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ARTICLE INFO ABSTRACT

Three-dimensional DEM simulations of triaxial compression tests of cemented sandstone samples have been
performed at different values of confining pressure, initial density and bond strength. The results show that with
increase in bond strength, initial density and confining pressure both the initial stiffness and peak strength
increase. For a higher bond strength and initial density the samples exhibit a higher rate of dilation. Bond
breakage was found to increase with confining pressure and decrease with bond strength and initial density. The
Mohr-Coulomb strength parameters ¢’ and ¢' were obtained for the numerical samples and correlations between
the shear strength parameters and the bond strength were established. The correlations were then used to find
the value of the bond strength to be used for comparisons with results of experimental triaxial tests. The stress-
strain responses of the numerical samples were found to be in good agreement with the experimental results. The
critical state lines (CSL) of triaxial compression tests for both loose and medium dense systems show that the
critical void ratio is independent of the initial density but increases with increase in bond strength. Increasing the
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bond strength increases the dilation, which leads to a higher critical state void ratio.

1. Introduction

Cemented sandstones hold more than 60% of the world’s oil and gas
fields. The materials in a sandstone reservoir are composed mainly of
quartz, feldspars, mica, rock fragments and various mineral grains
bound together with clay, silica or some type of cement, Bjorlykke [1].
Compared with other reservoir rocks it has a relatively high porosity of
about 15% and permeability of 25-100 Darcies, which makes it the best
sedimentary rock for the accumulation of hydrocarbons. The small
presence of cementation influences and enriches the mechanical be-
haviour of the cemented sand materials. Over the past forty years, a
number of researchers have studied natural and artificial cemented
sandstones and carbonate sands using experimental triaxial tests
[2-14].

In the last decade, bonded granular material has been numerically
studied using the Discrete Element Model (DEM) proposed by Cundall
and Strack [15]. Wang and Leung [11], both experimentally and nu-
merically (2D), examined the material behaviour of cemented sand
using triaxial compression tests; Jung et al. [16] numerically (3D)
studied the stress-strain response of hydrate-bearing sand. Utili and
Nova [17] presented a 2D contact model for bonded granular materials
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based on the Mohr-Coulomb failure criteria; Obermayr et al. [18]
proposed a 3D bonded-particle model for cemented sand, in which the
spherical particles are connected by elastic beams; Shen et al. [19]
presented a 3D bonded contact model and its application to cemented
sand and to grain-coating type methane hydrate bearing sand, Shen and
Jiang [20].

The aim of the present study is to carry out 3D simulations of
triaxial compression tests of cemented sandstone on loose and medium
dense systems in order to examine the effect of bond strength on the
macro-and micro- response. Results are compared with findings from
the laboratory triaxial compression tests on reservoir analogue sand-
stone samples from the Ustyurt-Buzachi Sedimentary Basin studied by
Shabdirova et al. [21].

This journal paper is the extension of the work reported by
Rakhimzhanova et al. [22] and it is divided into five parts. In Section 2,
the contact models used for bonded and unbonded particles are in-
troduced. The details of numerical simulations of triaxial compression
tests are explained in Section 3. The numerical results are presented in
Section 4 and some concluding remarks are provided in Section 5.
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2. Contact models

As a result of the relative displacements between particles, forces
are generated at the inter-particle contacts. The contact force-dis-
placement behavior depends on the material properties of the particles,
the sizes of the two particles in contact and the surface conditions.
Contact behaviour includes all the complex variety of surface physics,
including adhesion, friction, and elasticity usually all interacting at the
same time in a complex geometrical arrangement, Thornton [23].

The normal and tangential stiffnesses for frictional elastic spheres
without adhesion at the contact are described by the theories of Hertz
[24], and Mindlin [25], respectively. For two spheres of radii R; and
elastic properties E;, G; and v; (i = 1, 2), the theory of Hertz relates the
normal force F, to the relative approach a of the centres of the two
contiguous spheres.

E = %E*\/ Ra?

