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Abstract: High voltage insulator detection and monitoring via drone-based aerial images is a cost-effective alternative in
extreme winter conditions and complex terrains. The authors examine different surface conditions of the outdoor electrical
insulator that generally occur under winter condition using image processing techniques and state-of-the-art classification
methods. Two different types of classification approaches are compared: one method is based on neural networks (e.g. CNN,
InceptionV3, MobileNet, VGG16, and ResNet50) and the other method is based on traditional machine learning classifiers (e.g.
Bayes Net, Decision Tree, Lazy, Rules, and Meta classifiers). They are evaluated to discriminate the images of insulator surface
exposed to freezing, wet, and snowing conditions. The results indicate that traditional machine learning methods with proper
selection of features can show high classification accuracy. The classification of the insulator surfaces will assist in determining
the insulator conditions, and take preventive measures for its protection.

1 Introduction
Outdoor electrical insulators are critical components in high
voltage power transmission and distribution lines. The insulators
are deployed to provide the mechanical support and electrical
isolation to conductors. The in-service insulators operating under
severe environment are affected by several significant factors such
as weathering and airborne contamination.

The outdoor insulators are prone to mechanical and electrical
stresses that deteriorate dielectric property leading to their failures.
Leakage current in the insulators is indicative of the failures. The
increase in contamination from airborne pollution such as soluble
deposits (sea-salt, industrial oil, and dust, ice) are known to cause
degradation [1]. The contamination of the insulator surface also
contributes to a decrease in the creepage distance, causing
flashover, and can even decrease the insulator's puncture voltage
level. There are other factors such as vandalism [2], inclement
weather conditions [3, 4], aging [5], erosion, and tracking [6] that
can cause the failures in the insulation system.

The extreme weather conditions, such as, that lead to ice and
snow formation on insulator surfaces in combination with wind
conditions can cause additional mechanical load that leads to the
reduction of the leakage distance of insulators [7]. The wet-
conditions of the surface along with the non-uniformly polluted
surface creates a distortion of the electric field forming a
conductive layer that decreases surface resistance, triggers surface
discharge [8] and leakage current [9–11]. This makes condition
monitoring and evaluation of insulators state important for power
utilities. Condition assessment of insulator aims to identify the
current condition of energised insulators and take remedial actions
if required by replacing faulty insulators.

Conventional monitoring approaches for high voltage overhead
insulators becomes challenging task under several situations such
as (i) changes in weather conditions, (ii) geographically isolated
locations and terrains, (iii) the cost factors such as for experts and
measurement setups, and (iv) by the sheer volume of insulators to
be analysed. Traditional insulator monitoring techniques rely on
visual inspection via ground patrolling, pole climbing, and aerial
inspection using a helicopter and different cameras, including
thermal-infrared or ultrasound cameras. A ground patrolling
method can provide an accurate defect detection rate; however, this
method is labour-intensive and affected by weather conditions.

Whereas, aerial inspection by manned helicopter can cover the
large size of the power network, but limits detection accuracy due
to flight speed and considerable distance to power line objects.
These traditional approaches are costly, time-consuming, and are
efficient and cost-effective due to the large size of the transmission
networks and complex geographic locations.

The real-time and continuous condition monitoring system for
power line infrastructure including outdoor electrical insulators
using image processing and unnamed aerial vehicles (UAVs) is
growing popularity due to the possibility to automate the condition
monitoring at low cost and can be an alternative to ground-based
systems and helicopters. With UAVs, it is possible to fly closer and
collect real-time spatial data using infrared, thermal, and optical
sensors by hovering over electrical transmission insulators. The
UAV operation includes data acquisition, the transmission of
information to the on-site control station for UAV navigation,
recording the location of investigated equipment, and information
transmission to the base station for image data analysis. Several
studies have focused on this topic by introducing various image
processing algorithms to detect the insulators in aerial images and
its fault diagnosis [12, 13].

In this work, we examine the condition of outdoor glass
insulators exposed to freezing winter condition and pollution. The
aerial images done for this study is obtained from drones under
extreme winter weather conditions typical of the Eurasian region.
We extend our previous work in [14] by including further analysis
with data-driven neural network classifiers such as convolutional
neural networks, to draw a comparison with traditional machine
learning (ML)-based approaches. The primary objective in this
work is to identify and discriminate the presence of the ice, water,
and snow formation over the insulator surface, analysing the aerial
images of the insulator.

We examine and compare the performance of the neural
network and ML classification algorithms using insulator image
data set. For the traditional ML classifiers, the impact of using
feature extraction and normalisation is analysed. The deep learning
methods are compared for performance on different networks. The
main contributions of this work are as follows: (i) this work shows
that traditional ML algorithms can be equally competitive to that of
deep learning approaches, (ii) the need for optimisation of deep
learning approaches for the given classification problem is
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highlighted rather than using the pre-trained neural network
models.

