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Abstract 
 

The hardware implementation of neuro-inspired 

machine learning algorithms for near sensor 

processing on edge devices is an open problem. In 

this work, we propose a solution to written word 

recognition problem related to sequence learning 

tasks with images. Applying a theoretical framework 

of neocortex functionality as a sequence learning 

algorithm on a hardware implementation of 

Hierarchical Temporal Memory (HTM), we test the 

potential use of HTM in near-sensor on-chip natural 

language processing for text/symbol recognition.  

 

Keywords: HTM, natural language processing, text 

recognition, symbol recognition. 

 

1. Introduction 
 

Natural language is a connected system of 

symbols with several levels of symbol dependencies. 

The language comprehension and language 

production abilities require the realization of these 

levels in a sequential order. The ability to learn these 

sequences is accomplished through the activation of 

cortical structures in a sequence determined by the 

evolution and an individual development [1]. HTM 

is a machine learning algorithm that mimics the 

functionality of pyramidal neurons of human brain 

neocortex responsible for sequence learning. The 

analog hardware implementation of such algorithms 

compatible with edge devices is an open research 

problem. 

In this paper, we show that HTM algorithm can 

be used for symbol order recognition and learning 

sequences from character images. To test the 

performance of the method, we perform system-level 

simulations by comparing the sequences of character 

images. Testing this similarity of character sequences 

from images, that we refer as word recognition, is the 

step towards using the HTM algorithm for solving 

sequence learning tasks such as spell checking.  

Current HTM hardware implementations based on 

CMOS-memristor hybrid circuits are proven to be 

useful for Face Recognition and Automatic Speech 

Recognition tasks [2,3]. In these architectures of 

HTM, pixel values are taken as the sensory input for 

both face and speech recognition (extracted MFCC 

images) tasks and deterministic learning approach is 

used for algorithm implementation.  Following the 

algorithm described in [2,3], we extend this work to 

the sequence (word) recognition task. The 

description of the proposed HTM architecture and 

the estimation of overall power and area 

consumption specific to image-based word 

recognition task are provided in Section 3. 

 

2. HTM for sequence learning 
 

The HTM algorithm for sequence learning is 

divided into two main parts: Spatial Pooler (SP) and 

Temporal Memory (TM). The HTM SP is used for 

the identification of spatial patterns of input sensory 

data and encoding them to the sparse distributed 

representations (SDRs) via activation of neuron 

columns. Originally, spatial pooling is implemented 

with four steps: (1) initialization, (2) overlap, (3) 

inhibition, and (4) learning [4]. The spatial pooler 

(SP) design is implemented based on the learning 

rules and algorithm proposed in [2]. The HTM TM 

stores learned synaptic values over time and the 

patterns that are likely to follow each other are 

memorized. The synaptic weights of HTM TM are 

adjusted according to the spatial variations reflected 

in the training set.  

The block diagram of HTM algorithm used in this 

work for sequence learning is illustrated in Fig. 1.  

The character images are applied as an input to the 

data controller, where the initial pre-processing is 

performed for forming the image sequence 

representing words. These words are further 

processed by HTM SP for feature extraction, 

encoding and converting the images to SDRs. The 

output data controller along with the HTM TM 

processes SDRs, to either update the weights in TM 

during the training stage or compare the SP outputs 

of words during the testing stage. 

 

 

 
Fig. 1. System level diagram of SP and TM for sequence 

matching 
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The sequence of digits “0123456789” is used to 

represent the sequence of letters, which is equivalent 

to a word that HTM learns to recognize. The image 

sequences forming the words used in this paper are 

created from MNIST database [5] and an example 

set of generated word sequences are shown in Fig. 

2(a). To create the set of words for HTM training, 

100 words are created using images from MNIST. 

HTM is trained to recognize the words considering 

spatial variance and differences in writing styles. 

In the testing stage, the accuracy of word 

sequence recognition is tested on the word sequences 

with the different order of the characters shown in 

Fig. 2(b). The testing set of images consists of six 

categories of a word sequence belonging to the same 

class with each category having 60 samples 

representing different levels of sequence errors, 

leading to the total of 360-word sequences with 

variable errors. First 60 samples from the first 

category represent the ideal word sequence order 

without errors, while other categories of word 

sequences have one, two, three, four, and five 

character sequence errors. To introduce the error into 

the sequence several characters are replaced 

randomly with other characters, and this changes the 

original order of the sequence.  

