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Abstract 

Chemical process systems are becoming more and more sophisticated and complex. 

This makes it more challenging to identify the causes of system failures and perform the process 

safety analysis. In most cases, accidents happen at the level of socio-technical interactions, and 

the emerging hazards of these systems cannot be wholly identified and are highly uncertain. 

Resilient process systems can better handle uncertain hazards and failure scenarios. The 

dynamic resilience assessment facilitates the identification of the critical factors affecting 

resilience during the pre- and post-failure phases in a temporal manner. This, in turn, facilitates 

the identification of the root causes of the accident, timely prevention of it, and employment of 

useful and specific safety measures. 

 This study has made a first attempt to use a Bow-Tie (BT) model as a tool to perform 

accident scenario analysis, and then the BT was converted to DBN for dynamic resilience 

assessment. This process facilitates the identification of the functionality state of the system 

and the critical factors affecting the resilience state of the system.  Quantitative resilience 

assessment should be further enhanced for identification of the root causes of the accident on 

the level of socio-technical interactions and development of the specific resilience attributes to 

withstand or recover from the highly probable disruption factors. This approach is believed to 

ensure complex process system safety and functionality. The current study also investigates the 

opportunity of integrating Functional Resonance Analysis Method (FRAM) and Dynamic 

Bayesian Network (DBN) for quantitative resilience assessment to identify the highly probable 

disruption factors and to develop the corresponding resilience attributes.  

The proposed method is demonstrated through case studies on a two-phase separator of 

the acid gas sweetening unit: operating at standard ambient conditions( Case Study 2) and 

operating at harsh cold conditions (Case Study 1). The analysis of the resilience state of the 

process system at the worn-out conditions is also done for each case study.  The study also 

integrates Aspen Hysys simulation for the probability of failure (POF) generation. The 

outcomes of this research provide a rigorous dynamic quantitative resilience analysis approach 

for complex process systems on the level of socio-technical interactions and a tool for 

identification of the critical factors or safety measures that enhance the resilience state of the 

chemical process system. 
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Chapter 1 - Introduction 
1.1 Background and problem statement 

The technology is moving forward and the process safety measures are increasingly 

becoming automated to facilitate the safe environment in the chemical process plants. However, 

the automation has also led to complexities and accident occurrence on the level of the socio-

technical interactions. The goal of the industrial plants nowadays is not only preventing the 

accidents but also dealing with the daily disturbances and variabilities even after their 

occurrence to sustain the system in the normal operational state. Hence, the goal of the industrial 

system management is to have not rigid but more flexible and resilient systems (Hollnagel et 

al., 2006; Steen and Aven, 2011). 

The research study addresses the solutions for two main problems faced in the industrial 

safety engineering. 

1) The traditional risk assessment methods employed in the industry focus on the measures 

to prevent accidents only (Park et al, 2013).  

Although it is important to accommodate the measures to avoid the accidents, it is also 

crucial to examine and supplement the equipment with the measures for the recovery of 

the equipment from failure. Therefore this study will develop the dynamic quantitative 

resilience assessment method. The resilience assessment allows us to monitor the ability 

of the system to avoid the accident occurrence, and in the case when an accident 

happened to recover from it. Thus, the current ability and amount of time for the system 

recovery could be analyzed. Taking into account the effectiveness of the post-accident 

scenarios can result in the safe and fast recovery of the operating system with minimal 

or no losses. Therefore this study will develop the dynamic quantitative resilience 

assessment method. The resilience assessment allows us to monitor the ability of the 

system to avoid the accident occurrence, and in the case when an accident happened to 

recover from it. Thus, the current ability and amount of time for the system recovery 

would be analyzed. Taking into account the effectiveness of the post-accident scenarios 

can result in the safe and fast recovery of the operating system with minimal or no 

losses. 

2) The industry employs various safety measures and automated complex equipment to 

reach zero accidents. However, this goal is still unattainable. The complexity of 
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equipment and the indirect causes of the accident as the human factors or organizational 

factors may result in unpredictable equipment failures, that may escalate into the major 

accidents under the impact of domino effect(Patriarca et. al, 2017). Therefore this study 

will present the method to identify the most vulnerable socio-technical interactions of 

the system beforehand to either avoid the accident from happening or to enhance its 

recovery properties. Therefore this study will present the method to identify the most 

vulnerable socio-technical interactions of the system beforehand to either avoid the 

accident from happening or to enhance its recovery properties. 

In this study, the four attributes of the resilience will be used to build a model to quantify 

resilience based on the definition - “the probability of a system’s functionality state sustaining 

a “high functionality” state or restoring to a “high functionality” state from a “low functionality” 

state during and after the occurrence of disruptions in the operation of a system within a specific 

time.” (Tong and Yang, 2020). Functionality represents the capability of the system to perform 

its prescribed functions. The state of functionality of the system could be classified as “high” 

or “low”, where high functionality state refers to the capability of the system to perform all its 

functions. In contrast, a low functionality state refers to the inability to perform the majority of 

all the required functions or perform but at a reduced level (Birolini, 2013).  

In this study, the two approaches for the resilience assessment will be analyzed. The 

first approach will assess the resilience of the system for the specific threat, set by the user. In 

this case, the resilience of the winterization measure (i.e., electrical heat tracing) on the 

installations of the acid gas sweetening unit (i.e., separator) will be assessed using the generic 

resilience assessment method proposed in (Tong and Yang, 2020) with the integration of BT 

and DBN. The method was universalized to the power loss or overcurrent issues that could 

happen to any heat-traced process units operating in harsh cold environments. The second 

approach will be based on finding the root cause of the possible accident and further assessment 

of the resilience of the system for these causes using the FRAM and DBN models. The dynamic 

quantitative resilience assessment of the installations will be accomplished via the integration 

of the qualitative (BT) model and quantitative DBN. 

The study will also analyze the system performance under harsh cold conditions. For 

the same system operating in a temperate region, the effects of hazards are amplified by the 

harsh environmental conditions, such as icing, snowstorms, strong winds, darkness, and 

remoteness to emergency support bases (Naseri, 2017). The resilience assessment is essential 
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for process systems operating in harsh environments due to their impacts on systems' 

performance, lack of knowledge and operational experience, limited resources available for 

emergency responses due to remoteness. Under the harsh cold conditions, the system will 

operate at or close to its design limits. This significantly reduces the lifetime of the equipment 

and increases the probability of system failure (Naseri, 2017). Winterization could be the most 

prominent measure to increase the reliability of the system and minimize the disruption 

possibility and effects in a harsh cold environment. Standard winterization measures include 

but not limited to insulation, heat tracing, de-icing equipment, chemical seals, antifreeze 

additives, and ice-repellent coatings (Yang et al., 2013). Malfunction of one of the winterization 

methods applied to the system may lead to the operational instability, consequent system 

outage, the occurrence of cascading abnormal events, finally, may result in a severe accident. 

Thus, minimization of human factors and enhancing the functionality of winterization measures 

would help to build more resilient systems in harsh cold environments. 

1.2 Motivation of the research  

Previous works considered resilience as a static property of the system, which seems an 

oversimplified assumption for complex process systems experiencing disturbances 

continuously throughout their daily operation. Furthermore, conventional risk assessment 

methods that are used for the safety assessment of systems are not enough because their 

application is restricted mainly to the accident prevention phase, not to the response of the 

system after the accident occurrence (Tong and Yang, 2020). Resilience assessment is focused 

on the both accident prevention and the recovery from the accident in the dynamic manner. 

Therefore, the motivation of this work is in developing the tool for the dynamic resilience 

assessment of the chemical process system under standard and extreme ambient environment. 

The tool will be helpful to identify the most vulnerable components of the system including the 

socio-technical constituents of it and will be able to assess the resilience of the system for both 

specified and unspecified threats. Furthermore, the tool will facilitate the identification of the 

critical safety measures enhancing the resilience of the system. 

Overall, the output of this work will be helpful to reduce the risk of accident occurrence, 

or in case if it is occurred to enhance and expedite the recovery of the process system.  
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1.3 Objectives 

Risk assessment methods do not consider the post-disruption scenarios and surprises, 

focusing only on the failure prevention and mitigation measures. To thoroughly study the level 

of performance of the system and its health condition, it is better to use the dynamic resilience 

assessment, which considers the state of functionality of the system before and after the 

disruption effect. This study aims to investigate quantitative dynamic resilience assessment of 

process facilities, with a focus on the assessment of the system’s ability of responding to the 

disturbance as well as to recover and learn from it using the approaches such as FRAM, BT and 

DBN for rigorous analysis. The main objectives of this manuscript are:  

 To develop a quantitative approach for resilience assessment using dynamic Bayesian 

network 

 To develop an FRAM-based approach to identify the critical factors that affect the 

system resilience and design for improved resilience  

 To test the developed approach for resilience assessment of process systems operating 

in low temperature environment 

 

1.4. Thesis Structure 

The remaining part of this manuscript is organized as follows. Chapter 2 presents the 

Literature Review. Chapter 3 presents the proposed dynamic QRA and its application to the 

separator at the harsh cold conditions, where for QRA BT and DBN approach is employed. 

Then, Chapter 4 presents the case study on two-phase separator of the acid gas sweetening unit 

where FRAM to DBN conversion approach for resilience assessment is implemented. 

Furthermore, in Chapter 4 the resilience assessment of the separator at worn-out conditions is 

done.  
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Chapter 2- Literature review 

2.1 Concept of Resilience 

In scientific literature, the term resilience first appeared in the materials engineering 

field to describe the ability of the material to return to the initial shape after 

deformation(Trautwine,1919). Then this term was used in the ecological domain as the ability 

of the ecosystem to sustain the original species by absorption of the changes and 

disturbances(Holling, 1973). Later, this term started to be used in organizational(Kendra and  

Wachtendorf,2003; Burnard and Bhamra, 2011), psychological (Luthar, 2000; Bananno, 2004), 

economical(Perrings, 2006; Fiksel, 2006; Rose and Liao, 2005), social (Adger, 2000), social-

ecological (Gumming et al., 2005; Kinzig et al., 2006)  and engineering domains. 

 In the past decade, resilience has been used in various engineering fields such as water 

management (Li and Lence,2007; Vogel and Bolognese, 1995), transportation management 

(Baroud et.al.,2014a, 2014b; Hosseini and Barker,2016; Faturechi and Hooks,2014), 

infrastructure(Berkeley et al., 2010; McCarthy, 2007; Vugrin et al., 2010) and process 

industries( Azadeh et al., 2014; Dinh et al., 2012; Jain et al., 2018; Shirali et al., 2013). In all of 

those studies, resilience was defined as the intrinsic property of the system to respond and adjust 

the functioning before or after a mishap or continuous disturbance to sustain the normal 

operational performance of the system(Steen and Aven, 2011). According to Hollangel et al. 