(@)
where
1_1.1
R* R R 2
and
1 1-v2  1-v]
E* E E, 3)

From the above, the normal contact stiffness is
k, = 2E*JR*a 4

The tangential force is calculated incrementally and depends on
whether the normal force is increasing or decreasing, see Thornton
[23]. The tangential force at the ith timestep is obtained from

Fl = F™ + kIASifAE, > 0 (5a)
or
Fl = F}-l( kf ) + k}ASif AR, < 0
k™! (5b)
exceptifF; > uF,thenF, = ukF, (5¢)
The contact stiffness is defined by
k, = 8G*JR*«a (6)
which is the Mindlin [25] ‘no-slip’ solution, where
é =+ Gly1 * 2G_2v2 @
The normal and tangential damping forces are:
B = 28mk, Aa/At )]
and
Fq = 28mk; AS/ At 9)
where
_ frac
27efreq 10$)

with the Rayleigh damping parameters chosen to be fraction = 0.05
and frequency = 0.5. However, following Cundall and Strack [15], the
contact damping forces do not contribute to the stored contact forces,
only to the out-of-balance force on the particle, from which the particle
acceleration is obtained.

The so-called JKR model of adhesion was proposed by Johnson et al.
[26] to model auto-adhesive interactions due to van der Waals forces
between silt sized particles. However, the oil field reservoir rock is
sandstone, i.e. sand with cement bonds. Nevertheless, we used a simple
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Fig. 1. Normal force-displacement curve for JKR theory.

modification of the JKR model for the normal contact force and the
Mindlin [25] no slip model for the tangential contact force. The re-
lationship between the normal contact force F, and the relative ap-
proach a« was provided by Johnson [27] and is given below, and illu-
strated in Fig. 1.

Tn Tnyi/2
3(FM) +2+201+ Fm)

a
“_f 32/3| B +2+42(01+ ﬂ)l/z L/3
Fue Fue an
where
1/3

o= 3F2
f = * %2

16R*E (12)

is the relative approach (negative) at which the contact breaks,
point D in Fig. 1.

When two particles come into contact (o = 0), the normal force E,
immediately drops down to point A due to van der Waals attractive
forces, where F, = —8F,./9. During the compression (loading stage) the
normal contact force increases from point A to say point B. If decom-
pression (unloading) then occurs the response is elastic and the force
returns from point B to point A, where the value of relative approach is
a = 0, but there is still a finite area of contact. All the work that was
done during the loading stage will be recovered when the normal
contact force reaches point A during unloading. At point A, the spheres
remain adhered together and extra work is required to break the con-
tact. During the extra work, the tensile force increases from point A to
point C and then decreases until contact breaks at point D, when
F, = =5F,/9 and a = —a;.

Cement bonds are not as stretchable and break in a brittle manner.
Consequently, in the modified JKR model used in this research the bond
breaks at point C, where F, = —F,. and a = —a;/3%3. At point C, the
maximum tensile force required to break the contact is:

E,. = 1.57nTR* (13)

where I is the work of adhesion and ' = y; + y, where y, and y, are the
surface energies of the two solids i.e. I' = 2y and 1/R” is the relative
curvature of the contact.

If any new contacts are made during shear these are treated as
elastic with the normal and tangential forces calculated using Egs. (1)
and (5).

3. Numerical simulations
The particle size distribution (PSD) data of the sandstone analogue

samples from the Ustyurt-Buzachi Sedimentary Basin measured by
Qicpic dynamic image analyser, Shabdirova et al. [21] was replicated
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Fig. 2. Particle Size Distribution of the reservoir sand from the Ustyurt-Buzachi
Sedimentary Basin.

with the numerical samples (Fig. 2).

Three-dimensional simulations of triaxial compression tests, using
periodic boundaries, have been performed using 5206 spheres at dif-
ferent values of confining pressure and bond strength. Following
Calvetti and Nova [28], the spheres were prevented from rotating in
order to obtain reasonable values of shear strength.