The paper is organised into five main sections with Section 2
providing details of image acquisition using a drone, image
normalisation using filters: retinex, mean and local mean
normalisation (LMN), and feature extraction using standard
deviation (STD) and local binary patterns (LBPs) descriptors.
Section 3 provides the details of the classification using Bayes
Naive, Bayes Net (BN), IBK, sequential minimal optimisation
(SMO), J48, Random Forest (RF) and AdaBoost (AB) M, and
convolutional neural networks. Section 4 provides a summary of
results and discussions, with Section 5 drawing the main
conclusions of the paper.

2 Image processing
2.1 Image acquisition

The image data set consists of aerial images of a suspended glass
insulator captured using a drone at different view angles and

dynamic conditions. The insulator was hung outside during the
wintertime and the images of ice and snow formation, as well as a
wet condition over the surface were captured periodically using a
drone DJI Phantom 4. The data set contained 400 images with four
classes, including snow, water, ice, and clean surface with 100
images in each class. The size of the original images was scaled
down and segmented by 64 × 64 pixel size to reduce the
computational cost. The original images of high voltage glass
insulator under different weather condition are given in Fig. 1. 

2.2 Image filtering

The aerial images acquired in dynamic mode usually have extreme
variations in the intensity of illumination, making it challenging to
capture informative images with traditional onboard cameras in
drones. Therefore, image filtering techniques such as Retinex filter,
LMN and mean filters are applied to reduce the noise, non-uniform
illumination effects, and enhance the images. The filters used for
creating the data set in our study was implemented in MATLAB.
The images of four conditions of insulator surface processed by
these filters are presented in Figs. 2–5. 

2.2.1 Retinex filter: The retinex-based algorithm is a widely used
tool to enhance and restore images by preserving object details.
The retinex theory was first proposed by McCann [15], and it states
that the scene in the human eye is the product of reflectance (R)
and illumination (L) as shown in (1). Here, illumination refers to
the presence of light falling on the object when the image is taken,
and reflectance is the intensity of light reflected by the object.
Generally, the filter utilises local mean of pixels whose values are
higher than the centre to calculate illumination, however, noise in
the sense of halo artefacts may appear near the reflectance edges,
which results in unnatural detail retrieval [16]. The input images
were processed in MATLAB by setting the parameters of the filter.

I(x, y) = L(x, y)R(x, y) (1)

2.2.2 LMN filter: The influence of image illumination on
classification results tends to be very high. The simple and
effective solution to this issue could be the implementation of
normalisation by local standardisation of feature vectors [17]. The
normalised feature vector is characterised by (2). The output y(i,j)
is obtained using the original image, which is defined as I(i,j) with
local mean Ig(i, j) and STD estimated by Gaussian kernel with
σg(i, j). The function is implemented in MATLAB by setting the
smoothing windows σg(i, j).

y(i, j) = I(i, j) − Ig(i, j)
σg(i, j) (2)

2.2.3 Mean filter: The mean filter is considered to be the simplest
form of denoising filter as it is efficient and simple in terms of
performance and cost. The image signal is processed by averaging
values of neighbourhood pixel intensities for fixed window size.
Basically, the filtering process involves convolution of an input
image and the filter mask (kernel) with 2 × 2 size. This filter is
applied to compare the influence of object smoothing on
classification performance.

Fig. 1  Glass insulator images
(a) Clean, (b) Water, (c) Snow, (d) Ice

 

Fig. 2  Images samples of clean insulator surface processed by filters
(a) Retinex, (b) LMN, (c) Mean

 

Fig. 3  Images samples of snow-covered insulator surface processed by
filters
(a) Retinex, (b) LMN, (c) Mean

 

Fig. 4  Images samples of ice-covered insulator surface processed by
filters
(a) Retinex, (b) LMN, (c) Mean

 

Fig. 5  Images samples of water droplets on insulator surface processed by
filters
(a) Retinex, (b) LMN, (c) Mean
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2.3 Feature extraction

Two different feature extraction approaches – LBP filtering and
mean-variance filtering were examined to transform images to
feature vectors. The LBP is a simple but effective texture
descriptor widely used in applications requiring illumination
invariant features [18]. In our experiment, LBP is chosen for
texture feature extraction due to its benefits such as computational
efficiency and invariance to greyscale changes. To describe the
texture information in the images LBP assigns a label to every
pixel of an image by thresholding the 3 × 3 – neighbourhood of
each pixel with the centre pixel value and considering the result as
a binary number as described through (3) and (4) [19]

LBPP = ∑
p = 0

P − 1
s(gp − gs)2p (3)

s(x) = 1, if x ≥ 0
0, otherwise, (4)

Here, p is the index of the pixel in the neighbourhood of the pixel
gs. s(x) thresholds the distance between the neighbourhood pixels
to binary relative to the gs pixel. The mean-variance filtering is a
feature representation that standardises the pixel range within a
local window. The filter substitutes the original pixel-value with a
STD window mask in an area around the pixel. This operation
resembles the human eye sensory filtering process resulting in
edges of different strengths determined by the window size.