 

(a)                                         (b) 

Fig. 2. Sample images from training (a) and testing (b) 

sequences of digits 

 

Algorithm 1 shows the proposed design of HTM 

word recognizer implemented in MATLAB. Lines 2-

19 of the algorithm refer to feature extraction of the 

HTM SP. The algorithm generates a random weight 

matrix w of size N × N bits having a range from 0 to 

1. Dimensions of initially generated random weights 

matrix w define the dimensions of each column 

within the HTM SP. Lines 5-8 define the initial 

connectivity of each synapse in HTM. Overlap value 

is calculated by column.overlap() for each column m, 

which is represented as the sum of the products of 

synaptic weight matrix w and N × N bits of the 

image within the region m. Lines 15-19 refer to the 

inhibition stage, where a windowing operation of 

M×M columns is performed. The inhibition output 

depends on the overlap values of the columns within 

that inhibition region inhibition.block(). The 

inhibition is performed by comparing individual 

overlap values of columns with the maximum 

overlap θ that is detected within that particular 

inhibition region. Finally, the columns with overlap 

value greater than or equal to the threshold θ are 

activated. Otherwise, columns are will stay inactive 

with logical 0 value. As a result, the binary output 

image SP.image is formed by concatenating all 

inhibition regions.  

 
Algorithm 1. Proposed image based HTM word recognizer 

 

The HTM TM stage is shown in lines 24-33. The 

HTM TM stage has a learning mechanism that is 

activated during the training stage when binary 

features extracted by HTM SP SP.image is moved by 

the output data controller to the HTM TM block. The 

HTM TM creates sequence matrix for a given 

sequence representation, that reflects temporal 

variations of its spatial features.  The HTM TM is 

updated, and when newly extracted features are 

applied to the HTM TM block. The features in a 

class template class.map are increased by ∆ value if 

the training image features processed by HTM SP 

are 1, and decreased if it equals 0. At the end of the 

training stage, according to lines 29-33, the sequence 

of each class is binarized.  

Pattern matching process is active during the 

testing stage when binary image SP.image is 

transmitted by the output data controller block to the 

Sequence Matching block. The similarity score 

between the extracted features SP.image of the 

testing and the trained word sequence representation  

1:  Image based HTM word recognizer 

2:  >HTM SP                                                                                                      
3:  Create random matrix w of  N × N  size 

4:   for all n in w do  

5:          if w(n) > γ  then  
6:                  w(n) = 1 

7:          else 

8:                  w(n) = 0 
9:   Divide image into blocks of  N × N pixels 

10:   for m image blocks do 

11:          column.overlap(m) = sum(w × image.block(m)) 
12:   Divide image into inhibition blocks of  M  × M columns 

13:   for c columns within inhibition.block(M × M) do 
14:          θ  = max(column.overlap(c.columns)) 

15:          if column.overlap(c) ≥ θ  then 

16:                  inhibition.block(c) = 1 
17:          else 

18:                  inhibition.block(c) = 0 

19:  SP.image = inhibition.block 
20: > HTM TM                                                                                                                                     

21:   if training stage then 

22:          Define number of  train images z per sequence 
23:          for all j in z train images do 

24:                  for all i pixels in SP.image do 

25:                          if SP.image(j,i) = 1 then 
26:                                  sequence(i) = sequence(i) + ∆ 

27:                          else if SP.image(j,i) = 0 then 

28:                                  sequence(i) = sequence(i) − ∆ 
29:          for all i pixels in sequence do 

30:                  if sequence(i) ≥ σ  then 

31:                         sequence(i) = 1 
32:                  else if sequence(i) < σ  then 

33:                         sequence(i) = 0 

34:    > Match Calculation                                                                                                         
35:   else if testing stage then 

36:   for i image pixels do 

37:          score = sum(XOR(sequence(i),SP.image(i))) 
38:  match = ((i − score)/i) • 100%  
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stored within HTM TM is defined in lines 37-38 with 

the sum of XOR logic outputs. 

 

3. Hardware implementation 

The overall hardware implementation of the 

proposed HTM word recognizer consists of HTM 

SP, HTM TM, and Memristive Pattern Matcher. The 

analog hardware implementation of the HTM SP is 

shown in Fig.4(a). Receptor Block (RB) performs the 

selection of randomly generated synaptic weights 

represented as memristors with the random state. In 

RB, the input sequence of character image features 

represented as pixels is applied to 10 different sets of 

the random weights using the averaging method. The 

output of each set  is fetched to the Receptor 

Block Mean circuit, which produces the final value 

of the RB . This corresponds to the calculation of 

the overlap value in each HTM column. In the next 

step, the calculation of threshold value for Inhibition 

Block (IB) is performed by the averaging memristive 

circuit and is obtained. The inhibition of the 

RBs is performed by the comparator that compares 

the output of each RB with the obtained threshold 

value. The comparator output is inverted and the 

final binary output of a single IB is produced. With 

this operation, important spatial features of the image 

are extracted and irrelevant features are inhibited. 