The current simulation work is aimed to study the effects of initial
density, bond strength and confining pressure on the cemented sand-
stone. A total of 40 simulations of triaxial compression tests on loose
and medium dense samples were performed over a range of confining
pressures of 100, 300, 500 and 1000 kPa and bond strengths (interface
energy of adhesion) of I' = 0, 10, 20, 30 and 40 J/m?, where I' = 0J/
m? is an ‘uncemented’ sample. The simulations were divided into three
stages: particle generation, isotropic and triaxial compression.

3.1. Particle generation

Eight different particle sizes of the sandstone analogue samples from
the Ustyurt-Buzachi Sedimentary Basin were selected and randomly
generated as a granular gas within a cuboidal cell of dimension
4.25mm: 0.15mm (614), 0.18 mm (911), 0.2mm (783), 0.22mm
(811), 0.25mm (1027), 0.275 mm (583), 0.3 mm (318) and 0.355 mm
(159). The following mechanical properties were used for all particles:
Young’s modulus E = 70 GPa, Poisson’s ratio v = 0.3 and experimental
particle density p = 2605 kg/m>. The particle density is scaled up by a
factor of 102 in order to model quasi-static simulations within a rea-
sonable timescale. Thornton [29] reported that the particle density
scaling does not affect forces and displacements and hence stresses and
strains; the velocities and accelerations are reduced by orders of mag-
nitude but these are not of concern when considering quasi-static be-
haviour. In all DEM simulations reported in this paper no gravity field is
applied.

Da Cruz et al (2005) suggested that the inertial number I can be used
to demonstrate whether simulations are quasi-static or not. They sug-
gested that I < 1.10 3 guarantees that the simulations are quasi-static.
For all the simulations presented in the paper the axial strain rate was
0.0001. The average particle diameter was 0.24 mm and the particle
density used was 2.605.10"° kg/m>. Using I = éd, \/o/p, the inertial
number is calculated as 1.1073 for p = 1000kPa and 3.10™° for
p = 100 kPa. Consequently, it can be argued that the simulations are
approximately quasi-static.

The interparticle friction coefficient was set to g = 0.3 and g = 0.1
during the particle generation stage in order to obtain the loose and
medium dense samples, respectively.
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3.2. Isotropic and triaxial compression

Initially the generated sample was isotropically compressed to
10 kPa using one million timesteps. This ensured that the void ratio was
constant, the mean stress was constant and the number of contacts was
constant with a mechanical coordination number Z;,, > 4. Having es-
tablished a stable system at 10 kPa further isotropic compression was
performed until 80kPa, during which all contact interactions were
calculated using the Hertz-Mindlin contact model. At 80kPa the in-
terparticle friction coefficient was reset to g = 0.3 for the medium
dense system and then different bond strengths were introduced for
both the loose and medium dense samples. The initial number of bonds
was equal to 7526 and 12,225 for all loose and medium dense samples,
respectively. All contact interactions during the isotropic and triaxial
compression simulations were calculated using the modified JKR model
for bonded contacts but for any subsequent new contacts that may be
created the Hertzian model was applied. At the start of the triaxial
compression stage, the void ratio of the loose and medium dense sys-
tems were equal to 0.698 and 0.617, respectively. Numerical servo-
control algorithms were used to control the isotropic compression stage
and to maintain o3 = 0, constant during the shear stage [29].

4. Numerical results

Fig. 3 shows the deviator stress vs. axial strain curves obtained for
triaxial compression test simulations for both the loose and medium
dense samples at a confining stress of 300 kPa. The results show that the
stress-strain behaviour of cemented sand is strongly dependent on the
bond strength and compared with uncemented sand is initially stiff.
With increase in bond strength, both the initial stiffness and peak
strength increase; and for a higher bond strength the peak stress is
reached at a lower axial strain. Fig. 4 shows the effect of bond strength
on the evolution of volumetric strain. All loose samples first contracted
and then started to dilate, while medium dense samples only dilated.
For a higher bond strength, the material starts to expand at a lower
axial strain and, with increase in bond strength, the sample exhibits a
higher rate of dilation. Similar behaviour has been reported for natu-
rally and artificially cemented sands and carbonate soils
[2,3,5,6,7,8,9,10,11,12,14] and numerically captured by Jung et al.
[16]; Obermayr et al. [18]; Shen et al. [19]; Wang and Leung [11].