(2007), there are four characteristics that a resilient system should have:   

(1) To provide a strong or flexible response to instant or continuous disturbances; 

(2) To conduct self-monitoring of the system’s performance; 

(3) To predict risks and risk development opportunities; and  

(4) To learn from past events. 

The more sophisticated definition of the resilience was proposed by Tong et al. (2020), 

where the resilience was defined as the intrinsic ability of the system to absorb the disruption, 

or in case if the mishap occurred to adapt to it, restore from it and learn from the experience in 

a dynamic manner. The authors claimed that resilience was constituted of four attributes, 

namely absorption, adaptation, restoration， and learning. Furthermore, they discussed the 

opportunity of dynamic quantification of the resilience with the employment of the Markov 

Chain and Dynamic Bayesian Network Model. The work of Zinetullina et al. (2019) was a 

further extension of that work, where the resilience of a process system was identified as a 
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dynamic state of its functionality.  According to Tong et al. (2020) and Zinetullina et al. (2019), 

resilience is also defined as the ability of the system to sustain high functional state under the 

effect of disruption or to restore after the disruption from the low functional state to a highly 

functional state.  

Furthermore, the disruption effect at the current time step and the impact of the 

resilience attributes at the current time step and the previous time steps affect the current state 

of functionality of the system. The change in the state of functionality induces the change in the 

resilience of the system. This is because the resilience is the intrinsic ability of the system to 

perform its functions at the high functionality state 

 

2.2 Previous work on resilience assessment 

Resilience engineering application in the process plants is particularly important 

because of the level of complexity of the equipment, non-linear interconnections and high level 

of variability and uncertainty arising from this complexity(Costella et al., 2009). 

Cai et. al. (2018) considered the performance and time-related properties as the 

constituents of the resilience. Performance-related properties were robustness, adaptability, and 

time-related were recoverability, maintainability, etc. The study of Cai et. al (2018) assessed 

the resilience in terms of availability where high availability and low time to recovery 

characterizes the high resilience of the system. The availability is considered as the time-

dependent term that varies under the impact of disruption failure rate and the effect of the 

recovery repair rate. The work also employed DBN for the prediction of the future values of 

availability and their variation with time by employing the data available at the current state. It 

also conducted a sensitivity analysis to identify the impact on the resilience of disruptive and 

restorative factors. The conditional probabilities were estimated using the values of repair rate 

and failure rates. The resilience metric was evaluated based on the availability of components 

that are connected in series, parallel, and voting systems.  

However, the work of Cai et. al. (2018) evaluated the resilience only as a parameter 

dependent on the failure and repair rates of the consisting components. It considered the 

occurrence of disruption as the result of the malfunction of some of its technical constituents. 

However, the failure of the system may occur not only due to technical aspects but also because 

of the socio-technical aspects of interaction. The assessment includes only the assessment of 

the resilience based on the availability of its components. The study does not consider the 

resilience assessment of the system to withstand hazard and when the accident happens to 

recover from it. Comparatively, in the current study, resilience is considered based on the state 
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of functionality of the system considering all the technical, social constituents of it as well as 

the organizational measures involved. In two parts of this study, the resilience of the system to 

the particular failure is addressed and in the other part the vulnerable point on the level of socio-

technical interactions are identified and the resilience of the system is addressed by taking into 

account probability of failures of its technical constituents and the organization as well as safety 

measures involved. 

The other work of Cai et. al. (2019) conducted remaining useful life (RUL) estimation 

using DBN. They interpreted the dynamic degradation of the structure by one cause and by 

multiple causes.  

The DBN consisted of the material parameters, crack propagation depth, then the CPTs 

were filled and RUL was estimated using the time point where the availability of pipeline or 

reliability decreases to the critical value. Multiple causes were considered there such as fatigue, 

erosion, internal waves, corrosion. The crack depth of the subsea pipeline was set as a 

characteristic of the physical performance for the subsea pipeline to calculate the RUL value. 

First, four DBNs were constructed each representing the DBN models with its characteristic 

parameters involved for sand erosion, internal waves, fatigue, and corrosion. Then, these four 

DBNs were joint together at the performance node which was further connected to the evidence 

node.  

In the work of Cai et.al. (2019) DBN model was used for estimation of the RUL and the 

assessment of the various threats affecting the crack propagation. However, the DBN was used 

here in terms of the “absorption” or availability properties, but no aspects of the adaptation or 

recovery from the crack propagation were discussed, as in the present research work. 

In the work of Kammouh et.al. (2020) DBN was also used for resilience assessment, 

where the resilience was described as consisting of three pillars mainly fast recoverability, 

reduced vulnerability or reduced likelihood of failure and robustness or “reduced consequences 

of failure” (Bruneau et al, 2003). The resilient system had to have reduced vulnerability, high 

robustness, and high recoverability. Thus, the paper discussed the resilience as consisting of the 

stages of pre-disruption, at disruption and post-disruption, where the likelihood of failure 

referred to the stage of pre-disruption, robustness- to the time of disruption occurrence and the 

recoverability to the post-disruption stage.   

The structuring of the DBN for resilience assessment resembled the structure employed 

in this paper where the indicator nodes were connected to the resilience attributes and those, in 

turn, served as the parent nodes for the child node of the resilience index or state of 

functionality. However, the work failed to provide the detailed network for the damage, 
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recovery attributes and did not add the learning as the attribute of the resilience. In comparison 

with this work, the present work allows identifying the root basic causes of the failure 

occurrence by the integration of the BT and DBN in resilience assessment. Furthermore, the 

work allows us to identify the most vulnerable socio-technical interconnections of the system 

in advance and assess the resilience of the system for certain hazards. Additionally, the present 

work allows adding the supplementary safety measures to the resilience attributes such as 

adaptation and restoration to assess how this will impact the functionality state of the system 

with time. Also, the current study includes the opportunity of the system to learn with time and 

to observe how the learning of the complex system may impact on the resilience of it.  

Failure Mode and Effect Analysis (FMEA) methods are not capable of identifying the 

root causes of the accidents caused by socio-technological interactions; therefore, to deal with 

the current accidents still occurring in the industry, new safety approaches must be developed. 

Functional Resonance Analysis Method (FRAM), in comparison with linear FMEA methods, 

is more capable of predicting the hazards in dynamic and complex systems considering socio-

technological interactions of the system components (Patriarca et al., 2017). Resilience is the 

dynamically changing characteristic of the system. The changes occur with the daily 

disturbances and variabilities the system undergoes. The current issue with resilience 

engineering is its incapability of predicting emergent accidents accurately. This happens due to 

the lack of considering the non-linear interconnections among the system components and their 

interdependencies with the change of variability (Andersson et al., 2002; Levenson, 2004; Steen 

and Aven, 2011). Therefore, conducting FRAM analysis at the initial stage of the quantitative 

resilience assessment of the complex system could facilitate a more rigorous analysis of the 

operational state of the system and concrete solutions( Rosa et al., 2015). According to  

Patriarca et al. (2017) and Rosa et al. (2015), FRAM could be considered a viable method for 

resilience assessment due to two main reasons:   

(1) FRAM identifies the root causes of the level of non-linear socio-technical interactions, 

which is not possible with any of the current FMEA methods. This approaches the 

model to the real-life case scenario (Steen and Aven, 2011). 

(2) FRAM model structure consists of activities performed both on and by the system. The 

resilience parameters can better be characterized by actions of the objects rather than 

by their presence(Patriarca, Di Gravio, & Costantino, 2017b).  

Zinetullina et  al. (2019) developed a methodology based on Bow-Tie(BT) and Dynamic 

Bayesian network (DBN)  to quantify the dynamic resilience of process systems.The part of 
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this work is described in the manuscript for the case of the prescribed accident occurrence.  This 

part will be complemented with the application of FRAM instead of BT for more rigorous 

analysis of the dynamic resilience of the two-phase separator, where the resilience parameters 

will be developed for the most vulnerable components of the chemical process system.  

DBN is a probabilistic graphical model. It has the same structure and principles as the 

Bayesian network, with an exception that it allows estimating the joint probabilities of the 

variables with time. Thus, using DBN allows estimating the joint probabilities at time t, t+1, 

t+2 and so on (Jensen & Nielsen, 2007; Neapolitan,2004).  

It consists of the nodes(variables) and arcs, that link the nodes and allow deriving the 

interdependencies of the nodes based on the conditional probabilities. The nodes are classified 

as the parent nodes, child nodes and the root nodes. The root nodes are assigned for marginal 

probabilities the rest are assigned for the conditional probabilities. The joint probability of 

conditional nodes is calculated at the child node dynamically (2.1) (Jensen & Nielsen, 2007). 

1 1 2 0

1 2 3

1

( ) ( , , ,... ) ( , ( ), ( ) ( )... ( ))
n

t t t t t t t t t t

n i i i i i i

i

P X P X X X X P X X pa X pa X pa X pa X− − −

=

= =       
(2.1) 

      In DBN and BN, the joint probability could be updated with the addition of new nodes.  

( , ) ( , )
( )

( ) ( , )
X

P X E P X E
P X E

P E P X E
= =

                                         (2.2)  

             Having these characteristics DBN enables predicting the spatial and temporal 

evolutions of systems probabilistically (Khakzad, 2015). In resilience engineering, it was first 

applied by Yodo et al (2016) for the assessment of the reliability and restorative properties of 

the system. However, the limitation of that study was an estimation of restoration only, 

however, resilience consists of four parameters which are absorption, adaptation, restoration 

and learning. Furthermore, in his research, the resilience was considered as a constant term, 

whereas the resilience is a characteristic that changes following the changes of variabilities of 

components and either internal or external disturbances (Tong et al., 2020).  

Furthermore, DBN can be used for both prognostic and diagnostic analyses. Prognostic 

analysis aims to predict the system performance with time; while the diagnostic analysis is used 

to identify the most and least effective variables (measures) with regards to the safety, 

performance, or resilience of the system via sensitivity analysis (Khakzad, 2015).   
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In the present work, the DBN will be used for the quantification of the dynamic 

resilience of process systems. The DBN will include nodes to represent the absorption, 

restoration, adaptation, and learning parameters. Nodes will be structured according to the 

outcomes of the BT and FRAM analysis. As a result of FRAM the components of the process 

system having the highest tendency to cause an accident are identified. 