3 Classification
3.1 ML algorithms

The classification algorithms are tested on the database containing
four classes of the surface condition of outdoor high voltage glass
insulator (clean, water, ice, and snow) and 100 images within each
class. The images are pre-processed by LMN, retinex filters, and
mean filters to make the feature illumination invariant. The feature
vectors formed using LBP and STD descriptors are used in
different classifiers for recognition accuracy tests. Two metrics
used for performance evaluation of classifiers: area under the
receiver operator characteristic curve [area under the curve (AUC)]
and accuracy (%). We select the following classifiers: J48, Bayes
Naive, BN, IBK, SMO, RF, and Ada Boost M1.

3.1.1 BN and Naive Bayes (NB): BN and NB are widely used
techniques that belong to the group of Bayesian network classifier
and operate as probabilistic graph models. To compute the
conditional probability of each attribute, assuming that it is as
statistically independent, for the given class by learning from
training data, and then predict the class with the highest posterior
probability [20]. The Bayes classifier is a probabilistic function
that assigns a class label y^ = Ck for some k as follows:
y^ = argmax

k ∈ {1, …, K}
p(Ck)∏i = 1

n p(xi Ck).

3.1.2 SMO: SMO classifier is one of the functional classifiers,
which operates similar to the neural network. The SMO is designed
to resolve the problems arising in support vector machine (SVM)
and utilised for training the SVM using polynomial or radial basis

function (RBF) kernels by replacing the missing values and
converting nominal attributes into binary ones [21, 22].

3.1.3 IBK: IBK is also known as K-nearest neighbour and is
included under the category of Lazy classifiers. This type of
classifier is simple and effective in operation. However, it is
memory intensive and time-consuming since it stores training
instances and does not support the inclusion of new samples in
training set while building the model.

3.1.4 J48 andRF: Decision tree J48 and RF are well-known
classification algorithms, which use a tree structure, which is
formed from a set of labelled training data. Each node in the tree
model denotes a test on the attribute value and the outcome of
every test is represented by each branch. In IBK model, the tree
leaves represent the predicted classes, and the decision is made by
splitting the data into smaller subsets using each attribute, whereas
the RF produces the output in the form of individual trees [23].

3.1.5 AdaBoost M1: AB M1 is Meta type classifier, which is used
to generate and train a base classifier through determining the
optimal set of attributes. It helps to reduce the learning error and
improve the prediction performance of the base classifier [24].

3.2 CNN

The convolutional neural network is a representative model of deep
learning. It is a powerful tool widely implemented for image-
related analysis. The advantages of the implementation of CNN are
due to its sparse connection, parameter reduction through weight
sharing, a high degree of invariance for translation, scaling, and
tilting [25, 26]. The CNN-based approach has proven to be feasible
to train large data set in visual recognition problems for different
application domains, including insulator detection [27, 28] and
diagnosis [29]. The CNN operates to extract mid-level and high-
level features from input images by shrinking the feature maps.

3.2.1 Feature extraction: In the input layer, the greyscale image
with the size of 64 × 64 × 1 is fed as an input, then multiple
convolutional and sub-sampling or pooling layers are utilised to
extract the feature characteristics by implementing partial sub-
sampling and local averaging. The convolutional layer simply
computes the feature map of an input image by applying and
sliding a trainable filter bank with a certain size of l × l × k (k-
number of channels, same as an input image) around the image.
The convolution is a repeatable matrix multiplication of the pixel
values of the input image with the values in the filter for every
location on the input image. In our network, five convolutional
layers with 32 × 3 × 3 are used to create feature maps. The rectified
linear unit (ReLu) as activation function is chosen to introduce
non-linearity into convolution network. ReLu is a simple and fast
computing function that operates by thresholding values at 0, f(x) = 
max(0, x). The pooling layer is introduced to reduce computational
complexity by downsampling the feature map and decreasing the
size of parameters. It extracts sub-regions of the feature map, keeps
their maximum value, and discards all other values, and this helps
to avoid overfitting. After extracting and learning the features, all
features are flattened and transformed into one feature vector and
fed to a fully connected layer. The CNN architecture is illustrated
in Fig. 6. 

Fig. 6  Proposed CNN architecture for UAV acquired images
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3.2.2 Classification: The fully connected neural network, also
known as a densely connected network, perform the inference for
classification. The last layer of this network is a softmax operator
that indicates the probability of the class. The structure of the
network is feed-forward and uses the back-propagation algorithm
for learning. A feed-forward model computes the output based on
the given input data, whereas the back-propagation learning
algorithm adjusts the weights according to the change of loss
function value.

