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Theories with a pole in the kinetic term have been used to great effect in studying inflation, owing
to their quantum stability and attractor properties. We explore the use of such pole kinetic terms
in dark energy theories, finding an interesting link between thawing and freezing models, and the
possibility of enhanced plateaus with “superattractor”-like behavior. We assess the observational
viability of pole dark energy, showing that simple models can give dark energy equation of state
evolution with w(z) < −0.9 even for potentials that could not normally achieve this easily. The
kinetic term pole also offers an interesting perspective with respect to the swampland criteria for
such observationally viable dark energy models.

I. INTRODUCTION

The inflationary period of cosmic acceleration in the
very early universe offers a rich variety of observable
properties to measure, such as the primordial curvature
perturbation power spectrum and its tilt ns and the pri-
mordial gravitational wave power spectrum and its am-
plitude in terms of the tensor to scalar ratio r. One of
the exciting theoretical developments of the last decade is
systematization of the relations between the two quanti-
ties, and to the number of inflation e-foldings N . Certain
models, such as α-attractors [1–4], give tracks, or discrete
segments, within the ns–r space (see [5] for a recent re-
view). The attractor nature can be traced to the pole
structure of the kinetic term, with in turn the parameter
along the track related in some instances to the geometry
of the field space [3].

Dark energy theories also exist with noncanonical ki-
netic terms, i.e. k-essence [6, 7], although this is of-
ten some function of the canonical kinetic term X =
−(1/2)gµν∂µφ∂νφ, i.e. K(X). Here we explore what a
pole structure may do in a dark energy context. Unlike
inflation, dark energy is a late time phenomenon and has
only had N ≈ 1 e-folds of influence. Similarly perturba-
tions associated with dark energy tend to be negligible,
at least on subhorizon scales (though k-essence theories
can give more significant effects). Thus we don’t expect
an equivalent result to ns–r tracks, and are really just
openly exploring what effects may arise.

In Sec. II we introduce the pole dark energy theory
and examine the properties upon transformation to the
canonical frame. We present illustrative numerical re-
sults for dynamical evolution of the field and the dark en-
ergy equation of state in Sec. III, identifying some inter-
esting cases that have observational viability. Section IV
speculates about the relation to swampland criteria, and
Sec. V presents conclusions and further work.

II. KINETIC POLE AND CANONICAL

TRANSFORMATION

We begin with a scalar field Lagrangian with a pole in
the kinetic term, and some potential V (σ),

L =
−1

2

k

σp
(∂σ)2 − V (σ) . (1)

The pole can reside at σ = 0 without loss of general-
ity, and has residue k and order p. Poles can arise in
theories due to nonminimal coupling to the gravitational
sector, geometric properties of the Kähler manifold in su-
pergravity, or as a signature of soft symmetry breaking
(see, e.g., [8, 9] and references cited therein). Here we
treat it phenomenologically.
The kinetic term can be brought into canonical form

L =
−1

2
(∂φ)2 − V (φ) , (2)

by the transformation

φ =
2
√
k

|2− p| σ
(2−p)/2 (3)

σ =

( |2− p|
2
√
k

)2/(2−p)

φ2/(2−p) . (4)

We take the branch σ ≥ 0 (note the field will not cross
zero due to the pole). The pole dark energy Lagrangian
now has the form

L =
−1

2
(∂φ)2 − V

(

σ =

( |2− p|
2
√
k

)2/(2−p)

φ2/(2−p)

)

.

(5)
Note there is in general no exponential factor that

stretches the potential and gives a flat plateau such as
for α-attractors. However, we will see some other inter-
esting properties below. The case p = 2 is a special case,
and is the standard one used for such inflation (but see
[3, 5, 8, 9]). In this instance we instead have

φ = ±
√
k lnσ , σ = e±φ/

√
k (p = 2) . (6)
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Here the exponential and stretching to give a flat plateau
does appear. Dark energy with such α-attractors was
explored in, for example, [10, 11], and we will not consider
standard α-attractor dark energy further, although we do
discuss a new “superattractor” variant.
We also note there are situations in which V may not

be regular at the pole (e.g. having a pole there itself),
where conventionally a Maclaurin series is used such that
V ≈ V0−cσ. Some theories such as supergravity generate
the kinetic and potential terms from the same Kähler
potential, and the coupling in coupled theories also enters
in both terms, so both having poles is possible. See [9]
for further discussion.
Let us now investigate how the transformation into

the canonical kinetic term transforms the potential into
a “canonicalized” potential, for various common initial
potential forms. From the form of Eq. (4) we see that
a power law potential is transformed into a power law
potential,