Additionally, the study considers the resilience change with time for the worn-out 

equipment under the effect of gradual corrosion development and, consequently, the equipment 

walls thinning. The study will use the outcomes of the relevant research works for equipment 

degradation with time and the developed FRAM to the DBN model for resilience assessment 

(Liao et al., 2011; Ossai et al., 2015). The Weibull Distribution will be used for the analysis of 

the equipment degradation. 
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Chapter 3- Dynamic QRA of the 

separator at the harsh cold conditions: 

use of BT and DBN approaches 

The following case studies(Chapters 3 and 4) aim to demonstrate the application of the 

quantitative resilience assessment of a two-phase vertical separator of the acid gas sweetening 

unit, as shown in Figure 3.1 at winterized (Chapter 3. Case Study 1) and standard conditions 

(Chapter 4. Case Study 2). 

Sour gas treating unit is the part of the oil and gas preliminary treating plant. It 

accomplishes the absorption of the sour gases (mainly carbon dioxide (CO2) and hydrogen 

disulfide (H2S)) with diethanolamine (DEA) from the gas coming after the crude oil 

stabilization. Crude oil stabilization is the process during which oil coming from the well is 

separated into three phases (mainly gas, oil, and water) and the pressure is reduced in stabilizer 

from high upstream pressure to the normal operating pressures to not harm gas, oil, and water 

treating process units.  

In Figure 3.1, the process flow diagram of the acid gas sweetening is presented. First, 

sour gas is depleted from process hydrocarbons in two-phase separator FWKO TK. Then, 

dehydrated sour gas goes to the absorption column wherewith the DEA it depletes from CO2 

and H2S and leaves the column as a sweet gas for further production of the sales gas. The “Rich 

DEA” stream, with CO2 and H2S, then is separated from the hydrocarbons in the separator Flash 

TK and passes to the Regenerator column, where the products, lean amine, and acid gas are 

produced. Lean amine stream is refluxed to the absorption column "DEA Contactor" and "Acid 

Gas" serves as the feed for the Sulfur Recovery Unit (Hysys, 2004).  

Developing the way to increase the assurance level of the operations and decrease the 

number of accidents, near misses and mishaps will secure many lives of the people working in 

the industry. It will decrease the operational and facility losses. The outcome of this study is 

the tool for the identification of the root causes of the accident (on the level of socio-technical 

interactions) and the critical factors improving the resilience of the system as well as the 

assessment of the resilience state of the system with the safety measures applied dynamically.  
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Figure 3.1. Acid gas sweetening unit modelled in Aspen Hysys (Hysys,2004) 
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3.1 The proposed methodology for BT to DBN conversion model for resilience assessment 

of chemical process systems at the harsh environmental conditions 

A version of this chapter has been published in the Journal of Safety in Extreme 

Environments 2019; 1-13. I am the primary author. Co-author Ming Yang provided much 

needed support in implementing the concept and testing the model. I have carried out most of 

the data collection and analysis. I have prepared the first draft of the manuscript and 

subsequently revised the manuscript, based on the feedback from Co-authors and peer review 

process. The three Co-authors assisted in developing the concept and testing the model, 

reviewed and corrected the model and results. They also contributed in reviewing and revising 

the manuscript. 

Figure 3.2 presents the procedure for dynamic resilience assessment while Figure 3.3 

schematizes the outcome of the procedure (Tong et al., 2020). In this work, resilience is defined 

as: 

▪ The probability that the system maintains a “high functionality” state after or during 

the occurrence of a disruption. 

▪ The probability that the system restores from a “low functionality” state back to a 

“high functionality” state given a disruption (Tong et al., 2020). 

In the following sections, each step of the proposed method will be discussed.  

  

Figure 3.2. The proposed method for dynamic resilience assessment  
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3.1.1 Identify the absorption, adaption and restoration parameters 

As it was previously stated, the absorption characterizes the ability of the system to 

sustain the normal operational state or high functionality state after or during the occurrence of 

disruption by absorbing the destructive impacts on the system.  The absorption parameters are 

characterized by the inherent safety design parameters, such as heat tracing in the present 

analysis. 

Adaptation parameters are auxiliary parts of the system that return the system to the 

normal operational state automatically. This could be the process safety equipment such as the 

safety relief valves, temperature controllers, and flow controllers. 

Restoration parameters are characterized by the external forces that return the system to 

the normal operational state. This could be maintenance works, an update of the safety 

procedure, and organizational management rules. The identified parameters are then used to 

construct a bow-tie diagram. 

3.1.2 Construct the BT diagram 

Bow-Tie analysis is a graphical approach that enables observing the development of a 

system’s malfunction scenarios (i.e., Top Event) starting from the root causes and finishing 

with the consequences (Zhang et al., 2018). It consists of a fault tree and an event tree. In the 

fault tree, the root and intermediate causes of the malfunction are disclosed, whereas in the 

event tree, the consequences are identified based on the combination of success and failure of 

the safety barriers. The disadvantage of the BT approach is its inability to present the dynamic 

representation of the probabilities and incapability to update the probabilities with new 

information entered (Zhang et al., 2018). Therefore, in this study, BT will be mapped into DBN 

to quantify the resilience. 

The BT diagram was constructed by simulating the failure of the absorption parameters 

in the fault tree part. The adaptation and restoration parameters were inserted into the event tree 

part as the safety barriers.  
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3.1.3 Map BT to DBN 

For mapping BT to DBN, the absorption, adaptation, and restoration parameters were 

extracted and presented as the “Absorption”, “Adaptation” and “Restoration” nodes 

accordingly. The three abovementioned notes with the “Learning” node were connected to the 

“State of Functionality” node. The Conditional Probability Tables (CPTs) of the nodes are then 

filled with the probabilities of failure and success based on the estimations done with the 

Markov Model, literature data, and expert judgment. 

For the nodes in DBN two states were assigned in CPTs, which are “High Functionality” 

and “Low Functionality”. As the CPTs of  nodes “Absorption”, “Adaptation” and “Restoration” 

consist of the different combinations of the state of functionalities of the corresponding nodes, 

the conditional probabilities were assigned based on the expert judgement for each separate 

scenario. Starting from the highest conditional probability where all constituting nodes have the 

high functionality and finishing with the lowest conditional probability for the case when each 

constituting node has low functionality state.  

For CPT of node “State of Functionality” the CPT from the work of Tong et. Al. (2020) 

was used. For the time at disruption t=0, S1- state of functionality at the disruption, was 

assigned the value of 1, and the states S2, S3, S4 were equated to zero. For time t=t+1, the 

Fuzzy Analytical Hierarchy Process (FAHP) was used to fill the conditional probabilities table. 

Then, the weights were assigned based on the 30 expert’s judgement after comparison of the 

pairwise parameters based on the triangular fuzzy conversion scale. Then the assigned scores 

were converted into the probabilities with the employment of the Chang’s extent analysis 

method. For more details please refer to the work of Tong et. al. (2020). 

The other nodes except node “State of functionality” were not represented as the 

dynamic ones because the information for those was specified for the current state. Further, the 

Genie estimated the variation of the “State of functionality” node with time by employing DBN. 

The estimations of the future functionality of the data was done by employing the current 

present data. The simulation tried to replicate the real case scenarios when you have your 

current data and make predictions for the future estimations. 
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3.1.4 Estimate the probabilities of reliability states of the system by running the DBN model 

The GeNIe Simulation estimates the joint probability of the functionality state based on 

eqn 1 for the time steps in the specified time interval (Genie, n.d.). The resultant probability 

versus time steps curve is presented in Figure 3.3. S1, S2 S3, and S4 represent the states of the 

system functionality. S1 represents the initial state of the system at the time(t1) when the 

disruption occurred. After the disruption occurrence, the state of the system functionality drops, 

resulting in the state of the low functionality at the state S2 and S3. Adaptation and restoration 

stages of the system occur at the S2 and S3 stages of the system. The impact of the adaptation 

and restoration parameters on the system performance finally results in the recovery of the 

system to the normal operational state or the high functionality of the system state, i.e., S4.  

3.1.5 Develop the Dynamic Resilience Curve 

The dynamic resilience curve, as presented in Figures 3.3, is derived based on the 

addition of the initial state (S1) of the system’s functionality and the final recovered 

functionality state of the system (S4).  This idea was previously proposed by Yodo et al. (2017), 

however, without considering the transient variation of the probability. The dynamic variation 

of the probability changes for the sum of states S1+S4 was developed by Tong et al. (2020) and 

is implemented in the present study.  

According to Holling (1973), the initial state of the system, before the occurrence of 

disruption was denominated by S1 in Figure 3.3. In this figure, the decline of the functionality 

state is represented by the graph between states S1 and S2; adaptation is represented by the 

change from S2 to S3; and restoration is shown by the change from S3 to S4; and the learning 

can contribute to both state change from S2 to S3 and S3 to S4. S4 represents the new normal 

operational state of the system. The high learning capability of the system designates that the 

absorption, adaptation, and restoration will have high capacity or, consequently, higher 

resilience if the disruption occurs. Thus, S1 state of functionality could be less than S4, because 

S1 characterizes the state the system had at the time of disruption, and S4 characterizes the state 

of functionality the system has after the adaptation and restoration stages. Thus, if the disruption 

occurred, then the system did not have strong resilience properties and high functionality, S4 

characterizes the state after the works were completed to enhance the resilience of the given 

system. 
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At this step of the analysis, time for 90% recovery is also identified. 90% recovery time 

refers to the time for 90 % recovery of the lost resilience or the lost functionality after the 

destruction. 90% was assumed as acceptable resilience level in this study.  

3.1.6 Revise the design of the Process System to improve the resilience 

At this stage, the resilience of the system is observed after the addition of the resilience 

parameters for each node "Absorption", "Adaptation", "Restoration" correspondingly. The 

increase of the resilience of the system with the addition of the safety measures partially 

validates the usefulness of the built model. The increase of the system resilience is characterized 

by the longer time to reach the lowest probability of the state of the system’s functionality, a 

higher value of the lowest probability, increased or the same probability of having the high 

functionality state after the adaptation and restoration stages. 

The longer time to reach the lowest probability and a higher value of the lowest 

probability characterizes the strong absorption characteristics of the designed system. At the 

same time, having the system returned to the normal operational state designates both the ability 

of the system to restore and the effectiveness of the adaptation and restoration parameters.  

3.1.7 Reassess the resilience of the system and compare with the previous resilience curve 

The resilience of the system is reassessed by conducting sensitivity analysis on the nodes 

that exert the highest impact on the state of reliability of the system, or critical nodes. After the 

critical nodes are identified, the pieces of evidence at time slots are implemented in the DBN. 