3.3 CNN architecture

We compare and test the performance of the proposed CNN model
to various modern ConvNets architectures for classification of the
insulator image data set. Modern deep CNN architectures such as
InceptionV3, MobileNet, VGG16, and ResNet50 are proven to be
efficient future extractors for image classification, recognition, and
object detection tasks. These networks perform high classification
accuracy on large data sets, such as ImageNet. InceptionV3 is a
refined version of the Inception deep convolutional architecture.
The complexity of the network with 42-layer is similar to other
large models such as VGGNet, but it uses factorizing convolutions
that reduce the number of parameters (23.9 M) without decreasing
the performance of the model. MobileNet is a small deep neural
network (DNN) introduced by Google. It operates using depthwise
separable convolutions that result in parameter reduction with 4.2
million parameter size. It is suitable for on-device or embedded
applications with limited computation power resources. VGG16
architecture composed of 16 layers is an efficient feature extractor
with only 3 × 3 convolutions due to the number of filters applied.
However, the network is computationally expensive since it
consists of 138 million parameters. ResNet50 is a 50 layer Residual
Network architecture composed of several blocks and 23.6 million
parameters. Each block performs convolution, batch normalisation,
and ReLU activation.

3.3.1 Implementations: The implementation was done with
Python Tensorflow and the performance analysis done using image
data set processed by a different set of filters, as explained in
previous sections. The CNN was constructed using different
activation, optimisation and loss functions, having the following
neural network system parameters: batch size, 16; epochs, 100,
convolutional filter size, 32 × 2 × 2; dropout, 0.5 The database is
divided into train and validation sets, containing four classes, and a
total of 400 images with 200 for training and 200 images for
validation. The proposed CNN architecture consists of an input
layer, three hidden layers, which include convolutional layers,
pooling, and ReLU activation layers. This is followed by dropout
(0.5) to prevent overfitting. The activation functions used are
sigmoid, and softmax and the system are tested using two loss
functions cross-entropy and mean squared error.

4 Results and discussion
ML classifiers: The ML classifiers identified in Tables 1–4 are
used for performing comparisons. Ten-fold cross-validation with
100 iterations is performed for obtaining the results. The mean
performance values and its STD is reported. To perform statistical
comparisons on STD feature extraction, BN classifier was chosen
as the test base. While to compare LBP feature extraction, SMO
classifier was set as the test base. In Tables 1–4 ‘*’ indicates that
classifier performs statistically worse than the base one (BN or
SMO), while ‘v’ symbol indicates that the classifier is statistically
better than the test base classifier.

The method of classification is multiclass pattern recognition
‘one to all’. We have four classes, therefore in a one-to-all problem,
we have four binary classification problems. The reason for doing
this is for taking into account practical scenario where the objective
is to identify the presence or absence of one particular condition.
Such a classification system is useful to improve the robustness of
classification problem when the test set would have classes which
are unknown to the training set.

Table 1 Performance of ML classifiers: clean insulator surface
Measure Processing BN NB SMO IBK AdaBoostM1 J48 RF
accuracy, % STD/mean 79.35(4.79) 75.00(0)∗ 75.00(0)∗ 74.83(6.08)∗ 75.88(3.42) 77.67(5.25) 76.70(5.74)
AUC STD/mean 0.76(0.07) 0.78(0.08) 0.50(0.00)∗ 0.66(0.07)∗ 0.79(0.07) 0.76(0.08) 0.80(0.07)
percent correct STD/LMN 91.50(3.86) 74.35(1.21)∗ 75.00(0.00)∗ 91.07(4.18) 91.60(3.93) 90.93(3.85) 90.70(4.69)
AUC STD/LMN 0.92(0.05) 0.70(0.08)∗ 0.50(0.00)∗ 0.88(0.06)∗ 0.92(0.04) 0.90(0.06) 0.95(0.04) v
accuracy, % STD/Retinex 74.83(1.79) 73.85(3.25) 75.00(0.00) 73.93(5.96) 77.65(3.37) v 77.95(4.89) 78.05(5.62)
AUC STD /Retinex 0.59(0.05) 0.65(0.11) 0.50(0.00)∗ 0.64(0.08) 0.70(0.09) v 0.69(0.08) v 0.73(0.10) v
accuracy, % LBP/mean 77.60(5.33) 77.18(5.36) 67.78(6.41)∗ 76.87(2.60) 71.85(6.02)∗ 70.30(5.86)∗ 75.88(1.48)
AUC LBP/mean 0.64(0.08) 0.86(0.05) 0.74(0.06) 0.55(0.05)∗ 0.67(0.08) 0.61(0.09) 0.81(0.06)
accuracy, % LBP/LMN 77.70(4.05) 67.85(6.50)∗ 76.72(4.55) 75.00(0.71) 70.20(5.05)∗ 66.63(7.24)∗ 75.00(0.00)
AUC LBP/LMN 0.59(0.07) 0.65(0.09) 0.77(0.08) 0.50(0.01) 0.56(0.11) 0.55(0.11) 0.58(0.12)
accuracy, % LBP/Retinex 78.42(5.35) 72.98(6.25)∗ 67.98(7.39)∗ 80.30(3.96) 71.02(5.34)∗ 70.63(6.19)∗ 78.50(2.93)
AUC LBP/Retinex 0.62(0.08) 0.69(0.09) v 0.66(0.09) 0.61(0.08) 0.61(0.11) 0.62(0.10) 0.74(0.11) v
The bold values represent the best classification accuracy metrics of machine learning algorithms in “%” and “AUC” metrics.
 