V ∼ σn −→ V ∼ φ2n/(2−p) . (7)

Note the characteristics depend on whether p < 2 or
p > 2, in particular whether the initial and transformed
power law indices are the same sign.
For p < 2 a monomial potential gets transformed into

a monomial potential, and an inverse power law potential
becomes an inverse power law potential. This is not par-
ticularly interesting, especially because it steepens the
potential (e.g. for p = 1 it takes V ∼ σn to V ∼ φ2n),
making it less suitable for inflation or dark energy near
cosmological constant like behavior (dark energy equa-
tion of state parameter w ≈ −1). But for p > 2, a
monomial becomes an inverse power law and an inverse
power law becomes a monomial, i.e. the signs flip.
This is important since for canonical scalar fields, a

monomial potential gives rise to thawing dark energy
that starts in a cosmological constant like state at high
redshift and evolves aways from it at later times, while
an inverse power law gives freezing dark energy that can
have a dynamical attractor behavior to a constant equa-
tion of state parameter w at early times and then later
evolves toward cosmological constant behavior [12].
Thus, pole dark energy can generate the properties of

freezing, possibly attractor, fields from simple monomi-
als (like V ∼ σ2 or σ4), and thawing fields from an orig-
inal inverse power potential. Recall that σ is defined on
[0,∞], which is natural for an inverse power law poten-
tial and represents the positive field half of a monomial.
Since φ also lives in [0,∞] the same holds for the trans-
formed fields.
This can lead to an interesting consequence, e.g. for

potentials with a region of negative values. For example,
with p = 2(1 − n) this transforms an inverse power law
into a linear potential V ∼ φ. However, the field never
rolls past φ = 0 into the negative potential region since
φ = 0 corresponds to σ = ∞. Conversely, a linear poten-
tial in σ maps to an inverse power law dark energy for
p > 2, with V ∼ φ−2/(p−2).

Figure 1 illustratively summarizes the mapping from
power law and inverse power law potentials to the canon-
icalized potential form. Poles of order p < 2 preserve the
power law index sign (and make the potential steeper),
while poles of order p > 2 change the sign, turning a
monomial into an inverse power law (and vice versa).
The particular value p = 2(1 − n) transforms an inverse
power law into a linear potential.

FIG. 1. The field transformation to give a canonical ki-
netic term from one with a pole of order p also transforms the
potential. Depending on the value of p this can take mono-
mials and inverse power laws into each other, including linear
potentials.

One case of particular interest is p = 4. This maps a
power law index to its negative, i.e. σn → φ−n. For an

exponential potential V ∼ e−λσ becomes V ∼ e−λ
√
k/φ,

again mapping a classic dark energy freezer potential to
a well known thawer.

Another case of note is p ≫ 1. Not only will this
convert a thawer to a freezer (since p > 2) but it will
take any monomial with index m and bring it to an in-
verse power law potential with (negative) index n ≪ 1.
The inverse power law characteristic gives the usual early
time attractor dynamics, but the index n ≪ 1 provides
wearly = (−2 + nwb)/(2 + n) ≈ −1 + n(1 + wb)/2, where
wb is the background equation of state (e.g. wb = 0 dur-
ing the matter dominated era. Thus p ≫ 1 generates
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close to cosmological constant like dynamics for any in-
trinsic monomial potential. Effectively, p ≫ 1 freezes the
dynamics of σ. This is not dissimilar to screening mecha-
nisms in modified gravity where Vainshtein screening (or
k-mouflage) works by decoupling the field through a large
kinetic term [13–15].

III. NUMERICAL DYNAMICS

To explore which theories, in terms of pole order and
original form of potential, can usefully serve as dark en-
ergy, that is be observationally viable in the sense of hav-
ing w ≈ −1 at recent times (we will specifically use it
in the sense that w(z) < −0.9), we consider some stan-
dard particle physics potentials and numerically solve the
equations of motion of the transformed field.

A. Quadratic → Inverse Power Law

Starting with a quadratic potential, i.e. V =
(1/2)m2σ2, which gives a thawing field, we choose p > 2.
If p < 2 then the transformed potential will also be a
monomial, and a steeper one, making it a less desirable
dark energy model. For p > 2 we will have an inverse
power law canonicalized potential, which has the nice
feature of an attractor behavior at early times during
radiation and matter domination.