The resilience change due to these implementations is also checked. It is necessary to 

understand which parameters contribute to the highest drop of the functionality due to 

disruption or which parameters result in a faster recovery to the normal operational state. This 

helps with the enhancement of inherently safe design. The limited resources can be 

appropriately allocated to the improvement of the critical factors for system resilience. It can 

also help to identify and implement the most impactful adaptation and restoration parameters 

to improve system resilience.  
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Figure 3.3. The state change of system functionality (Tong et al., 2020). 

 

In the work of Tong et al. (2020), the four states are quantified by application of the 

Markov Chain Model using parameters presented in Table 3.1. The 1 , 1 , 2 , 2  are the 

transition probabilities referring to absorption, adaptation, restoration, and learning 

correspondingly (Figure 3.4) (Tong et al., 2020). 

The states in the Markov Model are defined in the following way: 

• S1: The normal state at time t1 when the disruption occurs  

• S2: The state with the lowest functionality due to disruption occurrence at time t2 

• S3: The state of the system after the adaptation stage at time t3 

• S4: The recovered state of the system after restoration is finished at time t4. 

As presented in Figure 2.3 the transitions from states S1 to S2, S2 to S3, S3 to S4 and 

S4 to S1 are characterized with the transitional probabilities 1 , 1 , 2 , 2  correspondingly. 

There λ – constant failure rate, the inverse of the mean time between failure(MTBF), 𝜆 =
1

𝑀𝑇𝐵𝐹
 

, and µ- repair rate, the inverse of the meantime to repair, 𝜇 =
1

𝑀𝑇𝑇𝑅
 (Tong et al., 2020). 
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Figure 3.4. A transformation from the Markov chain model to DBN for illustration of change 

of the functionality of a system: (a) Markov chain model; (b) DBN. 

 

Table 3.1. Transition rates of the Markov chain (Tong and Yang, 2019) 

 

 

The obtained values for S1, S2, S3, and S4 are then used in the Conditional Probability 

Table (CPT) of node “State of Functionality” in the DBN model (Figure 3.5). 

 

 

Figure 3.5. Simplified DBN model in GeNIe (Tong et al., 2020) 
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In Figure 3.5, the generic DBN model for quantifying resilience is displayed. It consists 

of six nodes: child node (leaf node) - "State of Functionality" and five parent nodes: 

"Disruption", "Absorption", "Adaptation", "Restoration" and "Learning". "Learning" is a parent 

node for nodes "Absorption", "Adaptation", "Restoration". This designates that the Learning 

ability of the system affects the ability of the system to absorb failure, adapt to disruption, and 

restore from it after the subsequent mishap (Tong et al., 2020). “Disruption” node characterizes 

external and internal factors that may facilitate the malfunction and the decrease of the 

functional reliability of the system if the absorption was not high enough to confront the 

disruption effects.  

The joint probability of the “State of the Functionality” node is calculated based on eqn. 

3.2, and it assumes that the probabilities of the system and contributing factors at the time (t-1) 

influence the resilience of the system at time t. The Transient resilience model (Figure 3.3) is 

obtained by adding the probabilities of S1 and S4 calculated using DBN (Tong and Yang, 

2019).  
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3.2 Case Study 1 

3.2.1 Development of the DBN model 

      The proposed method was applied to the resilience assessment of a separator system 

with electric heat tracing operating in the harsh cold conditions. According to an experienced 

operator, the main disruption to this system is the failure of the self-regulating electric heat 

tracing. The failure may lead to a rapid decrease in the operating temperature of the separator, 

causing wax and hydrate formation on the separator, which could impair its operation and create 

blockages of process piping. In such cases, the adaptation and restoration components of the 

system will be activated that can be modelled as safety barriers in the Bow-Tie analysis. The 

Bow Tie was developed for this case as in Figures 3.6 and 3.7. 

      The leading causes of the failure of the electrical heat tracing were identified through 

literature review and an interview with an operator who has vast experience of operations in 

harsh cold environments. These causes are the power loss (particularly the outage of the main 

power generator and the standby generator), overcurrent protection and residual current device 

tripping. These causes were further reasoned by other intermediate causes ending up with the 

root (basic) causes (Table 3.2). 

Table 3.2. Basic Events of the Fault Tree and respective Probabilities 

Acronyms Basic Events Probabilities 

A Anxiety 0.091 

CWC Cold Weather Conditions 0.091 

R Remoteness 0.091 

WH Long Working hours 0.091 

LK Lack of Knowledge 0.110 

IWD Improper Work Distribution 0.093 

LT Lack of Time 0.135 

S Snow accumulation 0.640 

I Icing 0.632 

MBD Mains Borne Disturbance 0.600 

DRCD Defective RCD 0.600 

MD Mechanical Damage 0.600 

SPL Supply Power loss  0.600 

SBDT 
Start-up below the design 

temperature 0.600 

LEC 
Loose electrical connections 

 at the contact attachment points 0.600 

LCTS 

An increase in the load applied to 

the actuator, i.e. more electrical 

current across the relay contacts. 0.600 
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The basic events from A to LT in the above table represent the human factor 

probabilities. They were estimated by applying the Human Error Assessment and Reduction 

Technique (HEART), following the guidelines, and using data from Noroozi et al. (2014).  

Snow accumulation probability was obtained from the snowfall data taken from Pomeroy and 

Li (2000). Icing probability was estimated as the average probability throughout the year in the 

Arctic by implying data from Podofillini (2015). For the rest of the basic events (MBD to 

LCTS), the marginal probabilities were assumed to be 0.6  

The BT (Figure 3.6 and 3.7) was mapped into the DBN model (Figure 3.8). For legibility 

of the BT diagram, the fault tree and event tree constituents are presented separately in Figures 

3.6 and 3.7. The fault tree events were transferred as the parent nodes for the "Disruption" node 

(Table 3.3). The safety barriers were classified as factors contributing to “Adaptation” and 

“Restoration” capabilities of the separator (Table 3.4). The consequences of BT are presented 

in Table 3.5. The probabilities presented in Table 3.2 were then inserted in the CPTs of the 

corresponding root nodes of the DBN. 

 

Figure 3.6. The fault tree constituent of the BT diagram 
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Figure 3.7. The event tree constituent of the BT diagram 

 



24 
 

 

 

 
Figure 3.8. The DBN model for resilience assessment (Genie, n.d.) 

 

 

Table 3.3. External and Internal Disruptions  

Disruptions Parent Nodes 

External  The operator turned the supply power off 

Use of summer diesel as the back-up fuel 

Snow Accumulation 

Icing 

Internal Actuator fails to switch on the Standby Generator 

RCD trips 

High Leakage Currents due to excessive 

 length of power cable and heating cable 
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Table 3.4. The parent and child nodes used for resilience modelling 

Child 

Notes 

Parent Nodes 

Absorption Heat Tracing/Self-regulating heating cables 

One main generator 

One standby generator 

Covered walkways 

Residual current device  

Overcurrent protection 

Adaptation Generator Power automatically increases 

  to the corresponding value to compensate the temperature decline 

Generator Power automatically increases to its maximum value 

The standby generator is activated to increase thetemperature in separator 

until the normal operating temperature 

An operator manually turns on Standby Generator if Standby generator is 

not activated automatically 

Restoration Intervention 

Inspection 

Adding Redundancy: duplicating Main Generators and Stand-By 

Generators 

Turbine (Generator) Hall Provision with the heaters inside 

Changing the Basis of Design Document, Project Design Philosophies, and 

Project documentation  

Training to increase the competence level of crew 

Safe exposure times  

for personnel performing the maintenance(routine) works outside, i.e. 30 

min between warm-up breaks in shelters   

Shelter construction for major maintenance works and intricate works with 

a long duration. 
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Table 3.5. The classification of consequences in the BT and their association with 

functionality state 

Consequences 
Reliability 

Classification 

C1 

Loss of main power with imminent reinstatement 

i.e. short term with no intervention 

required.  Utilities and production are 

restarted once main power has been re-established. 

Medium 

functionality 

C2 

Loss of main power with no loss of standby power 

i.e.  standby power is 

available, all ‘essential’ i.e. safety and life support 

systems and ‘asset protection’ 

trace heating is available on emergency (standby) 

power. 

Medium 

functionality 

C3 

Power reinstatement, monitoring of the system 

temperature, 

 inspection for the snow accumulation or icing, 

removal of those with the steam lances 

Medium 

functionality 

C4 

Fully Resilient system in terms of power 

availability, human factor minimization, staff 

knowledge and upgrade of work philosophies 

based on the results of periodic inspection works 

High 

functionality 

C5 
System failure may mostly be reasoned by human 

factor 

Low 

functionality 

C6 
System failure may mostly be reasoned by  human 

factor and lack of knowledge of personnel  

Medium 

functionality 

C7 

System failure may mostly be reasoned by the 

human factor, lack of knowledge of personnel and 

ignorance to upgrade the documentation based on 

the results of periodic inspections 

Low 

functionality 

C8  

System failure probability is high due to the high 

possibility of the  generator being covered with ice 

or snow as well as due to human factor, lack of 

knowledge of personnel, and ignorance to upgrade 

the documentation based on the results of periodic 

inspections 

Low 

functionality 

C9  

System failure probability is high due to increased 

chance of power loss as well as due to human 

factor, lack of knowledge of personnel, and 

ignorance to upgrade the documentation based on 

the results of periodic inspections 

Low 

functionality 

C10 
The restoration works on the system are not 

possible without conducting an inspection  

Low 

functionality 

C11 The system is not ready for restoration works 
Low 

functionality 
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3.2.2 Resilience assessment using the DBN model  

The DBN model of the separator was built, and the dynamic resilience was computed 

with the GeNIe modeller (n.d.) (Figure 3.8). The DBN model was computed for 100 time-steps 

with each time step being assumed to be equivalent to one hour of operation. The conditional 

probabilities for the four states of reliability (S1, S2, S3, and S4) were assigned in the CPT of 

the "State of Functionality” node applying the data in Tables 3.1 and 4.1 (Yodo et.al., 2017). 

