
Image Based HTM Word Recognizer for Language processing

Aidana Irmanova, Olga Krestinskaya, Alex Pappachen James

Nazarbayev University, Astana, Kazakhstan

apj@ieee.org

Abstract

The hardware implementation of neuro-inspired

machine learning algorithms for near sensor

processing on edge devices is an open problem. In

this work, we propose a solution to written word

recognition problem related to sequence learning

tasks with images. Applying a theoretical framework

of neocortex functionality as a sequence learning

algorithm on a hardware implementation of

Hierarchical Temporal Memory (HTM), we test the

potential use of HTM in near-sensor on-chip natural

language processing for text/symbol recognition.

Keywords: HTM, natural language processing, text

recognition, symbol recognition.

1. Introduction

Natural language is a connected system of

symbols with several levels of symbol dependencies.

The language comprehension and language

production abilities require the realization of these

levels in a sequential order. The ability to learn these

sequences is accomplished through the activation of

cortical structures in a sequence determined by the

evolution and an individual development [1]. HTM

is a machine learning algorithm that mimics the

functionality of pyramidal neurons of human brain

neocortex responsible for sequence learning. The

analog hardware implementation of such algorithms

compatible with edge devices is an open research

problem.

In this paper, we show that HTM algorithm can

be used for symbol order recognition and learning

sequences from character images. To test the

performance of the method, we perform system-level

simulations by comparing the sequences of character

images. Testing this similarity of character sequences

from images, that we refer as word recognition, is the

step towards using the HTM algorithm for solving

sequence learning tasks such as spell checking.

Current HTM hardware implementations based on

CMOS-memristor hybrid circuits are proven to be

useful for Face Recognition and Automatic Speech

Recognition tasks [2,3]. In these architectures of

HTM, pixel values are taken as the sensory input for

both face and speech recognition (extracted MFCC

images) tasks and deterministic learning approach is

used for algorithm implementation. Following the

algorithm described in [2,3], we extend this work to

the sequence (word) recognition task. The

description of the proposed HTM architecture and

the estimation of overall power and area

consumption specific to image-based word

recognition task are provided in Section 3.

2. HTM for sequence learning

The HTM algorithm for sequence learning is

divided into two main parts: Spatial Pooler (SP) and

Temporal Memory (TM). The HTM SP is used for

the identification of spatial patterns of input sensory

data and encoding them to the sparse distributed

representations (SDRs) via activation of neuron

columns. Originally, spatial pooling is implemented

with four steps: (1) initialization, (2) overlap, (3)

inhibition, and (4) learning [4]. The spatial pooler

(SP) design is implemented based on the learning

rules and algorithm proposed in [2]. The HTM TM

stores learned synaptic values over time and the

patterns that are likely to follow each other are

memorized. The synaptic weights of HTM TM are

adjusted according to the spatial variations reflected

in the training set.

The block diagram of HTM algorithm used in this

work for sequence learning is illustrated in Fig. 1.

The character images are applied as an input to the

data controller, where the initial pre-processing is

performed for forming the image sequence

representing words. These words are further

processed by HTM SP for feature extraction,

encoding and converting the images to SDRs. The

output data controller along with the HTM TM

processes SDRs, to either update the weights in TM

during the training stage or compare the SP outputs

of words during the testing stage.

Fig. 1. System level diagram of SP and TM for sequence

matching

2018 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia).

978-1-5386-5807-9/18/$31.00 ©2018 IEEE

The sequence of digits “0123456789” is used to

represent the sequence of letters, which is equivalent

to a word that HTM learns to recognize. The image

sequences forming the words used in this paper are

created from MNIST database [5] and an example

set of generated word sequences are shown in Fig.

2(a). To create the set of words for HTM training,

100 words are created using images from MNIST.

HTM is trained to recognize the words considering

spatial variance and differences in writing styles.

In the testing stage, the accuracy of word

sequence recognition is tested on the word sequences

with the different order of the characters shown in

Fig. 2(b). The testing set of images consists of six

categories of a word sequence belonging to the same

class with each category having 60 samples

representing different levels of sequence errors,

leading to the total of 360-word sequences with

variable errors. First 60 samples from the first

category represent the ideal word sequence order

without errors, while other categories of word

sequences have one, two, three, four, and five

character sequence errors. To introduce the error into

the sequence several characters are replaced

randomly with other characters, and this changes the

original order of the sequence.