Table 2 Performance of classifiers: ice on insulator surface
Measure Processing BN NB SMO IBK AdaBoostM1 J48 RF
accuracy, % STD/mean 79.65(6.60) 80.73(5.46) 74.73(0.93)∗ 74.97(5.53)∗ 79.07(6.55) 78.82(6.50) 7 8.60(5.76)
AUC STD/mean 0.85(0.05) 0.89(0.05) v 0.50(0.01)∗ 0.66(0.07)∗ 0.86(0.05) 0.83(0.06) 0.86(0.05)
accuracy, % STD/LMN 85.83(4.57) 56.98(7.56)∗ 75.00(0.00)∗ 81.58(6.07)∗ 75.00(0.00)∗ 85.80(4.82) 84.30(4.91)
AUC STD/LMN 0.87(0.06) 0.69(0.09)∗ 0.50(0.00)∗ 0.76(0.08)∗ 0.69(0.04)* 0.87(0.06) 0.89(0.06)
accuracy, % STD/Retinex 75.00(0.00) 73.27(5.55) 75.00(0.00) 73.03(6.46) 75.00(0.00) 75.00(0.00) 76.73(6.29)
AUC STD /Retinex 0.71(0.07) 0.75(0.08) v 0.50(0.00)* 0.64(0.09)* 0.70(0.06) 0.50(0.00)* 0.78(0.08) v
accuracy, % LBP/mean 96.25(2.69) 94.82(2.94) 90.68(4.26)* 67.70(6.29)* 78.30(5.84)* 73.43(6.97)* 79.10(2.90)*
AUC LBP/Mean 0.97(0.03) 0.99(0.01)v 0.88(0.07)* 0.59(0.11)* 0.81(0.07)* 0.63(0.10)* 0.99(0.01) v
accuracy, % LBP/LMN 79.40(3.66) 69.73(4.99)* 75.37(2.02)* 73.25(2.42)* 71.50(5.01)* 67.32(6.91)* 75.00(0.00)*
AUC LBP/LMN 0.60(0.07) 0.63(0.07) 0.58(0.06) 0.49(0.02)* 0.57(0.10) 0.58(0.10) 0.64(0.11)
accuracy, % LBP/Retinex 79.63(4.01) 76.78(5.61) 66.00(7.04)* 76.60(3.84) 73.13(5.32)* 68.78(6.26)* 77.60(5.06)
AUC LBP/Retinex 0.62(0.06) 0.78(0.07) v 0.73(0.07) v 0.58(0.06)* 0.67(0.10) 0.61(0.09) 0.72(0.09) v
 

High Volt., 2019, Vol. 4 Iss. 3, pp. 178-185
This is an open access article published by the IET and CEPRI under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

181



The classification accuracy shows the best performance of the
classifier and the AUC shows the overall discrimination ability of
the classifier. Receiver operating characteristic curve also shows a
possible trade-off between accuracy and error rates for a particular
class. AUC is defined in terms of the receiver operating
characteristic curve and provides a single-value summary (ranging
from 0 to 1) for the performance of the learning algorithms.

Table 1 indicates the performance of the ML classifiers when
evaluating the detection of insulators clean surfaces. In such a
situation since glass insulators are used, they tend to images with
large illumination variability. The results show that the
combination of STD/LMN feature extraction provides the best

performance, which is indicative of the fact that LMN is able to
generate illumination invariant features and preserves the edge
features from STD feature extraction. The classifiers BN, AB M1,
and RF, shows the best results under these conditions.

Tables 2–4 show the performance of the ML classifiers when
the insulators are covered with ice, snow, or water droplets. The
impact of this is more like a change in the texture of the surface,
and that of having pixel noise. The ice and water droplets provide a
layer on the surface of the insulator, were often in the early stages,
part of the insulator surface is still visible. It is well known in
imaging processing studies that LBP is good at discriminating
textures, and the results on ice (Tables 2 and 4) are indicative of
these. The snow, on the other hand, is opaque and completely
changes the texture of the insulator surface, with practically quite
often little exposure to the insulator surface. In this case, the snow
is more responsive to the STD features as they provide the unique
grained surface features of the snow on insulator, and is evident
from the relatively better performance of STD/mean combination.
The overall performance of the ML algorithms when STD/LBP
features are used for mean, LMN, and retinex filters are illustrated
in Tables 5–7. It can be seen that in most cases in a multiclass
scenario, the STD features outperforms the LBP features
irrespective of the combinations of ML algorithm and filters. The
filters have the role in normalising the features to make the