Figure 4(b) presents the analog hardware 

implementation of the HTM TM. As shown in the 

first block of the figure the output of the HTM SP is 

applied to the comparator that consists of two 

inverters. The comparator performs the comparison 

of the pixel as a feature of a new training image with 

a stored training sequence samples. The comparator 

decides whether to increase the pixel value of the 

sample training image (if the pixel of the new image 

is white, 1V) or to reduce it (the pixel of the new 

image is black, 0V). The comparator output is either 

+∆ or −∆ value. The summation of the pixel of the 

previous image and the ∆ value is performed by the 

summing multiplier. The summing multiplier 

consists of the averaging circuit, that calculates the 

mean of the inputs, and amplifier, which multiplies 

the mean value by 2 to perform the summation 

operation. The new temporal pattern is saved in a 

multi-level memory that stores discrete analog 

values. When the training cycle is complete, the 

output of the HTM TM is binarized by the 

thresholding circuit to perform the word recognition. 

In the word recognition stage, the matching of the 

HTM TM pattern and new HTM SP output is 

performed by the Memristive Pattern Matcher shown 

in Fig.4(c). The Memristive Pattern Matcher consists 

of the Memristive XNOR gate (Pattern Matcher cell) 

comprised of 2 averaging circuits and 3 inverters. 

Each pattern matcher cell performs the matching of a 

single pixel. Then, the similarity score is calculated 

based on average outputs of the Memristive Pattern 

Matcher cells for each image pixel.  

4. Results 

To present the functionality of the proposed HTM 

system, system level simulation as in Algorithm 1 

and hardware level simulation for SP and TM were 

conducted. Similarity of the original sequence to the 

sequences with errors was evaluated at the system 

level, and with hardware simulation tools area and 

power consumption of HTM were calculated. 

Mean values of the sequence similarities for each 

category to the original sequence are provided in 

Table 1. The mean similarity to the original sequence 

gradually decreases with the increase of error in the 

sequence. Fig. 3(a) shows the histogram of similarity 

score for each category of testing images, while Fig. 

3(b) shows the distribution curve of the histogram 

values. The curve of the category with 5 errors is 

skewed to the left side representing the decreased 

level of similarity score, while the curve of the 

sequence with no errors is most skewed to the right, 

representing a higher level of similarity scores.  

 

(a) 

 

(b) 

Fig. 3. Histogram values of sequence similarity scores 

Table 1.  Mean values of sequence similarities of each category to the original sequence (seq.) 

 Sequence similarity 

Mean 

original sequence seq. with 1 error seq. with 2 errors seq. with 3 errors seq. with 4 errors seq. with 5 errors 

80.8720238 ± 1.35 80.52275 ± 1.36 80.39647 ± 1.46 80.05974 ± 1.19 79.81399 ± 1.27 79.36246 ± 1.11 
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Table 2 shows the on-chip area and power 

consumption for sequential and parallel processing 

of HTM configuration blocks. Parallel processing 

involves the concurrent computation and 

simultaneous execution of the SP and TM operations 

for all input pixels. This optimizes the performance 

of HTM in terms of speed, but it is not efficient in 

terms of area and power consumption. Sequential 

processing in turn ensures the reduction of on-chip 

area and power computation with the limitation of 

reduced processing speeds.  

Table 2. On-chip area and power consumption  
Configuration Area 

(µm2) 

Maximum Power (mW) 

Sequential processing 

HTM SP 19.96 365.88 

HTM TM 23.85 442.26 

Memristive PM 1.18 69.44 

Parallel processing 

HTM SP 39121.6 717.12 

HTM TM 46746 866.83 

Memristive PM 2312.8 136.10 

 

5. Conclusion 
 

In this paper, we demonstrated a practical 

application of HTM circuits for sequence learning 

from handwritten character images. The system level 

simulation of HTM circuits illustrated the possibility 

to differentiate between the correct sequences of 

digits and its mismatch. The proposed application 

with HTM circuits can be used to perform intelligent 

back-plane information processing in CMOS image 

pixel arrays.  
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Fig. 4. HTM architecture: (a) Spatial Pooler circuit implementation that consists of Initialization, Overlap and Inhibition Blocks, 

(b)Temporal Memory circuits incorporating multi-level memories for discrete analog data storage of synaptic weights and synaptic 

weight update circuits  and  (c) Memristive Pattern Matcher 
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