It can be seen from Figs. 3 and 4 that the mechanical response of
cemented sands depends not only on the bond strength, but also on the
initial density. Increasing density leads to increases in peak strength
and initial stiffness; and volumetric dilation, Clough et al. [2]; Huang
and Airey [7]; Rios et al. [14]. It was observed that with increase in the
initial density the stress reaches a peak at a lower axial strain. All nu-
merical loose samples reached the peak strength at about 15% axial
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Fig. 3. The effect of bond strength on the evolution of the deviator stress for
loose and medium dense samples.



A.K. Rakhimzhanova, et al.

10
——L;[=0 ====L;j[=10 — - L;[=20 — —L;I=30
s |[roeer LiT=40 ——MD;T=0 -===MD;T=10— - MD;I=2
— —MD; =30+ MD; =40

Volumetric strain, %

-20

Axial strain, %

Fig. 4. The effect of bond strength on the evolution of the volumetric strain for
loose and medium dense samples (at 300 kPa).

strain but for the medium dense samples peak strength occurred at less
than 5% axial strain. The post-peak response of samples also depends
on the bond strength and initial density. The medium dense samples
show significant strain softening behaviour. It can be seen from Fig. 3
that after peak, the deviator stress for different values of bond strength
gradually reduces but do not converge with the curve for ‘uncemented’
(I" = 0) sand. This is because the critical state strength depends on the
magnitude of the bond strength, in the same way that it depends on the
value of interparticle friction. But for a given value of I' both the loose
and medium dense systems reach the same critical state strength.

Figs. 5 and 6 show the evolution of the number of bonds and the
number of contacts, respectively. It can be seen from Fig. 5 that the
number of bonds decreases at a decreasing rate and more bonds are
broken for a lower bond strength. For the bond strength value I' = 10 J/
m? all the bonded contacts have broken at 30% axial strain for both the
loose and medium dense samples, while for a higher bond strength
value of I' = 40 J/m? some bonded contacts could survive. Fig. 6 shows
that the total number of contacts reduces with increase in bond
strength. Fig. 5 shows that, for I" > 0, the number of contacts initially
decreases due to the breaking of bonds but then the total number of
contacts (both bonded and unbonded new contacts) increases at a de-
creasing rate. The results shown in Figs. 3, 4, 5 and 6 are qualitatively
consistent with all of the data obtained from all of the tests simulated at
other confining stresses.

Figs. 7 and 8 show the effect of confining pressure on the evolution
of the deviator stress and volumetric strain, respectively, for loose and
medium dense samples with a bond strength value of I' = 20 J/m?. The
results show that both the stiffness and peak strength increase with
increasing confining pressure (frictional response); and higher volu-
metric dilation occurs at lower confining pressure levels, Clough et al.,
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Fig. 5. Evolution of number of bonds for loose and medium dense samples (at
300 kPa).
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Fig. 7. The effect of confining pressure on the evolution of the deviator stress
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8
L; 100 kPa = - |; 300 kPa = = |;500kPa
------- L; 1000 kPa MD; 100 kPa = + MD; 300 kPa
34 = = MD;500kPa  cececee MD; 1000 kPa

Volumetric strain, %

-17 1

22 Axial strain, %

Fig. 8. The effect of confining pressure on the evolution of the volumetric strain
for loose and medium dense samples (I'=20 J/m?).

[2]; Lade and Overton [3]; Cucovillo and Coop, [8]. With an increase in
initial density, the axial strain at failure decreases and strong volu-
metric dilation occurs. The stresses reached the peak state at the same
axial strains for a given initial density for all confining pressures and
bond strengths (loose samples at 15% of axial strain and the medium
dense samples at less than 5% axial strain). The post-peak response is
dependent on confining pressure, bond strength and initial density. The
medium dense samples demonstrate strain softening behavior at all
confining pressures.