Table 3 Performance of classifiers: snow on insulator surface
Measure Processing BN NB SMO IBK AdaBoostM1 J48 RF
accuracy, % STD/mean 95.40(2.84) 95.60(3.43) 95.05(3.76) 93.60(3.54) 96.20(2.85) 95.93(2.86) 96.10(2.96)
AUC STD/mean 0.98(0.03) 0.98(0.03) 0.94(0.05) * 0.91(0.05) * 0.98(0.03) 0.94(0.05)* 0.98(0.03)
accuracy, % STD/LMN 89.42(4.83) 89.23(4.72) 81.65(4.48)* 85.85(4.81) 87.77(4.73) 89.60(4.46) 87.00(4.69)
AUC STD/LMN 0.93(0.03) 0.95(0.03) 0.66(0.09)* 0.81(0.07)* 0.95(0.03) v 0.92(0.04) 0.94(0.03)
accuracy, % STD/Retinex 88.85(4.37) 88.62(4.28) 89.25(3.93) 85.47(5.08)* 88.82(4.23) 88.20(4.94) 87.30(5.16)
AUC STD /Retinex 0.89(0.06) 0.93(0.04) v 0.81(0.07)* 0.82(0.07)* 0.91(0.04) 0.85(0.07) 0.91(0.05)
accuracy, % LBP/mean 75.33(4.56) 70.50(7.04) 74.58(6.40) 75.22(0.72) 71.52(5.88) 68.08(7.28)* 74.97(0.25)
AUC LBP/mean 0.59(0.07) 0.77(0.07) v 0.71(0.09) v 0.50(0.01)* 0.66(0.10) 0.57(0.10) 0.63(0.10)
accuracy, % LBP/LMN 75.07(3.44) 69.43(5.11)* 75.10(3.64) 75.00(0.00) 71.77(5.62) 64.45(7.12)* 75.00(0.00)
AUC LBP/LMN 0.54(0.06) 0.62(0.08) 0.58(0.07) 0.50(0.00)* 0.62(0.11) 0.54(0.11) 0.68(0.08)
accuracy, % LBP/Retinex 80.42(4.40) 81.00(6.22) 72.18(5.96)* 33.95(5.73)* 73.83(5.44)* 71.97(6.39)* 79.85(3.31)
AUC LBP/Retinex 0.67(0.07) 0.82(0.08) v 0.69(0.08) 0.53(0.06)* 0.69(0.07) 0.63(0.09) 0.83(0.08) v
 

Table 4 Performance of classifiers: water droplets on insulator surface
Measure Processing BN NB SMO IBK AdaBoostM1 J48 RF
percent correct STD/Mean 78.88(3.63) 75.83(5.60) 75.00(0)∗ 67.27(6.08)∗ 77.97(4.14) 78.55(3.98) 70.38(6.07)∗
AUC STD/Mean 0.74(0.06) 0.76(0.08) 0.50(0.00)* 0.57(0.08)* 0.73(0.07) 0.58(0.06)* 0.71(0.09)
accuracy, % STD/LMN 95.60(2.98) 92.10(3.55)* 90.45(3.99)* 95.43(2.93) 96.27(2.76) 95.12(2.60) 95.27(2.93)
AUC STD/LMN 0.99(0.01) 0.96(0.03)* 0.86(0.06)* 0.94(0.05)* 0.99(0.01) 0.97(0.02)* 0.99(0.01)
accuracy, % STD/Retinex 74.25(2.45) 76.27(5.26) 75.00(0.00) 72.88(6.37) 73.37(4.53) 74.07(3.58) 75.73(5.58)
AUC STD /Retinex 0.63(0.06) 0.75(0.09) v 0.50(0.00)* 0.63(0.09) 0.69(0.08) v 0.60(0.09) 0.73(0.10) v
accuracy, % LBP/mean 98.73(1.79) 99.80(0.68) 94.55(3.34)* 55.53(11.14)* 94.85(3.64)* 87.65(4.83)* 97.00(2.82)
AUC LBP/Mean 0.97(0.04) 1.00(0.00) v 0.93(0.06)* 0.70(0.07)* 0.99(0.01) 0.84(0.08)* 0.99(0.02)
accuracy, % LBP/LMN 97.08(2.36) 99.75(0.75) v 86.90(3.73)* 27.82(5.06)* 93.02(4.07)* 90.50(4.75)* 86.98(4.19)*
AUC LBP/LMN 0.94(0.05) 1.00(0.01) v 0.77(0.08)* 0.52(0.03)* 0.97(0.02) 0.86(0.08)* 1.00(0.00) v
accuracy, % LBP/Retinex 72.50(3.22) 65.95(6.02)* 61.72(7.50)* 75.00(0.00) v 69.25(6.60) 67.38(6.98)* 75.00(0.00) v
AUC LBP/Retinex 0.50(0.04) 0.58(0.08) 0.64(0.08) v 0.50(0.01) 0.58(0.11) v 0.57(0.09) 0.73(0.07) v
 

Table 5 Performance of ML classifiers based on mean filter
ML classifiers Feature extraction Accuracy, %
BN STD/LBP 78 (±18)/83 (±4)
NB STD/LBP 82 (±3.6)/85 (±4.8)
SMO STD/LBP 80 (±1.2)/ 86 (±3.5)
IBK STD/LBP 78 (±5.2)/69 (±2.5)
AB M1 STD/LBP 82 (±4)/79 (±5.4)
J48 STD/LBP 83 (±18.6)/75 (±6)
RF STD/LBP 80 (±5)/82 (±2)

 