 

 

Table 3.6. Transition rates for assigning the conditional probabilities of resilience states (Tong 

and Yang, 2019) 

 
 

 Figure 3.9 presents the dynamic probability profile of the four different functionality 

states of the system. S1 starts from the time when the disruption occurs (the system having a 

high functionality state at time t=0). S1-S2 region (from t=0 till the intersection of the S1 curve 

with the S2 curve) shows the region where the state of the system functionality decreases 

because the absorption capability of the system was not high enough, disruption occurred at 8 

hours, after the adaptation (S2-S3) has started. S2-S3 region is the region from the intersection 

of S1 and S2 curves till the intersection of S1 and S3 curves. S3-S4 region starts from the 

intersection of S1 and S3 curves and continues up till the end of S4 curve.  As can be seen, at 

20 hours, the adaptation curve reaches its peak and then decreases for letting the restoration 

(S3-S4) take place, bringing the system to the new state of S4. After 60 hours, the probabilities 

of all the four functionality states are stabilized. The newly achieved probability of functionality 

of the separator after the restoration is S4= 97.73%.  
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Figure 3.9. The dynamic probability profile of four functionality states  

 

Figure 3.10 shows the resilience profile of the separator. The profile is obtained by 

summing the probabilities of the initial state of functionality, S1, and the recovered state of the 

system, S4.  It could be seen that the resilience of the system changes with time until it stabilizes 

at about 60 hours with a new resilience of 98.48 %. The rapid decline of the resilience at 9 hours 

is associated with the disruption due to the heat tracing failure, and a further increase of the 

resilience from that stage is due to the system’s adaptation and external restoration attempts. 

The learning capability of the system during this process of disruption occurrence would 

contribute to an increase in absorption, adaptation, and restoration capabilities. This would 

consequently facilitate the achievement of higher levels of system resilience. 

 

 
Figure 3.10. The dynamic change of the separator’s resilience 
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3.2.3 Design for a more resilient system  

With the purpose to validate the model, the posterior analysis was conducted using the 

DBN model. Additional nodes (shown in Table 3.7) were placed as parent nodes for 

"Absorption", "Adaptation" and "Restoration". A new DBN model (Figure 3.11) was 

developed.  

The system has already undergone the disruption and learning process throughout its 

recovery. The joint probabilities of “State of Functionality” in 100 hours were re-estimated by 

GeNIe (n.d.). The addition of safety measures facilitates the enhancement of the system’s 

resilience. Therefore, the separator resilience obtained at this stage should be higher than the 

previous one.  

 

Table 3.7. Additional parameters 

Absorption Anti-freeze additives or use of low-temperature 

fluids in liquid systems 

Wind barriers for  

equipment (exacerbating snow accumulation too) 

Adaptation Automated steam lances are used for ice removal 

from the separator and auxiliary equipment 

Independent temperature limitation devices. An 

additional, independent temperature limiter ensures 

that if the control thermostat fails, the surface 

temperature of the heating cable will not exceed 

the maximum allowed temperature for the 

hazardous area by switching off the heating cable. 

Restoration Size overcurrent protective devices according  

to the design specification and/or local standard 

practices. This means to accurately select the 

ampere, voltage and interrupting ratings for 

overcurrent protective devices based on the design 

specification and/or local standard practices. 
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Figure 3.11. The new DBN model (with additional nodes) for resilience assessment of a 

separator (Genie, n.d.) 

 

 

 
Figure 3.12. The resilience of the separator with new design 
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Table 3.8. Comparison of resilience metrics 

Resilience metrics DBN Model 1 

(Figure 3.10) 

DBN Model 2 

(Figure 3.12) 

Disruption occurrence time 

(hrs) 

9 11 

Resilience decline value (%) 46% 53% 

The probability of the final 

resilient state S4 (%) 

98.48% 98.27% 

Time for resilience 

stabilization (hrs) 

60 70 

Time for 90 % recovery 

(hrs) 

34 40 

 

From Figure 3.12 and Table 3.8 it could be seen that disruption has occurred at 11 hours, 

indicating a higher absorption for the refined DBN model. The resilience declined to 53%, 

which is 7% higher than that of the previous model. The final resilient state S4 is presumably 

the same S4= 98.27 % as obtained in Section 3.2.2. However, it takes a longer time for the 

resilience to stabilize, i.e., t4= 70 hrs. This is because the added parameters (operations) have 

their own operational time that contributes to the longer duration of the resilience stabilization. 

These results partially validate the DBN model for resilience assessment as the predicted 

resilience increased as the additional arrangement was made to improve the system's adaption. 

Having the resilience dynamics helps to determine the extent to which the disruption may affect 

the system functionality and how long it takes (depending on the time-step amount) to recover 

the system to the normal operational state with the addition of resilience measures. 

For normal operation, we assume that at least 90% of its original resilience needs to be 

achieved. 90% probability of recovery to the high functionality state is obtained as shown in 

Figure 3.12 at about 40 hours, which is longer than the previous case due to the additional hours 

of the newly added stabilizing operations in Figure 3.10.   
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3.2.4 Posterior analysis  

For posterior analysis, four nodes were selected, “Snow”, “Icing”, “Power Supply” and 

“Safe Exposure Times”. For each of them, pieces of evidence were recorded for 10-time steps 

(Table 3.9). The “Yes” evidence in Table 3.9 designates a 100% probability of occurrence of 

each event in the node. The given analysis is conducted for observing how the separator will 

restore in case of the continuous snowfall, icing formation above the equipment, loss of one of 

the power supply units and increased human factor due to the long period of work in the cold. 

As a result, the resilience curve in Figure 3.13 is obtained.  

Table 3.9. Pieces of evidence for selected nodes 

Node 

designation 

Meaning  State 

S Probability of 

heavy snowfall 

High 

I Probability of serious icing  

on the unit and auxiliary 

equipment 

High 

Power 

Supply 

Either Main Generator  

or Standby Generator not 

working 

Yes 

Safe 

exposure 

times 

Maintenance and routine works 

are conducted outside for more 

than the set safe exposure time 

(i.e. 30 minutes) 

Yes 

 

 

 

 
Figure 3.13. The resilience profile obtained as a result of the posterior analysis. 
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Table 3.10. Comparison of prior and posterior Resilience  

 parameters 

Resilience metrics Prior analysis 

(Figure 3.10) 

Posterior analysis 

(Figure 3.13) 

Disruption occurrence time (hours) 9 11 

Resilience lowest value (%) 46% 35% 

 Final resilient state S4 (%) 98.48% 98.52% 

Time for resilience stabilization (hrs) 60 70 

Time for 90% recovery(hrs) 34 36 

 

Table 3.10 presents the comparison between the prior (Figure 3.10) and posterior 

(Figure 3.13) resilience analysis results. Even though the disruption effect was higher with the 

malfunction of the power supply system, the increase of human factor, and the harsh 

environmental conditions, the separator with the advanced resilience attributes was able to 

restore to its normal operational state (98.52%). However, the damage to the reliability of the 

system was higher, with the reliability reducing to 35% and with more extended time for the 

system to restore (70 hours). 

 

3.2.5 Sensitivity analysis 

The sensitivity analysis was conducted to identify the critical parameters contributing 

to the variation of the system resilience.  First, the node “State of Functionality” was selected 

as the target node for sensitivity analysis. Then each of the parameters was sequentially changed 

to the low operational state and high error probability state. Table 3.11 presents all these 

scenarios. The dynamic resilience curve was obtained for each scenario, and the summary of 

the results was presented in Table 3.12. The most significant reduction of the system’s resilience 

occurs when the state of absorption is low. This designates the weak inherent safety design of 

the system.  The most significant effect resulting in the drop of the absorption occurs due to 

malfunction of the Residual Current Device, Overcurrent Protection and the Standby Generator. 

The proper adaptation and restoration parameters facilitate the restoration of the system in the 

short amount of time compared with the change in the other nodes (Table 3.12). The parameters 

that contribute to a shorter time of resilience recovery are adaptation parameters, such as the 

generator power increases to the corresponding and maximum value in response to the 

temperature drop, and the standby generator activation. As for the restoration parameters, the 

most effect on the fast resilience recovery is due to the factors such as redundancy of the power 
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supply equipment, the upgrade of the basis of design document, the increase of the human 

reliability factors due to shelter construction for maintenance works, safe exposure times and 

trainings for the operating personnel. For scenarios 5, 6, and 7 the system shows the least change 

of the resilience due to the well-thought safety design, responding to restore the system to the 

normal operational state. 

Table 3.11. The scenarios used for sensitivity analysis 

Scenario 1 The standby generator was not 

switched on 

Scenario 2 Low Human reliability 

Scenario 3 Safe exposure time is  

more than 30 minutes 

Scenario 4 Low Restoration 

Scenario 5 High level of Disruption 

Scenario 6 High error probability of 

Overcurrent protection 

Scenario 7 High error probability that RCD 

Trips 

Scenario 8 Generator power does not 

increase to the corresponding 

value 

Scenario 9 Low Absorption 

Scenario 10 Low Adaptation 

 

 

Table 3.12. The results of the Sensitivity Analysis  

Scenarios 

  

Resilience 

reduction (%) 

Time to reach 

lowest 

reliability(hrs) 

Time to  

90 % recovery 

(hrs) 

1 28.89 17 41 

2 44.98 13 39 

3 51.71 11 39 

4 21.78 16 40 

5 52.47 11 39 

6 52.94 11 39 

7 52.93 11 40 

8 50 12 40 

9 0.25 2 23 

10 16.87 17 43 

 

Overall, the case study demonstrated the effectiveness of integration of BT and DBN 

for dynamic quantitative resilience assessment for the specific accident scenarios development. 
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Chapter 4- Dynamic QRA of separator 

at standard ambient conditions: 

Integration of FRAM and DBN 

approach 

4.1 The proposed methodology for dynamic resilience assessment with FRAM and DBN 

integration 

A version of this chapter has been submitted to the Journal of Reliability Engineering 

and System Safety. I am the primary author. Co-author Ming Yang provided much needed 

support in implementing the concept and testing the model. I have carried out most of the data 

collection and analysis. I have prepared the first draft of the manuscript and subsequently 

revised the manuscript, based on the feedback from Co-authors. The three Co-authors assisted 

in developing the concept and testing the model, reviewed and corrected the model and results. 

They also contributed in reviewing and revising the manuscript. 

Figure 4.1 describes the methodology employed in this study. First, the FRAM analysis 

of the process system will be accomplished in conjunction with the Monte Carlo Simulation. 

Resultantly, the critical coupling will be identified. For the critical coupling, the attributes of 

the resilience will be developed, and the DBN model will be built. The conditional probability 

tables of the nodes in DBN will be filled with probabilities of failures (POF) collected from 

literature, prescribed by Subject Matter Experts(SMEs), and calculated with the Aspen Hysys 

simulation. 

Afterwards the resilience curve will be generated with the Genie Simulation. Next, the 

DBN model will be updated with additional safety measures, and the generated resilience curve 

will be compared with the previous resilience profile. After that, the first developed DBN model 

will undergo sensitivity analysis for the identification of the most important safety measures. 