Fig. 9 shows the effect of confining pressure on the number of bonds
for loose and medium dense samples with a bond strength value of
I' = 20 J/m? It can be seen from the figure, that significant and rapid
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Fig. 9. The effect of confining pressure on the evolution of the number of bonds
for loose and medium dense samples (I'=20 J/m?).

bond breakage occurs before the maximum deviator stress is reached.
4.1. Peak strengths

The peak strength data of triaxial compression tests for both the
loose and medium dense systems are represented by Mohr-Coulomb
strength envelops in Figs. 10 and 11. Over a range of 100-1000 kPa
confining pressures, the envelopes are straight lines almost with the
same slope, but slightly different intercepts. The Mohr-Coulomb
strength criterion is defined by

cri - 03' - Zc‘cosqa' - (0'1' + aé)sinqo' =0 14

where ¢ is the apparent cohesion, which is a unique function of bond
strength and ¢ is the so-called angle of internal friction. The internal
friction angles of loose system range from32.5 — 35.5%°, while for
medium dense system it varies from35.1 — 37.8%°, with average values
0f33.7%° and36.5%°, respectively. Similar behavior was obtained in la-
boratory tests reported by Dupas and Pecker [30]; Clough et al. [2];
Acar and El-Tahir [31]. The apparent cohesion was calculated using the
average value of internal friction angle for loose and medium dense
systems from:

¢ = (00 —03) (01 + o3)tang
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Figs. 10 and 11 show that with increase in bond strength, the ap-
parent cohesion, tensile strength and internal friction angle increase.
The same effects have been observed in the experiments on cemented
sand by Clough et al. [2]; Lade and Overton [3]; Schnaid et al. [10];
Airey [6]; Wang et Leung [11,12]; Rios et al. [14]. It was observed that
there is a smaller apparent cohesion and lower internal friction angle
for the loose system compared with the medium dense system. The
higher friction angle of the medium dense samples is a result of the
initial density. The denser samples have more initial cemented bonds
compared with looser samples so, as the amount of cemented bonds
increase, the cohesion intercept, tensile strength and friction angle also
increase. Clough et al. [2] reported that the density has a significant
influence on cemented soil strength, in addition to the nature of the
cementing material. The cohesion intercept of uncemented sand for
both systems is equal to 0 and therefore their peak strengths are the
result of dilation (Coop and Willson [9], while for the cemented sand it
is the result of the cohesive-frictional nature.

Two peak strength data points LC200 (loose sample) and LC500
(medium dense sample) from laboratory triaxial compression tests on
sandstone analogue samples by Shabdirova et al. [21] have been added
to the Mohr-Coulomb strength envelopes for loose and medium dense
samples, respectively. It is shown that the peak strength of LC200 lo-
cates between the slopes of I' =0 and 10 J/m? (Fig. 10), and LC500
locates on the slope of I = 20 J/m? (Fig. 11). To find the exact value of
the bond strength to be used for comparison with experimental results,
a non-linear correlation was obtained between the Mohr-Coulomb
shear strength parameter ¢’ and bond strength I, as illustrated in
Fig. 12. Superimposed experimental data points indicate that values of
I'=6.5J/m? and I = 20 J/m? should be used to compare the numer-
ical simulations with the laboratory results for loose and medium dense
samples, respectively.

Figs. 13 and 14 show the comparison obtained between the nu-
merical data and laboratory triaxial compression tests at a confining
pressure of 300 kPa. It can be seen that the stress-strain responses of the
numerical samples were found to be in good agreement with the ex-
perimental results at least in terms of the shear strength. However, the
numerical samples do not contract as much due to the difference be-
tween interface energy and cement (cement bonds are compressible and
this is not accounted for in the simple modified JKR bond model).
Consequently, the stress—strain curves for the numerical samples are
stiffer.
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Fig. 10. Mohr-Coulomb strength envelopes for loose sample.
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4.2. Critical state