Table 6 Performance of ML classifiers based on LMN filter
ML classifiers Feature extraction Accuracy, %
BN STD/LBP 90 (±4)/78 (±4)
NB STD/LBP 78 (±4)/76 (±4)
SMO STD/LBP 80 (±2)/82 (±3)
IBK STD/LBP 88 (±5)/63 (±2)
AB M1 STD/LBP 88 (±4)/77 (±5)
J48 STD/LBP 90 (±4)/72 (±6)
RF STD/LBP 89 (±4)/78 (±1)

 

Table 7 Performance of ML classifiers based on the retinex
filter
ML classifiers Feature extraction Accuracy, %
BN STD/LBP 78 (±2)/73 (±6)
NB STD/LBP 78 (±4)/68 (±7)
SMO STD/LBP 78 (±1)/ 78 (±4)
IBK STD/LBP 76(±4)/66 (±4)
AB M1 STD/LBP 78 (±3)/72 (±6)
J48 STD/LBP 79 (±3)/70 (±6)
RF STD/LBP 80 (±6)/78 (±3)
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comparisons fair for the classifier. Also, the filters help with
reducing the issues with illumination variability.

Noise robustness: The ML algorithms are sensitive to the noise.
To test this, we do not apply any feature extraction and instead add
Gaussian noise of varying degrees. The Gaussian noise with mean
zero and variance of 1%–4% is applied to analyse the sensitivity. In
almost all the cases with an increase in the variance, the
performance accuracy, and AUC values drop indicating that ML
classifiers require feature extraction and normalisation stage. The
results of 1% Gaussian noise are reported in Fig. 7, and average
performance across different noise levels on the seven classifiers
are shown in Fig. 8. 

To assess the impact of filtering on the performance robustness
of the ML algorithms, we repeat the robustness tests with and
without the application of STD features reporting classification
accuracy in Fig. 7a, and AUC in Fig. 7b. The obtained results in
Fig. 7 shows that the overall the robustness of the classifiers
increased in-terms of classification accuracy and AUC values when
STD features are used. The classification accuracy and AUC
values overall has improved, making the classifiers less sensitive to
the noise. For example, comparison in Fig. 7a, the classification
accuracy, on average, improved substantially from the range of
74.28–84.65%, which indicates the importance of the feature
extraction stage in ML classifiers. The comparison of Fig. 7b
indicates that on average the AUC values increased from 0.71 to
0.74 with the addition of the feature extraction stage. We also
observed this increase across all the different insulator conditions.

The noise robustness is illustrated in Fig. 8. The average
performance across seven classifiers [i.e. BN, NB, SMO, IBK, AB
M1, J48, and RF] for varied Gaussian noise with STD from 1 to

4% is shown in Fig. 8. Here, Fig. 8a shows the average
classification accuracy, while Fig. 8b shows the average AUC. The
application of the noise does not deteriorate the performance
improvements shown by feature extraction, and clearly
outperforms the case without feature extraction even with the
increase in noise levels indicative of the overall robustness of the
feature extraction.

CNN classifier:: Tables 8 and 9 illustrate the results of
classifying filtered images into one of the four categories achieved
by two different loss functions – cross-entropy and mean squared
error and activation functions such as softmax and sigmoid. As it
can be seen, the accuracy reached only 87% by using softmax and
rmsprop functions. This could be due to the limited number of
samples and the detection accuracy still has much room for
improvement.

NN versus ML classifiers: The major advantage of a DNN
classifier is that it does not need intensive hand-coded data
preparation and feature extraction. The ML classifiers, on the other
hand, requires well-thought-out feature extraction for achieving
high classification accuracy. Table 8 and 9 show the limitations of
the neural networks, when the data set is small, the accuracy is not
as good as ML classifiers shown in Tables 5–7. It is also quite well
known that most of the ML classifiers are difficult to be scaled
with the increased data set, and their parallel computing
implementation complexity is high. The DNN classifiers, on the
other hand, consist of dot-product computations as its core
computational unit, which is relatively easier to scale with data set
increase in parallel processing hardware. To test this hypothesis,
we increase the image data set and test the performance of different
well-known convolutional neural network algorithms.

Fig. 7  Graphs illustrate the impact of Gaussian noise with zero mean and
1% STD on clean insulator images surfaces without and with STD feature
extraction. The comparison in
(a) Shows the classification accuracy, (b) Shows the AUC values. The classifiers
compared are BN, NB, SMO, IBK, AB M1, J48, and RF

 

Fig. 8  Graphs illustrate the impact of Gaussian noise with zero mean and
varied STD values (y-axis) on clean insulator images surfaces without and
with STD feature extraction. The comparison in
(a) Shows the average classification accuracy, (b) Shows the average AUC values
across the seven classifiers (i.e. BN, NB, SMO, IBK, AB M1, J48, and RF)
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Large insulator data set: The image data set is further enhanced
with 4000 aerial images of outdoor high voltage glass insulator
acquired from a UAV camera. The data set includes four classes
with 800 original images and 3200 pre-processed data using
different types of noises such as Gaussian, Salt and Pepper,
Poisson, and Speckle. The noises are applied to increase the
database and take into account possible environmental effects
during data acquisition. Images are collected via the drone in the
winter conditions. Different states of insulator surface, including
snow, ice, and water captured using DJI drone with 20 megapixel
CMOS sensor. Each class consists of 1000 images of original and
filtered images with a size of 254 × 103. The data is split by 50%
for train and 50% testing stages.