However, inverse power law potentials V ∼ φ−α have
difficulty attaining w ≈ −1 by the present, so they are
not viable unless the power law index α ≪ 1 (see, e.g.,
[16]). We show the numerically obtained equation of
state behavior w(z) in Fig. 2. For α . 0.2 the dark
energy evolution is roughly acceptable observationally.
Note that it is a freezing model, with a high redshift
constant w as discussed in the previous section (with
w → −0.909, −0.952 for α = 0.2, 0.1) but approaching
w = −1 as the universe evolves.

Freezing fields were studied in detail in [17]. In par-
ticular, for models not too far from w = −1 one can
compare them to the constant w dark energy defined by
the calibration relation wconst = w(a⋆ ≈ 0.85). Figure 3
demonstrates that indeed the distance observables in the
inverse power law model and its partner constant w agree
at the 0.06% level. Note that the field runs to the present
over a subPlanckian excursion, ∆φ < MP .

In pole dark energy one does not have to set the po-
tential to have a shallow inverse power law index. The
transformed potential V ∼ φ−0.2 can be obtained from
a quadratic potential n = 2 with p = 22, or a linear po-
tential n = 1 with p = 12, or a monodromy potential
n = 2/3 with p = 8.67.

FIG. 2. The transformed inverse power law potential is
observationally viable for power law index α = −2n/(2 −
p) . 0.2, with the dark energy equation of state parameter
w(z) < −0.9.

FIG. 3. The dark energy behavior from Fig. 2 gives an expan-
sion history similar to constant w models, here w = −0.963
and w = −0.929 for α = 0.1, 0.2 (dark blue and light red
curves) respectively. The fractional distance deviation from
the corresponding constant w model is shown (solid curves)
in percent, i.e. the maximum deviation is 0.06%. The field
excursion ∆φ is subPlanckian (dashed curves).
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B. Dilation → Inverse Exponential

Another common particle physics potential is the expo-
nential potential, V ∼ e−βσ, such as from dilaton fields.
This gives a freezing field, and indeed in the canonical
case would trace the background energy density compo-
nent evolution at early times. When we use this in a
Lagrangian with a kinetic pole with p = 4, we obtain

V ∼ e−β
√
k/φ ≡ e−r/φ. Such a potential gives thawing

dark energy. The potential is shown in Fig. 4 for three
values of r = β

√
k.

FIG. 4. The transformed inverse exponential potential
V ∼ e−r/φ has a zero minimum and a plateau, like α-
attractors, but a weaker one. Nevertheless the field can stay
frozen until nearly the present if it does not start too close to
the minimum.

Thawing fields were studied in detail in [18]. In par-
ticular, for models not too far from w = −1, the field
excursion to the present follows

∆φ/MP ≈ 0.7
√
1 + w0 . (8)

We verify numerically that holds here. The potential is
plateau-like at large φ (with φ = ∞ corresponding to the
pole at σ = 0), but not as flat as an α-attractor. Note
that near the minimum (φ = 0, corresponding to σ = ∞,
so the field cannot roll through zero) the potential is very
flat, exponentially so, more than a monomial.
Figure 5 shows the evolution w(z). This can be ob-

servationally viable for parameters of order unity. Since
the dark energy is a thawing model, it is sensitive to
the initial field value φi at high redshift (the value φi

is insensitive to the exact redshift used since the field
is frozen until dark energy density becomes appreciable,

e.g. ∆φ/MP < 0.01 until Ωφ ≈ 0.1). The steepness of
the potential λ = −(1/V )dV/dφ = −r/φ2 helps deter-
mine how quickly the field thaws, and we find that the
condition φi &

√
2r (i.e. |λi| . 1/2) gives observational

viability.

FIG. 5. The transformed inverse exponential potential
V ∼ e−r/φ gives thawing dark energy, whose equation of state
parameter today depends on the coefficient r and the initial
field value φi. It is observationally viable if φi &

√
2r.