Finally, the developed resilience model will be reassessed for worn-out equipment conditions. 
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Figure 4.1. The proposed methodology for dynamic resilience assessment  
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4.1.1 Development of the FRAM model 

Functional Resonance Analysis Method (FRAM) model consists of the main activities 

done by or on the complex system and enables identification of the root causes of the accident 

on the level of the socio-technical interactions. This is a new approach in the sphere of the 

safety analysis, conforming to the perspectives of Safety-II, which states that the causes of the 

accidents may be identified on the level of socio-technical aspects interaction in a transient 

manner(Hollnagel, 2012).   

At the beginning of the FRAM analysis, it is necessary to identify the goal of the 

FRAM analysis, specifically whether it is accident investigation analysis or the risk 

assessment( Rosa et al., 2015). The development of FRAM consists of four steps, mainly: 

Step 1: Identifying  and describing the functions of the system  

Firstly the main activities or functions performed by or on the system to reach a specific 

outcome every day are defined. Functions are interconnected via the aspects placed in the 

corners of the hexagon according to the Structured Analysis and Design Technique (SADT). 

Each function consists of the six aspects, namely input, output, precondition, resources, time, 

and control. The function output of which serves as one of the other five aspects for the other 

function in the couping is named as upstream function; the other joint function is named as the 

downstream function. The following gives the six aspects of a function.  

▪ Input (I)- the aspect that initiates the function 

▪ Output (O)- the outcome of the function, serves as the input for the downstream 

function 

▪ The precondition (P)- the condition that should be performed before the 

initiation of the downstream function 

▪ Resource (R)- what the function needs to produce the output 

▪ Time (T)- temporal requirements or constraints obliged to the function, such as 

start time or finish time. 

▪ Control (C)- what performs the control and monitoring of the function to achieve 

the set outcome (Tian, 2016) 
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Step 2: Identifying the variability of the system  

Each function has its variability. Variability could be classified as positive if it reduces 

the risk of possible accident development or negative if it facilitates the accident development 

scenario. According to Hollangel  (2012), variability could be classified based on multiple 

phenotypes, such as time, precision, flow rate, speed, duration, direction, object, force. In this 

study, variability manifestation based on time and precision will be used. The reasons are a) the 

user-friendly readability of the analysis, and b) the universal application of those phenotypes 

for any function. 

Based on time, the variabilities are classified as on time, too late, too early, and not at 

all. Not at all is used for the cases when the function is performed that late, that the outcomes 

of it are of no longer point of interest to consider. Based on precision, the variabilities are 

classified as precise, acceptable, imprecise, and wrong. Based on the SME’s judgment those 

classifications are ranked with numbers and further used in Monte Carlo Analysis (Patriarca et 

al., 2017).  

Step 3: Aggregating the variabilities 

This step deals with the variability of the couplings. Variability of the couplings may 

arise as a result of each function’s inner variabilities or as a result of the impact of the upstream 

function. In case when the coupling produces the large negative variability, this consequently 

results in the resonance of the connected functions and identifies the critical path. The critical 

path defines the leading cause of the accident in the accident investigation scenario, or the main 

factors contributing to the hazard development in risk assessment. 

If the upstream function generates positive variability, this results in the dampening of 

the variability of the downstream function (Patriarca et al., 2017). 

In this study in step 3, the Monte Carlo Simulation is integrated to identify the exact 

critical path resulting in the malfunction of the two-phase separator of the acid gas sweetening 

unit. 

Step 4: Managing the variability and suggesting the solutions to identified critical path 

Step 4 monitors the variabilities of the performance. The purpose of step 4 is to suggest 

measures to increase positive variabilities and decrease negative variabilities. The 

recommendations are suggested for the identified critical path to avoid the accident from 

happening, or in case of an accident happened to restore the system to the high functional state.   
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As the continuation of step 3, for the critical path identified, we develop the DBN model 

recommending the absorption, adaptation, and restoration parameters to either absorb the 

possible disruption or to recover from it. 

4.1.2 Monte Carlo analysis for identification of the critical path 

Monte Carlo Simulation (MCS) is the tool for the mathematical calculations for 

complex systems using random sampling for adhering the outcomes close to reality (Zio, 2013). 

In this research work, the MCS is used for the estimation of cumulative variabilities in the 

FRAM model. The idea of Monte Carlo application for the estimation of the cumulative 

variability in the FRAM Model was taken from the work of Patriarca et al. (2017). In their 

work, they identified the critical couplings having the highest risk of causing an accident. They 

also provided the resonant path that emerges because of the variability accumulation for the 

neighboring functions to the critical couplings. The critical couplings were determined at step 

4 of the FRAM analysis by setting the critical cumulative variability value and the confidence 

level of 95 %. The couplings for which 5% of the cumulative variabilities generated with the 

Monte Carlo simulation were higher than the setpoint value, equal to 24, were classified as 

critical. Hence, the corresponding recommendations were provided to avoid the accident 

occurrence. 

In this research paper, a similar approach of MCS for cumulative variability estimation 

is employed for the identification of the critical couplings in FRAM. However, MCS in this 

research paper also serves as a function of the logical bridge between the FRAM Model and the 

DBN model for the quantitative resilience assessment of the process unit. 

Step 1. Defining the probabilities 

From the SMEs judgment in the work of Patriarca et al. (2017), the discrete probability 

distributions for each of the four variability states based on the timing and precision were 

defined(Tables 4.1 to 4.3).  
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Table 4.1. Variability scoring based on Timing and Precision 

 Variability Score 

Timing 

On-Time 1 

Too Early 2 

Too Late 3 

Not at all 4 

Precision 

Precise 1 

Acceptable 2 

Imprecise 3 

Wrong 4 

 

Table 4.2. Discrete Probabilities Distributions for Timing variabilities 

 1 2 3 4 

Probability of being too early 0.15 0.7 0.1 0.05 

Probability of being on-time 0.7 0.15 0.1 0.05 

Probability of being too late 0.15 0.05 0.7 0.1 

Probability of not at all 0.1 0.05 0.15 0.7 

 

Table 4.3. Discrete Probabilities Distributions for Precision variabilities 

 1 2 3 4 

Probability of being Precise 0.7 0.2 0.05 0.05 

Probability of being 

Acceptable 0.05 0.7 0.2 0.05 

Probability of being 

Imprecise 0.05 0.2 0.7 0.05 

Probability of being Wrong 0.1 0.1 0.1 0.7 

 

Step 2. Assigning the amplification factors for each coupling 

The amplification factors are also distributed based on the timing (𝛼𝑖𝑗
𝑇 )  and 

precision(𝛼𝑖𝑗
𝑃 ) relations of the upstream and downstream couplings.  Based on the effect of the 

variability of the upstream function conveyed to the downstream functions, the amplification 

for both timing and precision are assumed in the following ranges:  
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Table 4.4. The ranges for amplification factors (Patriarca et al,2017) 

𝛼𝑖𝑗
𝑇 (𝑜𝑟 𝛼𝑖𝑗

𝑃 )  

>1 If the variability of the downstream function 

is amplified by the output of the upstream 

function 

=1 If the variability of the downstream function 

is not affected by the output of the upstream 

function 

<1 If the variability of the downstream function 

is dampened by the output of the upstream 

function 

 

Step 3 Calculation of the OV and CV 

Overall variability is the multiplication of the variabilities of upstream functions based 

on timing (𝑉𝑗
𝑇) and precision (𝑉𝑗

𝑃) (4.1) 

𝑂𝑉𝑗 = 𝑉𝑗
𝑇 ∗ 𝑉𝑗

𝑃                                                          (4.1) 

The cumulative variability (𝐶𝑉𝑖𝑗) is the joint variability of the coupling. It is estimated 

by multiplication of the overall variability and amplification factors for timing and precision 

assigned for the corresponding coupling. 

𝐶𝑉𝑖𝑗 = 𝑂𝑉𝑗 ∗ 𝛼𝑖𝑗
𝑇 ∗ 𝛼𝑖𝑗

𝑃                                                   (4.2) 

In MCS the normal distribution equation is applied for the variability ranges based on 

timing and precision (Tables 4.1 and 4.2), amplification factors range assigned by SMEs 

(Patriarca et.al, 2017). Resultantly, 1000 random numbers are generated with MCS for the 

cumulative variabilities of each of the function couplings (4.2).  

Step 4 Identification of critical path 

At the next stage, the setpoint and the confidence level are assigned. The confidence 

level in this work is set to be equal to 95 %. Hence, after the generation of 1000 random 

numbers, five percentiles of them is compared with the set point. In case if the five-percentile 

number is higher than the setpoint, the corresponding coupling is set as the critical one. The 

further recommendations and the work on risk prevention or accident recovery are prioritized, 

starting from the coupling with the highest five percentile number.  
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4.1.3 Preliminary development of the DBN model based on the most critical coupling 

The “Absorption”, “Adaptation”, and “Restoration” nodes are complemented with the 

nodes corresponding to the most critical coupling obtained as a result of the FRAM and MCS. 

For example, the case study described below identifies the most critical coupling as the level 

controllers and interlock system inaccurate performance and late or inaccurate response of the 

operator in the control room. Thus, the nodes for “Absorption”, “Adaptation” and “Restoration” 

were selected corresponding to only the performance of the level controllers and the interlock 

system and the performance of the operator in the control room.  

(1) Building the DBN model based on the Absorption, Adaptation, Restoration and, 

Learning parameters for the most hazardous case identified with the FRAM model. 

(2) Filling the conditional probability tables (CPT) of the nodes with the help of 

simulations, historical data, and data from the surveys.  

(3) Getting the resilience curve as the summation of the initial state of the system (S1) 

and its restored state (S4). 

4.1.4 Application of simulation to the extraction of POFs 

The POFs are extracted from Aspen Hysys Dynamics simulation for acid gas 

sweetening unit using the strip charts for the parameters characterizing the performance of the 

process system of interest (Hysys,2004). From the strip chart, the time range of the system 

malfunction or being in the out of normal operating range is divided by the total time range of 

operations (4.3).  

𝑃𝑂𝐹 =
𝑀𝑎𝑙𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑟𝑎𝑛𝑔𝑒

𝑇𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒
                                        (4.3) 

The POF characterizing the functioning of the process system could also be extracted 

from Aspen Hysys Sensitivity analysis. For this case simulation is run at the specified range of 

the several input parameters. As a result of the analysis for 1000 iterations, the output is 

monitored for the number of scenarios out of the normal range scope. Then, the POF is 

estimated as the ratio of the amount of the abnormal outcomes to the total number of outcomes 

(4.4). 