(a) (b)

Fig. 2. Sample images from training (a) and testing (b)

sequences of digits

Algorithm 1 shows the proposed design of HTM

word recognizer implemented in MATLAB. Lines 2-

19 of the algorithm refer to feature extraction of the

HTM SP. The algorithm generates a random weight

matrix w of size N × N bits having a range from 0 to

1. Dimensions of initially generated random weights

matrix w define the dimensions of each column

within the HTM SP. Lines 5-8 define the initial

connectivity of each synapse in HTM. Overlap value

is calculated by column.overlap() for each column m,

which is represented as the sum of the products of

synaptic weight matrix w and N × N bits of the

image within the region m. Lines 15-19 refer to the

inhibition stage, where a windowing operation of

M×M columns is performed. The inhibition output

depends on the overlap values of the columns within

that inhibition region inhibition.block(). The

inhibition is performed by comparing individual

overlap values of columns with the maximum

overlap θ that is detected within that particular

inhibition region. Finally, the columns with overlap

value greater than or equal to the threshold θ are

activated. Otherwise, columns are will stay inactive

with logical 0 value. As a result, the binary output

image SP.image is formed by concatenating all

inhibition regions.

Algorithm 1. Proposed image based HTM word recognizer

The HTM TM stage is shown in lines 24-33. The

HTM TM stage has a learning mechanism that is

activated during the training stage when binary

features extracted by HTM SP SP.image is moved by

the output data controller to the HTM TM block. The

HTM TM creates sequence matrix for a given

sequence representation, that reflects temporal

variations of its spatial features. The HTM TM is

updated, and when newly extracted features are

applied to the HTM TM block. The features in a

class template class.map are increased by ∆ value if

the training image features processed by HTM SP

are 1, and decreased if it equals 0. At the end of the

training stage, according to lines 29-33, the sequence

of each class is binarized.

Pattern matching process is active during the

testing stage when binary image SP.image is

transmitted by the output data controller block to the

Sequence Matching block. The similarity score

between the extracted features SP.image of the

testing and the trained word sequence representation

1: Image based HTM word recognizer

2: >HTM SP
3: Create random matrix w of N × N size

4: for all n in w do

5: if w(n) > γ then
6: w(n) = 1

7: else

8: w(n) = 0
9: Divide image into blocks of N × N pixels

10: for m image blocks do

11: column.overlap(m) = sum(w × image.block(m))
12: Divide image into inhibition blocks of M × M columns

13: for c columns within inhibition.block(M × M) do
14: θ = max(column.overlap(c.columns))

15: if column.overlap(c) ≥ θ then

16: inhibition.block(c) = 1
17: else

18: inhibition.block(c) = 0

19: SP.image = inhibition.block
20: > HTM TM

21: if training stage then

22: Define number of train images z per sequence
23: for all j in z train images do

24: for all i pixels in SP.image do

25: if SP.image(j,i) = 1 then
26: sequence(i) = sequence(i) + ∆

27: else if SP.image(j,i) = 0 then

28: sequence(i) = sequence(i) − ∆
29: for all i pixels in sequence do

30: if sequence(i) ≥ σ then

31: sequence(i) = 1
32: else if sequence(i) < σ then

33: sequence(i) = 0

34: > Match Calculation
35: else if testing stage then

36: for i image pixels do

37: score = sum(XOR(sequence(i),SP.image(i)))
38: match = ((i − score)/i) • 100%

2018 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia).

978-1-5386-5807-9/18/$31.00 ©2018 IEEE

stored within HTM TM is defined in lines 37-38 with

the sum of XOR logic outputs.

3. Hardware implementation

The overall hardware implementation of the

proposed HTM word recognizer consists of HTM

SP, HTM TM, and Memristive Pattern Matcher. The

analog hardware implementation of the HTM SP is

shown in Fig.4(a). Receptor Block (RB) performs the

selection of randomly generated synaptic weights

represented as memristors with the random state. In

RB, the input sequence of character image features

represented as pixels is applied to 10 different sets of

the random weights using the averaging method. The

output of each set is fetched to the Receptor

Block Mean circuit, which produces the final value

of the RB . This corresponds to the calculation of

the overlap value in each HTM column. In the next

step, the calculation of threshold value for Inhibition

Block (IB) is performed by the averaging memristive

circuit and is obtained. The inhibition of the

RBs is performed by the comparator that compares

the output of each RB with the obtained threshold

value. The comparator output is inverted and the

final binary output of a single IB is produced. With

this operation, important spatial features of the image

are extracted and irrelevant features are inhibited.

Figure 4(b) presents the analog hardware

implementation of the HTM TM. As shown in the

first block of the figure the output of the HTM SP is

applied to the comparator that consists of two

inverters. The comparator performs the comparison

of the pixel as a feature of a new training image with

a stored training sequence samples. The comparator

decides whether to increase the pixel value of the

sample training image (if the pixel of the new image

is white, 1V) or to reduce it (the pixel of the new

image is black, 0V). The comparator output is either

+∆ or −∆ value. The summation of the pixel of the

previous image and the ∆ value is performed by the

summing multiplier. The summing multiplier

consists of the averaging circuit, that calculates the

mean of the inputs, and amplifier, which multiplies

the mean value by 2 to perform the summation

operation. The new temporal pattern is saved in a

multi-level memory that stores discrete analog

values. When the training cycle is complete, the

output of the HTM TM is binarized by the

thresholding circuit to perform the word recognition.

