in some 𝑘-dimensional subspace of R𝑛.
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Chapter 3

Experiments

3.1 Experiments with synthetic manifold data

All datasets in this section were created by examples that are given below.

Example 1.We choose a function 𝑓(𝑥) and generate points in the following way:

∙ Generate 𝑥1, 𝑥2, · · · , 𝑥𝑁 uniformly in interval [−2, 2];

∙ Calculate 𝑦𝑖 = 𝑓(𝑥𝑖);

∙ Generate 2-dimensional gaussian error 𝜖𝑖 ∼ 𝑁([0, 0]𝑇 , 𝐼2) and find x𝑖 = [𝑥𝑖, 𝑦𝑖]
𝑇+

𝜖𝑖;

So we can generate points {x1, · · · ,x𝑁} ⊆ R2 and set 𝑘 = 1. In other words, the

problem is equivalent to finding tangent line to the curve 𝑦 = 𝑓(𝑥) at point 𝑥 = 0.

Therefore, the right answer will be that ℒ = span{[1 𝑓 ′(0)]𝑇}. Therefore we know

with which vector to compare the result.

Example 2. Choose a function 𝑓(𝑥, 𝑦) and generate points in the following way:

∙ Generate 𝑥1, 𝑥2, · · · , 𝑥𝑁 , 𝑦1, 𝑦2, · · · , 𝑦𝑁 uniformly in interval [−2, 2];
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∙ Calculate 𝑧𝑖 = 𝑓(𝑥𝑖, 𝑦𝑖);

∙ Generate 3-dimensional gaussian error 𝜖𝑖 ∼ 𝑁([0, 0, 0]𝑇 , 𝐼3) and find x𝑖 =

[𝑥𝑖, 𝑦𝑖, 𝑧𝑖] + 𝜖𝑖;

So we can generate points {x1, · · · ,x𝑁} ⊆ R3 and set 𝑘 = 2. In other words, the

problem is equivalent to finding tangent plane to the surface 𝑧 = 𝑓(𝑥, 𝑦) at point 𝑥 =

0, 𝑦 = 0. Therefore, the right answer will be ℒ = span{[1 0 𝑓 ′
𝑥(0)]𝑇 , [0 1 𝑓 ′

𝑦(0)]𝑇}.

It was shown in Section 1.8. Then this result is needed to compare output from

PCA. To construct datasets following functions was used:

1. 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥)

2. 𝑓(𝑥) = 𝑡𝑎𝑛(𝑥)

3. 𝑓(𝑥) = 𝑥2 + 4𝑥

4. 𝑓(𝑥) = 𝑥5 − 3𝑥

5. 𝑓(𝑥, 𝑦) = 𝑡𝑎𝑛(2𝑥+ 𝑦)

6. 𝑓(𝑥, 𝑦) = 𝑠𝑖𝑛(𝑥+ 𝑦)

7. 𝑓(𝑥, 𝑦) = 𝑥4 + 2𝑦

8. 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 5𝑥

9. 𝑓(𝑥, 𝑦) = 𝑒(𝑥+𝑦) − 1

10. 𝑓(𝑥, 𝑦) = 𝑥3 − 𝑦3 + 3𝑦

We take 20000 samples and add some noise to it according to the mentioned instruc-

tions. Then we can apply the PCA to created data.
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The code was implemented in Python 2.7. Here the dataset was constructed in

this way:

import random

X = [ ]

f o r x in range (20000 ) :

X. append ( random . uniform (−10 ,10))

p r i n t X

import math

Y = np . s i n (np . array (X) )

And add some noise to the data by following code:

mean = [ 0 , 0 ]

cov = [ [ 0 . 0 3 , 0 ] , [ 0 , 0 . 0 3 ] ]

e=np . random . mult ivar iate_normal (mean , cov , 20000)

After creating data points, we save them as ".txt" file for accessing data when im-

plementing PCA algorithm.

np . savetxt (" data1 . txt " ,x , d e l im i t e r = ’ ’ , newl ine=’\n ’ )

a = open (" data1 . txt " , ’ r ’)# open f i l e in read mode

Then we can create Dataframe from above data points:

import pandas as pd

data = pd . read_csv ( ’ data1 . txt ’ , sep = ’ ’ , header = None )

df = data .T

Our goal is to choose 𝜖 and find all points close to 0, i.e. ||𝑥𝑖|| < 𝜖.

norm = [ ]
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f o r x in range ( l en ( data ) :

normed = np . l i n a l g . norm( df [ x ] )

norm . append (normed )

data_new = [ ]

df = np . asar ray ( df )

f o r i in range ( l en (norm ) ) :

i f norm [ i ] <=0.3: # ep s i l o n

data_new . append ( df [ : , i ] )

data_new = pd . DataFrame (data_new)

The next step is to find SVD of the data. And we set 𝑘 = 1 or 𝑘 = 2 according to a

dimension of the data. First 𝑘 columns are principal components.

u , s , v = np . l i n a l g . svd (df_n )

r1 = u [ : , 0 ]

r2 = u [ : , 1 ]

r_1 = np . reshape ( r1 , ( 3 , 1 ) )

r_2 = np . reshape ( r2 , ( 3 , 1 ) )

P = r_1*r_1 .T + r_2*r_2 .T

The calculation of tangent spaces of the functions at point 0 was done by hand. In

the Python shell, we wrote only the results of them.

P_exact = [ [ 0 . 5 , 0 . 5 ] , [ 0 . 5 , 0 . 5 ] ]

d i f f e r e n c e = P − P_exact

Norm = np . l i n a l g . norm( d i f f e r e n c e , ’ f ro ’ )
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By implementing this code to all functions we get good results for PCA.

1 2 3 4 5 6 7 8 9 10

0.0199 0.0775 0.0148 0.0127 0.0202 0.0437 0.0199 0.0247 0.0671 0.0382

Table 3.1: Results of PCA for 10 functions

From the Table 3.1 it can be concluded that, we can use results of PCA in order

to estimate concurrent method’s(MMD) results.

1 2 3 4 5

Local PCA 0.0199 0.0775 0.0148 0.0127 0.0202
MMD 0.0059 0.0109 0.0097 0.0105 0.0452

Global PCA 0.6905 0.1904 0.3163 0.8183 0.6391
MMD 0.0018 0.0029 0.0174 0.9933 0.9388

Table 3.2: Results of PCA and MMD.
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Table 3.3: Visualization of outputs of the PCA and MMD methods in two-
dimensional case

Table 3.4: Visualization of outputs of the PCA and MMD methods in three-
dimensional case.
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Chapter 4

Conclusion

4.1 Conclusion

From the results of the experiment it can be conluded that,the behaviour of PCA and

MMD on the local dataset are almost identical, but they are significantly different on

global one. MMD,unlike PCA, tried to catch ideal alignment of points rather than

searching global alignment of points. This property of MMD makes it promising tool

for the problem of the tangent space calculation to a data manifold at a given point.

On top of that, for two-dimensional data both methods give almost perfect results.

However, for three-dimensional case, PCA tried to find a global pattern by taking

all points into account .And the MMD focused on local data points and produced

results, as shown in the figures above.
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