𝑃𝑂𝐹 =
𝑁𝑜 .𝑜𝑓 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
                                     (4.4) 

The estimated POFs are then inserted into the corresponding nodes of the DBN model 

and the resilience curve is derived. 
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4.1.5 Reassessment of the Resilience Curve with the inclusion of additional safety measures 

in the DBN model 

For "Absorption", "Adaptation" and "Restoration" nodes additional safety nodes are 

added. Then the resilience profile is compared with the previous resilience curve. The updated 

resilience model should present the enhanced resilience properties for a long time until the 

functionality drops and the higher value of the functionality is attained after the restoration 

stage. 

4.1.6 Sensitivity Analysis for identification of the most influential nodes 

Sensitivity analysis facilitates the identification of the nodes having the highest impact 

on the state of the system’s functionality. This will assist in the application of the specific 

safety measures for the system. 

4.1.7 The assessment of the resilience profile of worn-out equipment 

To assess the evolution of the resilience with time at the case of the equipment being 

worn-out due to corrosion, the outcomes of the research done by Liao et.al. (2011) will be used. 

In that research, the Weibull distribution equation was employed for the Reliability estimation 

(4.5) 

𝑅(𝑡) = exp [− (
𝑡

𝜂
)

𝛽

]                                              (4.5) 

, where R(t)- reliability value after a certain time t, β- shape parameter and η- scale parameter.  

The parameters were estimated with the employment of least-squares parameter 

estimation and mean rank method. In the work of Liao et.al. (2011) the reliability estimation 

was performed for engine after 2,000 hours of operations. It was assumed that the separator was 

made from the same material. The estimated reliability of 70.36% was multiplied for previously 

developed probabilities of success. The probabilities of failure were also calculated 

accordingly. Consequently, the resilience profile for the worn-out equipment was achieved with 

the employment of Genie simulation.   
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4.2 Case Study 2 

 

Figure 4.2. Acid gas sweetening unit modelled in Aspen Hysys (Hysys,2004) 

 

The resilience assessment was conducted on a two-phase oil and gas separator located 

before the coalescing filter and acid gas contactor column. The two-phase separator has the 

level controllers and interlock system for the liquid outlet stream, pressure controller and 

interlock system for the gas outlet, pressure safety valves activating in case of the overpressure, 

alarms interconnected with 2-out-of-3 alarm counting mechanism. At the inlet of the feed 

stream, the methanol is injected to avoid the hydrates formation in the pipes. Furthermore, the 

performance indicators are monitored and controlled distantly by an operator in the control 

room and by an operator at the unit area. 

 

4.2.1 FRAM Analysis 

The FRAM analysis was developed according to the steps described in the methodology 

part (Section 4.1). First, the functions connected with the operational functions of the two-phase 

separator was listed. Then, the functions were interconnected with each other with the 

assistance of the six aspects. Then the Monte Carlo method was employed in the manner 

described in the work of Patriarca et al. (2017). The scenario of having a too-late response of 

the acceptable precision was assumed. Next, the variabilities for each of the function couplings 

and amplification factors were assigned for each coupling. The cumulative variabilities have 

been estimated for each coupling according to the Eq. (4.2), and 1000 random positive numbers 
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were generated accordingly for 1000 outputs of cumulative variability. Setting the 95% 

confidence level, and setpoint value of 24 for overall variability, the outcome of each of 31 

couplings was compared with the setpoint value. If the 5-percentile value of the given coupling 

was greater than 24, it was considered as critical (Figure 4.3). In the following case, the coupling 

of the highest criticality was considered, which is the coupling of the Operator of the control 

room controlling the level and interlock system, resulting in the cumulative variability value at 

5 percentiles of 38. Thus, imprecise and/or too late a response of the operator at the control 

room to the level alarms and indicators has the highest potential to cause an accident. 

Furthermore, the imprecise performance or too late a response of the level alarm and interlock 

systems has the highest potential to result in the accident or two-phase separator failure.  

 

Figure 4.3. FRAM Model for the activities related to the 2-phase separator 
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Table 4.5. The FRAM couplings with indicated amplification factors. 

 

 

 

4.2.2 DBN Model 

Based on the outcome of the FRAM analysis, the DBN Model is developed for the 

coupling with the highest criticality (Figure 4.4). The node "Disruption" lists the potential 

malfunctions that may cause accident development. The nodes "Absorption" and "Adaptation" 

list the current safety absorption and adaptation measures applied for the two-phase separator. 

"Restoration node" includes the recommendations for the enhancement of the 2-phase separator 

performance. 

Name of function Aspect Name of function αTij αPij Couplings 5%

Input Feed(Sour gas + PHC) 10±3 40±20 C1 1.21

Input Methanol Injection 30±20 30±20 C2 0.00

Control Operator at the Control Room 50±20 40±20 C3 3.62

Control Operator at the unit area 50±20 50±20 C4 7.40

Control Level controllers and Interlock systems 60±20 50±10 C5 18.70

Control Hand/manual Valves 10±5 10±5 C6 0.06

Feed(Sour gas + PHC) Control Level controllers and Interlock systems 60±30 40±20 C7 2.42

Precondi

tion
Feed(Sour gas + PHC) 10±5 10±5 C8 0.12

Precondi

tion
2-phase separator 10±6 10±6 C9 0.01

Input Pressure Indicators 60±10 40±10 C10 17.84

Control Operator at the Control Room 70±10 50±10 C11 26.90

Control Operator at the unit area 60±20 50±20 C12 12.88

Level Alarm Systems
Precondi

tion
Feed(Sour gas + PHC) 10±7 10±7 C13 0.00

Input Level Alarm Systems 80±10 50±20 C14 23.67

Control Operator at the Control Room 70±20 80±10 C15 37.88

Toxic Flammable Gas Detection 

Systems

Precondi

tion
2-phase separator 10±3 10±3 C16 0.52

Precondi

tion
Regular Equipment Comissioning 40±30 50±30 C17 0.01

Resource Toxic Flammable Gas Detection Systems 50±20 60±20 C18 11.89

Resource Pressure Indicators 50±20 60±30 C19 4.93

Resource 2-phase separator 10±2 10±2 C20 0.73

Control Toxic Flammable Gas Detection Systems 40±20 50±20 C21 3.57

Resource Pressure Indicators 10±3 60±20 C22 3.19

Control Toxic Flammable Gas Detection Systems 70±10 60±20 C23 26.03

Precondi

tion
2-phase separator 10±1 70±10 C24 5.96

Resource Toxic Flammable Gas Detection Systems 10±6 50±30 C25 0.01

Resource Pressure Indicators 10±7 60±30 C26 0.02

Time Operator at the unit area 50±30 60±20 C27 0.88

Coalescing Filter Input 2-phase separator 10±1 20±10 C28 0.74

Amine Contactor Input 2-phase separator 10±3 30±20 C29 0.01

Reflux Drum Input 2-phase separator 30±10 40±10 C30 7.02

Hand/manual Valves Control Operator at the unit area 50±30 60±20 C31 0.06

Upstream function

Operator at the unit area

Regular Equipment Comissioning

Level controllers and Interlock 

systems

Operator at the Control Room

Pressure Safety Valves

Downstream function

2-phase separator

Pressure Indicators
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Figure 4.4. Developed DBN model for the identified critical path 

4.2.3 Application of simulation for extraction of POFs 

The probability of failure for “ 2-phase separator performance” node was measured with 

sensitivity analysis in the Aspen Hysys model (Figure 4.2) with 700 iterations. The input 

parameters were the ranges of the pressure, temperature, and flow rate of the feed. The output 

parameter was the dihydrogen sulfide concentration in the "Sweet Gas" stream, leaving the 

amine contactor. As the failure, the case of having the H2S concentration higher than 4 ppm 

was assumed. Consequently, the POF equivalent to 0.122 was estimated. 

The POFs of the other nodes were identified using Aspen Hysys Dynamic simulation 

scenarios(Figure 4.5).  

Scenario 1. Valve actuator Failed Open. 

The Aspen Hysys Dynamic simulation for estimation of POF was completed for the 

two-phase separator located before the absorption column (Figure 4.2). The products of the 

separator were the sour gas routing to the absorption column and process hydrocarbons routing 

to the stabilization unit. The POF evaluation was accomplished with the strip charts generated 

as a result of the dynamic simulation (Figure 4.6). For filling the disruption node "Valve 

actuator Failed Open", the valve VLV-102 fail-open scenario was simulated in Aspen Hysys 
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Dynamic(Figure 4.5). The normal liquid per cent level was set to the value of 20-50%, however, 

the level of liquid in the tank dropped to 4.13 % when the valve VLV-102 failed open(Figure 

4.2). Employing Eq. (4.3) the POF for the node “Valve actuator failed Open” was estimated : 

𝑃𝑂𝐹1 =
𝑀𝑎𝑙𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑟𝑎𝑛𝑔𝑒

 𝑡𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒
=

56540 min −56301 𝑚𝑖𝑛

56540 min −55340 𝑚𝑖𝑛
=

239 𝑚𝑖𝑛

1200 𝑚𝑖𝑛
= 0.199 

 

Figure 4.5. Process control of the 2-phase separator(Hysys,2004) 

 

 

Figure 4.6. Valve  VLV- 102 actuators have failed open strip chart.   



49 
 

 

 

Scenario 2. Valve actuator Failed Close. 

For the node “Valve Actuator Failed Shut” the Aspen Hysys Dynamics Simulation was 

run given the Actuator has Failed Shut scenario for valve VLV-102. After the valve VLV-102 

failed close, the liquid level in thank reached 95.35 %. The outcome is displayed in the form of 

the strip chart. Based on the obtained results and eqn 4.3, the POF was estimated as: 

𝑃𝑂𝐹2 =
𝑀𝑎𝑙𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑟𝑎𝑛𝑔𝑒

 𝑡𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒
=

57480 min −57180 𝑚𝑖𝑛

57480 min −57080 𝑚𝑖𝑛
=

300 𝑚𝑖𝑛

400 𝑚𝑖𝑛
= 0.75 

 

Scenario 3. Selecting the wrong switch for the application 

For the node “Selecting the wrong switch for your application” the action of the level 

controller of valve VLV-102 was set to reverse instead of the direct(Figure 4.7). Resultantly 

the liquid level in the separator dropped from 30 % to 4.18 %. The POF for this scenario was 

then estimated and the result was inserted into the conditional probability table (CPT) of the 

corresponding node in the DBN model in Genie. 