In the word recognition stage, the matching of the

HTM TM pattern and new HTM SP output is

performed by the Memristive Pattern Matcher shown

in Fig.4(c). The Memristive Pattern Matcher consists

of the Memristive XNOR gate (Pattern Matcher cell)

comprised of 2 averaging circuits and 3 inverters.

Each pattern matcher cell performs the matching of a

single pixel. Then, the similarity score is calculated

based on average outputs of the Memristive Pattern

Matcher cells for each image pixel.

4. Results

To present the functionality of the proposed HTM

system, system level simulation as in Algorithm 1

and hardware level simulation for SP and TM were

conducted. Similarity of the original sequence to the

sequences with errors was evaluated at the system

level, and with hardware simulation tools area and

power consumption of HTM were calculated.

Mean values of the sequence similarities for each

category to the original sequence are provided in

Table 1. The mean similarity to the original sequence

gradually decreases with the increase of error in the

sequence. Fig. 3(a) shows the histogram of similarity

score for each category of testing images, while Fig.

3(b) shows the distribution curve of the histogram

values. The curve of the category with 5 errors is

skewed to the left side representing the decreased

level of similarity score, while the curve of the

sequence with no errors is most skewed to the right,

representing a higher level of similarity scores.

(a)

(b)

Fig. 3. Histogram values of sequence similarity scores

Table 1. Mean values of sequence similarities of each category to the original sequence (seq.)

 Sequence similarity

Mean

original sequence seq. with 1 error seq. with 2 errors seq. with 3 errors seq. with 4 errors seq. with 5 errors

80.8720238 ± 1.35 80.52275 ± 1.36 80.39647 ± 1.46 80.05974 ± 1.19 79.81399 ± 1.27 79.36246 ± 1.11

2018 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia).

978-1-5386-5807-9/18/$31.00 ©2018 IEEE

Table 2 shows the on-chip area and power

consumption for sequential and parallel processing

of HTM configuration blocks. Parallel processing

involves the concurrent computation and

simultaneous execution of the SP and TM operations

for all input pixels. This optimizes the performance

of HTM in terms of speed, but it is not efficient in

terms of area and power consumption. Sequential

processing in turn ensures the reduction of on-chip

area and power computation with the limitation of

reduced processing speeds.

Table 2. On-chip area and power consumption
Configuration Area

(µm2)

Maximum Power (mW)

Sequential processing

HTM SP 19.96 365.88

HTM TM 23.85 442.26

Memristive PM 1.18 69.44

Parallel processing

HTM SP 39121.6 717.12

HTM TM 46746 866.83

Memristive PM 2312.8 136.10

5. Conclusion

In this paper, we demonstrated a practical

application of HTM circuits for sequence learning

from handwritten character images. The system level

simulation of HTM circuits illustrated the possibility

to differentiate between the correct sequences of

digits and its mismatch. The proposed application

with HTM circuits can be used to perform intelligent

back-plane information processing in CMOS image

pixel arrays.

References

[1] Grossman, M., "Neurolinguistics and linguistic

aphasiology: An introduction", Annals of Neurology,

vol. 24, no. 6, pp. 800–801, 1988

[2] T. Ibrayev, U. Myrzakhan, O. Krestinskaya, A.

Irmanova, and A. P. James, “On-chip face

recognition system design with memristive

hierarchical temporal memory,” CoRR, vol.

abs/1709.08184, 2017. [Online]. Available:

Arxiv.org/abs/1709.08184

[3] O. Krestinskaya, T. Ibrayev, and A. P. James,

“Hierarchical temporal memory features with

memristor logic circuits for pattern recognition,”

IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. PP, no. 99, pp.

1–1, 2017.

[4] J. Hawkins, S. Ahmad, and D. Dubinsky,

“Hierarchical temporal memory including htm

cortical learning algorithms,” Techical report,

Numenta, Inc, Palto Alto http://www. numenta.

com/htmoverview/education/HTM

CorticalLearningAlgorithms. pdf, 2010.

[5] Y. LeCun and C. Cortes, “MNIST handwritten

digit database,” 2010. [Online]. Available:

http://yann.lecun.com/exdb/mnist/

Fig. 4. HTM architecture: (a) Spatial Pooler circuit implementation that consists of Initialization, Overlap and Inhibition Blocks,

(b)Temporal Memory circuits incorporating multi-level memories for discrete analog data storage of synaptic weights and synaptic

weight update circuits and (c) Memristive Pattern Matcher

2018 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia).

978-1-5386-5807-9/18/$31.00 ©2018 IEEE