Fig. 15 shows the critical state lines (CSL) obtained for both the
loose and medium dense systems in the e - In p' plane. The CSL was
originally introduced to explain the behaviour of normally consolidated

Axial strain, %

Fig. 14. Comparison of numerical and experimental volume change curves for
loose and medium dense samples.

clay, and only a few investigators have used it for cemented sand ma-
terials (Airey [6], Coop and Atkinson [5], and Cuccovillo and Coop
[8]). Schnaid et al. [10] reported that the complete determination of
the critical state in a p’: q: e space presents some experimental diffi-
culties, given the brittle behaviour and the strain localization observed
for cemented specimens although the investigation of the critical state
line plays a fundamental role in establishing a general theoretical fra-
mework for the behaviour of cemented soils.

Coop and Willson [9] suggested that in order to identify the CSL for
sands it requires shearing to strains of 30% or more. In this paper, all
the triaxial compression simulations were continued to 46% axial
strain. It can be seen from Fig. 15 that for a given value of bond strength
both the loose and medium dense samples reach the same critical state
line. The critical void ratio is independent of the initial density; it in-
creases with increase in bond strength, and decreases with increase in
confining pressure. Increasing the bond strength increases the dilation,
which leads to a higher critical state void ratio.

Further, the CSL parameters e; and A are obtained using the fol-
lowing equation:

e=e — Alnp’ (16)

where, e - is a critical state void ratio, e; - is the value of e corre-
sponding top = 1 kPa on the critical state line, 1 is the slope of the CSL
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Fig. 15. Critical state line in the e - In p’ plane for loose and medium dense samples.
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Fig. 16. The correlation between the slope of the CSL in the e - In p' plane and
the bond strength for both loose and medium dense samples.
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Fig. 17. The correlation between the intercept at 1 kPa of the CSL in the e - In p’
plane and the bond strength for both loose and medium dense samples.

in the e - In p' plane. The slope of the CSL (compression index) for both
systems range from 0.007 to 0.175, and it increase with increase in
bond strength. The non-linear correlations between the CSL
parameters A and I" and between e; and I', are shown in Figs. 16 and 17,

respectively.

5. Concluding remarks

Three dimensional DEM simulations of triaxial compression tests on
loose and medium dense samples have been performed in periodic cells.
Material properties of experimental sandstone from the Ustyurt-Buzachi
Sedimentary Basin were replicated for the numerical samples. A total of
40 simulations were performed with 5206 frictional elastic spherical
particles at different values of confining pressure and bond strength,
where in all cases particle rotations were prevented. The results show
that the peak strength and initial stiffness increase with increase in
bond strength, initial density and confining pressure, and for a higher
bond strength and initial density the stress reaches a peak at a lower
axial strain. For higher bond strengths the samples exhibit a higher rate
of dilation but the volumetric dilation decreases with increasing con-
fining pressure. Less bond breakage occurs for a higher bond strength
both for loose and medium dense systems.

The Mohr-Coulomb strength criterion parameters ¢' and ¢' were
obtained for both loose and medium dense systems. The bond strength
values to be used for comparison with experimental results were
identified by correlating the bond strength with the Mohr-Coulomb
shear strength parameters. In this way it was shown that the stress-
strain responses of the numerical samples were in good agreement with
experimental results, at least in terms of the shear strength.

A significant feature of the simulations is that, by using a periodic
cell, homogeneous deformation is obtained throughout the test, there is
no strain localization. Consequently, strain softening continues to occur
until the critical state is reached. As a consequence, the simulations
clearly demonstrate that, in principle, the critical state void ratio is a
function of the bond strength and that higher bond strengths lead to
higher critical state void ratios, due to the higher rate of dilation in-
duced when the bond strength is high.

It has been demonstrated that the simple contact interaction model
can be calibrated to obtain stress-strain curves that are in good agree-
ment with experimental data. However, the simple model fails to pre-
dict the amount of contraction observed in the laboratory tests.
Consequently, in order to model the compressibility and crushability of
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cement bonds, it is expected that, in any future work, the contact in-
teraction model of Shen et al [19] will be used.
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