𝑃𝑂𝐹3 =
𝑀𝑎𝑙𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑟𝑎𝑛𝑔𝑒

𝑇𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒
=

60 888 min −60366 𝑚𝑖𝑛

60888 min −59689 𝑚𝑖𝑛
=

522 𝑚𝑖𝑛

1199 𝑚𝑖𝑛
= 0.435 

 

 

Figure 4.7. Level controller incorrectly set-up due to wrong switch selection.  
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Scenario 4. Heat introduction and fire mitigation scenario 

In this scenario, the POF is estimated for node "Adding valve and interlock at the inlet 

stream of the separator" given fire in the two-phase separator (Figure 4.8). The heat was 

introduced to the vessel and with the employment of the event scheduler and cause and effect 

matrix, the closing of the all of the valves during the fire extinguishing was simulated with 

subsequent fire relief via the pressure safety valves before the pressure is returned to the normal 

operating pressure. After that, the closed valves were opened, and the operation continued at 

the recovered conditions. 

The normal operational pressure range for this scenario was the pressure range of 490-

520 kPa. The valves VLV-100, VLV-101 and VLV-102 were set to close at the pressure of 655 

kPa.  Based on the analysis of the obtained strip charts the disruption is seen to start at time 

100499 seconds and finishes at 111904 seconds, whereas the whole operation starts, and finish 

time is 96297 seconds and 117014 seconds, respectively.  

𝑃𝑂𝐹4 =
𝑀𝑎𝑙𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑟𝑎𝑛𝑔𝑒

𝑇𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒
=

111904 𝑠𝑒𝑐 − 100499 𝑠𝑒𝑐

117014 𝑠𝑒𝑐 − 96297 𝑠𝑒𝑐
=

11405 𝑠𝑒𝑐

20717 𝑠𝑒𝑐
= 0.551 

 

 

Figure 4.8. Simulation of fire in the 2-phase separator  
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Inserting the POFs obtained via the simulation, the resilience curve for the 2-phase 

separator is obtained.  Figure 4.9 presents the resilience of the separator given the disruption in 

terms of the malfunctions that may occur due to inaccurate performance or too late a response 

of the level alarm and interlock systems or the operator working in the control room. 

It takes 9 hours for disruption to bring the separator to the lowest level of the state of 

functionality, i.e., 0.48. Furthermore, it takes 56 hours for the system to restore to 0.94 – the 

highest state of functionality after the adaptation and restoration measures applied to the 

separator.   

 

Figure 4.9. The Resilience curve  

Additional nodes were considered for “Absorption”,” Adaptation” and “Restoration” 

(Table 4.6). This was done to build a more resilient DBN model for the two-phase separator 

and at the same time for validation of the DBN model developed previously (Figure 4.4). With 

the additional nodes, the resilience profile is expected to enhance. In case the resilience profile 

displays stronger “Absorption”, “Adaptation” and “Restoration” characteristics, the structure 

of the DBN model can be validated.  
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Table 4.6. Additional safety measures for the DBN model (Figure 4.4) 

Absorption Additional Operator at the control room 

Adaptation Bypass Valves 

Relief Valves 

Restoration 
Replacement of the damaged valves 

The pay bonus system for the safe month 

 

 
Figure 4.10. Updated DBN model with the additional parameters (orange nodes) presented in 

Table 6.  

 

 

 
Figure 4.11 The resilience model of the system with additional resilience parameters 
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Table 4.7. Comparison of resilience metrics 

Resilience metrics DBN Model1 

(Figure 3.4) 

DBN Model 2 

(Figure 3.6) 

Disruption occurrence time (hrs) 9 9 

Resilience decline value (%) 48.34% 50.0% 

The probability of the final resilient 

state S4 (%) 

94.32% 94.83% 

Time for resilience stabilization 

(hrs) 

56 56 

Time for 90 % recovery (hrs) 38 37 

 

From a comparison of the DBN models in Table 4.7, it is observed that the lowest value 

of resilience has increased from 48.34% to 50.00% with the addition of the new parameter for 

the "Absorption" node. This designated the stronger absorption properties of the system. The 

probability of the final resilient state is slightly increased at the updated DBN model and the 

time for 90 % recovery is shorter than in the initial DBN model. Both characteristics are 

evidence of the strengthening of the "Adaptation" and "Restoration" parameters of the system. 

Thus, the DBN model is validated.  

 

  



54 
 

 

 

4.2.4 Sensitivity Analysis in Genie Simulation for identification of the most influential nodes 

Sensitivity analysis was carried out to identify the nodes having the highest impact on 

the state of the system's functionality.  Identification of the critical nodes assists in the allocation 

of specialized safety measures to the system. Table 4.8 lists 11 scenarios, each representing a 

high error probability state or low functional state contributing to the variation of the resilience 

of the system.  

 

Table 4.8. Scenarios for sensitivity analysis 

Scenario 

1 Low absorption 

Scenario 

2 

Not functioning alarm 

and interlock systems 

Scenario 

3 Poor operator skills 

Scenario 

4 The low learning ability of the system 

Scenario 

5 

Low 2-phase  

separator performance 

Scenario 

6 High disruption 

Scenario 

7 No properly functioning redundant PLC system 

Scenario 

8 No repair works for alarm and interlock systems 

Scenario 

9 Low human reliability 

Scenario 

10 

No morning check of the operators' health 

condition 

Scenario 

11 No emergency response training 
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Table 4.9. The results of sensitivity analysis 

Scenarios 

Resilience  

Reduction(%) 

Time to reach 

 lowest 

reliability(hrs)  

Time for 90% 

 recovery (hrs) 

1 0.27 2 21 

2 36.71 8 28 

3 34.39 8 28 

4 42.81 8 30 

5 47.41 9 31 

6 48.83 10 32 

7 48.8 9 32 

8 48.32 9 32 

9 45.55 11 32 

10 47.75 10 32 

11 47.87 10 32 

 

From Table 4.9 it can be seen that the highest impact on the resilience drop occurs at 

low absorption conditions, however, with the strong adaptation and restoration characteristics 

the system restores to the normal operational state (90% of recovery) at the shortest amount of 

time than in the other scenarios. The highest impact on the resilience drop is done under the 

effect of the poor operator skills and not functioning alarm and interlock system. Scenarios 4-

11 show the resilience reduction to the value around 40 % in approximately 9 hours which 

represent the strong absorption properties or well-thought inherent safety design of the 

developed model.    

4.2.5 The Worn-Out Separator Resilience Assessment  

The resilience of the separator was assessed after 2,000 hours of work, according to 

Liao,2011, which is equal to 70.36 %. The nodes of the Resilience Dynamic Bayesian Network 

model were updated according to the calculated reliability. After the nodes being updated, the 

dynamic resilience profile was obtained. The previous reliabilities of the node "Alarm and 

Interlock System", "Bypass valves", "Relief valves" , "2 phase separator performance", "2 out 

of 3 alarm counting mechanism", "Separately connected PLC and SIS systems", "Poorly 

designed alarms", "Valve actuator failed shut", "Valve actuator failed open" were multiplied by 

0.7036. The probabilities of failures were updated for the nodes of absorption, adaptation, and 

disruption and "2-phase separator performance" nodes. 

The state of the functionality of the separator is dropped in 7 hours, and after the 

restoration, the resilience of the separator reached a stable value of 88% after 45 hours. Thus, 
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although it took a shorter amount of time for the state of functionality to drop, the system 

managed to recover to the high operational state at the same amount of time as in the case of 

the separator performance without the equipment being a worn-out assumption. 

 

Figure 4.12. The resilience profile of the worn-out separator.  

Overall, the case study demonstrated the applicability and effectiveness of the 

integration of the FRAM and DBN for quantitative resilience assessment of complex process 

systems consisting of the socio-technical aspects.  

 

  

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 10 20 30 40 50 60 70 80 90 100

St
at

e 
o

f 
fu

n
ct

io
n

al
it

y

Time steps(hrs)

Resilence profile of the worn-out separator



57 
 

 

 

Chapter 5- Conclusion and Future 

Work 

The Dynamic Quantitative Resilience Assessment of the process systems is the new 

direction in the sphere of resilience engineering. The complexity of the process plants requires 

the rigorous analysis of the root causes of the accidents and mishaps as well as the resilience 

attributes of the process systems on the level of socio-technical interactions. Additionally, the 

highly uncertain harsh cold environments and their impacts on process systems' performance, 

and the lack of operational experience and historical data make a risk assessment of process 

operations more challenging. For process systems operating in harsh environments, resilience 

assessment is more suitable as it can better deal with uncertain events during pre-disruption and 

post-disruption stages.  

Throughout this study the resilience assessment on the two-phase separator of acid gas 

sweetening unit was conducted for the two cases: 

Case 1: The possible threats for the two-phase separator were identified by application 

of FRAM and Monte Carlo Simulation. The resilience assessment was further 

conducted by development of four main resilience attributes corresponding to those 

threats.  

Case 2:  The dynamic quantitative resilience assessment was conducted for the known 

threat, which was analyzed for possible causes and consequences using the BT. 

The BT was then transferred into the DBN to assess the temporal evolution of 

the state of functionality of the system.  

For both case studies the Sensitivity analysis was conducted and the critical factors 

enhancing the system resilience were identified. Furthermore, the resilience variation with 

temporal equipment degradation was analyzed via employing Weibull Distribution.  

The main deliverables of this research work are: 

• Inclusion of both the subjective and objective data for estimation of the state of 

functionality in DBN 

•   Identification of the root causes of the accident development scenario and the possible 

system response to it with the BT. Integration with DBN to assess the current resilience 
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and the evolution of the resilience after the disruption and with the adaptation, 

restoration, and learning parameters.  

• The identification of the critical connections between socio-technical interactions that 

may potentially cause the accident development with FRAM. Integration of FRAM with 

DBN for assessment of the current resilience state of the system and the evolution of 

the resilience with restoration and learning.  

• The study proves that resilience should be assessed in both probabilistic and temporal 

terms.   

• It investigates the usefulness of process simulators as a process data source for PoF 

estimation.  

• It highlights the effectiveness of the DBN model for identification of the most influential 

safety measures.  

• Overall, the case study proved that the proposed method could generate a dynamic 

resilience profile, which could assist in the estimation of systems’ capability to withhold 

uncertain disruptions, monitoring their performance variation, assessing the 

effectiveness of safety measures, and identification of potential design and operational 

improvements.  

The limitations of the study were inability to access the plant data for obtaining and 

validation of the POF values.  

For future work, I will suggest integrating the machine learning and deep learning 

approaches to replace the subjective POF data and make the outcomes more accurate. For this 

purpose, I will suggest application of artificial neural networks (ANN) for some available data 

set, to further generate more values and estimation of POF out of approximately 10,000 outputs 

generated with ANN.  

Furthermore, I will suggest validating the cumulative variability outcomes obtained 

with integration of FRAM and MCS, by running MCS for 500, 2000, and 3000 iterations.  
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