C. Poles with p = 2, and Superexponential

We briefly return to the usual case of kinetic poles
with p = 2, as generally used for inflation. If we use a
potential with a pole as well, such as an inverse power
law V ∼ σ−n, then this is not covered by the usual
Maclaurin expansion V ≈ V0 − cσ. However, by Eq. (6)
this gives an exponential for the canonicalized potential,

V ∼ e∓φn/
√
k. Such a potential will not give a satisfac-

tory late time acceleration, unless the field initial con-
ditions are fine tuned to a thawing state (small kinetic
energy) rather than the standard scaling solution. Note
that like the p < 2 case, the freezer inverse power law
transforms to a freezer potential.
A monomial potential, e.g. V ∼ σ2, is the well known

α-attractor case (specifically the T model).
Instead we will use a dilaton potential, V ∼ e−βσ,

which gives rise to a superexponential behavior

V ∼ e−βe−φ/
√

k

. (9)

Near the pole σ = 0 (φ = ∞) one can write this in the
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usual form

V ∼ 1− cσ −→ V ∼ 1− β e−φ/
√
k , (10)

looking like an α-attractor. However, away from the pole
one can see the full transformed potential, and in fact
the exponential of an exponential imbues it with a flat-
ter plateau than a conventional α-attractor, giving an
enhanced “basin of attraction” for field initial conditions
to yield w ≈ −1 today.
We plot the transformed potential in Fig. 6. Although

σ is bounded by [0,∞], here φ can range over [−∞,∞],
with σ = ∞ corresponding to φ = ∞ (the potential
plateau) and σ = 0 corresponding to φ = −∞ (the poten-
tial minimum at zero energy), while σ = 1 gives φ = 0.

FIG. 6. The transformed superexponential potential V ∼
e−β e−rφ

has a zero minimum (at φ ≪ −1/r) and a plateau,
like α-attractors, but an enhanced one. Potentials are plotted
vs φ for various values of r, with β = 1 unless otherwise
labeled. Increasing r or decreasing β enhances the plateau.

Note that increasing r = 1/
√
k or decreasing β

strengthens the plateau and the attraction to w ≈ −1.
Figure 7 shows the dark energy equation of state evolu-
tion. Even initial field values as low as φi/MP = 0.37
(for the r = 1, β = 1 case), can give observationally vi-
able dark energy behavior – a much smaller value than
for most α-attractors (for example the Starobinsky model
requires φi/MP & 1.5, and an ordinary nonattractor like
a quadratic potential requires φi/MP & 2.5, as seen in
Fig. 2 of [10]). One clearly sees that increasing r or de-
creasing β keeps w(z) closer to −1. Since this is a thaw-
ing field, it again follows the field excursion amplitude
given by Eq. (8), and so is subPlanckian. (For notational
convenience we will sometimes set MP = 1.)

FIG. 7. The transformed superexponential potential gives
thawing dark energy, whose equation of state parameter to-
day depends on the coefficients β and r and the initial field
value φi. It is observationally viable for much lower φi than a
conventional α-attractor. The dark energy equation of state
evolution w(z) is plotted for various φi, with r = 1, β = 1 un-
less otherwise labeled. The enhanced potential plateau from
increasing r or decreasing β leads to a less thawed w(z), one
remaining closer to −1.

IV. CAN POLES BE STILTS OVER THE

SWAMP?

Scalar field potentials frequently used for dark energy
models can have difficulty being consistent with string
theory, in terms of such conditions as swampland criteria
[19, 20]. These conjecture that there is a distance limit
∆φ/MP . O(1) and a steepness criterion |∇V |/V &
O(1).

These conditions impose severe constraints on the
types of potentials usually favored for inflation or dark
energy. However, we can ask whether the use of poles in
the kinetic term can relax the requirements on the po-
tential. This has been mentioned for inflation in terms
of noncanonical kinetic terms and the distance criterion
in [21] and for both criteria within multifield inflation in
[22]. In fact, in the latter the field space metric gives
an effective noncanonical kinetic term. For inflation,
changing the kinetic term can give rise to a tension be-
tween satisfying swampland criteria and nongaussianity
constraints [23].

Dark energy does not have observational nongaussian-
ity limits so it seems worthwhile to explore whether the
noncanonical kinetic term used here can ease swampland
constraints. In effect, does the pole enable the field to go
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over the swampland? The answer in a formal sense is no,
but in a practical sense is possibly.
For the first criterion, we have already discussed that

the field excursions for the models considered, in the
observationally viable part of parameter space, follow
Eq. (8) for the thawing fields, giving ∆φ/MP < 1. The
freezing model of Sec. III A also obeyed that limit, as
shown in Fig. 3. Of course in the future the field will
travel further, but the condition holds in the observable
region, the past.
Regarding the steepness criterion, this can also be sat-

isfied under certain conditions. For a noncanonical ki-
netic term K(σ)(∂σ)2/2, this takes the form [20, 22]

|∇V |
V

=
1√
K

|dV/dσ|
V

=

√

σp

k

|dV/dσ|
V

. (11)