Performance comparison of different DNNs: DNNs based on
CNN have two important characteristics: (i) a set of convolutional
layers that can learn feature representations, and (ii) an inference
network that can be trained to discriminate the classes. In essence,
a deep learning network does not require a separate feature
extraction stage provided there is sufficient training samples. The
selection of hyperparameters of the neural networks is essential to
ensure optimal training for a given training data.

The neural networks are data-driven approaches, and the
optimisation of hyperparameters are mission critical for its
performance improvements. There are several CNN-based
architectures today that have different combinations of
hyperparameters based on the number of neurons and layers, types
of activation functions, and inference scheme adopted. An increase
in the number of layers warrants a more extensive training set. In
several practical problems, it is not feasible to form large data set
as they are usually not fully automated and requires significant
investments in data preparation, validation, and verification.
Table 10 shows the results when the popular networks such as
InceptionV3, MobileNet, VGG16, and ResNet50 are trained using
the developed insulator data set. In comparison with the proposed
CNN configuration, when using all trainable parameters, these
CNNs perform poorly as they are not optimised for this data set.
These large CNNs needs larger training data set and is usually

useful for a large number of classes with a large number of training
samples. In our problem, at present, we do not have a large number
of classes, nor there is a need to have a large data set, and for this
reason, a smaller optimized CNN will be sufficient to achieve
reliable accuracy. The strategies such as transfer learning can be
applied to improve the classification accuracy of the state of the art
CNN architectures, which are proven to have high classification
accuracy once trained on large data set such as imageNet. The
convolutional layers can use pre-trained weights that were trained
using a large data set, and the inference layer weights can be fine-
tuned to fit into the smaller data set. Transfer learning can reduce
the number of epochs required to training the network; however, it
still does not negate the need to have an even larger data set for
achieving high performance and robustness. For example, the
InceptionV3 when using the pre-trained network and transfer
learning with 50 epochs (same number of the epoch as that of the
simple CNN) gives 57% classification accuracy, which is an
increase from 28% when training InceptionV3 using all trainable
parameters. This indicates that a more substantial number of
epochs and more extensive training data is essential to optimise
larger CNNs.

5 Conclusion
The images of glass insulator surface under clean, snow, ice, and
wet conditions are investigated by using the state of the art image
classification techniques. The performance of different ML
algorithms is tested and compared based on normalisation filters
such as LMN, retinex, and mean and statistical and LBP features.
The filters are applied before processing to reduce noise and
illumination influence. LBP and statistical features are utilised to
extract the textural information for the further classification
process. The recognition accuracy of four class patterns was
analysed. Application of Bayes Naive, BN, and RF gives the most
promising results. The performance of CNN also was tested on the
same database. Although the outcome of the network was below
compared to other classifiers, it can be improved by enlarging the
sise of data and adjusting the layers of the network.

The data set sample size was increase and tested on simple
CNN to larger well known CNN algorithms such as InceptionV3,
MobileNetV1, VGGNet16, and ResNet50. The simplistic CNN
showed excellent performance in comparison with the state of the
art while utilizing a significantly smaller number of trainable
parameters. Overall, the proposed method could be implemented
for a real-time condition assessment of outdoor insulator surface.
In future work for the evaluation of the insulator state integration
of additional information, such as leakage current, to image-based
monitoring process would be beneficial.

Table 8 Averaged CNN classification accuracy based on MSE
Activation/filter Adam, % adagrad, % adadelta, % adamax, % rmsprop, %
softmax/mean filter 80 85 73 85 87
softmax/LMN filter 51 68 59 78 77
sotfmax/retinex 29 30 32 33 32
sigmoid/mean 69 87 41 63 85
sigmoid/LMN 81 56 79 73 81
sigmoid/retinex 31 31 36 30 31

 

Table 9 Averaged CNN classification accuracy using cross entropy loss function
Activation/filter adam, % adagrad, % adadelta, % adamax, % rmsprop, %
softmax/mean filter 87 83 72 85 83
softmax/LMN filter 53 75 82 39 87
sotfmax/retinex 32 35 32 30 35
sigmoid/mean 81 81 85 36 81
sigmoid/LMN 53 46 75 47 60
sigmoid/retinex 33 34 33 35 35

 

Table 10 Comparison of CNN model to state-of-the-art
CNN architectures
Architecture Accuracy, % Transfer

learning
accuracy, %

Total trainable
parameters

CNN 85 na 70.5 k
inceptionV3 28 56 24.1 M
mobileNetV1 40 41 3.4 M
VGGNet16 34 93 15.4 M
resNet50 25 61 24.1 M
NA, not applicable
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