Indeed, this works out the same as first canonicalizing
the field and then simply using |dV/dφ|/V . Nevertheless,
our canonicalized potentials are unusual enough that it
is worth calculating.
For our first model, a monomial canonicalizing to an

inverse power law potential, we have

V ∼ σn ;
|∇V |
V

=
|n|√
k
σ(p−2)/2 =

2|n|
|2− p|

1

φ
. (12)

Since p > 2 we need σ & 1 or φ . 1. At early times
φ can indeed start small and we see we get viable dark
energy for subPlanckian excursions so it is possible that
the steepness is of order unity, possibly satisfying the
steepness criterion.
For the second model, transforming from an exponen-

tial to an inverse exponential potential, we have

V ∼ e−βσ ;
|∇V |
V

= β

√

σp

k
→ β

√
k

φ2
, (13)

for our value p = 4. We can satisfy the criterion for
large r = β

√
k, but this is observationally unviable since

it drives w far from −1. Again we want σ & 1 or φ .
1. As we see in Fig. 5, this makes it more difficult to
achieve viable w(z), and this model is not as satisfactory
in avoiding the swampland.
For the third model, an exponential canonicalizing to

a superexponential, the same condition on σ holds,

V ∼ e−βσ ;
|∇V |
V

= β

√

σp

k
→ β√

k
e−φ/

√
k , (14)

although the condition is different in terms of φ (here
with p = 2). Again we would like β large, but this is
observationally unviable, or k small (i.e. r large), which is

ok, but we must make sure that φ/
√
k is not large. Fig. 7

demonstrates that these conditions give viable w(z) (as
long as φ isn’t too small, well off the plateau toward the
minimum), and so we can potentially achieve |∇V |/V ∼
1.
Thus at least some of these pole dark energy models

seem to have an acceptable range in which they could

satisfy both swampland criteria and observational viabil-
ity in the form of w(z) < −0.9 for all redshifts to the
present.

V. CONCLUSIONS AND FURTHER

THOUGHTS

Noncanonical kinetic terms can arise from a wide vari-
ety of physics, from Dirac-Born-Infeld to higher dimen-
sion to coupled models. They add a degree of freedom to
quintessence, allowing a dark energy sound speed lower
than the speed of light and dynamics in a distinct re-
gion of phase space, give nongaussianity in inflation, and
enable a type of screening in modified gravity theories.
Poles in the kinetic term can arise from several physics
mechanisms, and be tied to underlying geometric consid-
erations in string theory. Here we explored the impact of
kinetic poles on dark energy and cosmic acceleration in
the recent universe.
The transformation from the noncanonical kinetic

term into the canonical term, which in α-attractor mod-
els leads to an extended plateau suitable for inflation (or
dark energy), can also turn freezing dark energy into
thawing dark energy, and vice versa. We study dif-
ferent order poles and their effect on standard poten-
tials, demonstrating that they can deliver viable dark en-
ergy models. In many cases the evolution can approach
w ≈ −1 more easily than in the standard canonical case.
Three example models we study are an inverse power

law potential with very small index, generated from a
standard quadratic potential (so a thawer transformed to
a freezer), an inverse exponential generated from a dila-
ton field (a freezer transformed to a thawer), and a super-
exponential coming from a dilaton field. This last model
shows an enhanced plateau, flatter than an α-attractor,
and superattraction in terms of a significantly expanded
basin of attraction toward w ≈ −1 relative to monomials
and even α-attractors. We also discuss how a high order
pole p ≫ 1 enables cosmological constant like behavior
independent of potential, acting in a manner somewhat
analogous to Vainshtein screening in modified gravity.
We numerically test all these models for evolution that

is observationally viable, in the specific sense that w(z) <
−0.9. Moreover, all the models exhibit a subPlanckian
field excursion (up to the present).
Finally, we consider a more speculative question of

whether pole dark energy can avoid swampland crite-
ria difficulties. We have already seen that it satisfies
the distance criterion. We demonstrate that indeed
the pole models can potentially obey the steepness cri-
terion, yet be observationally viable dark energy with
w ≈ −1. Whether this opens fruitful avenues for dark
energy within string theory is left for future work.
The poles in the noncanonical theories lead to interest-

ing new dark energy models such as the superexponential
one that exhibits superattraction in the sense of a signif-
icantly expanded set of field initial conditions that give
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rise to observationally viable evolution, and new meth-
ods of attaining interesting old dark energy models like
a very shallow inverse power law attractor model. Thus
pole dark energy appears worthy of future investigation.
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