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Given a set of quantum gates and a target unitary operation, the most elementary task of quantum compiling is
the identification of a sequence of the gates that approximates the target unitary to a determined precision ε. The
Solovay-Kitaev theorem provides an elegant solution which is based on the construction of successively tighter
“nets” around unity comprised of successively longer sequences of gates. The procedure for the construction
of the nets, according to this theorem, requires accessibility to the inverse of the gates as well. In this work,
we propose a method for constructing nets around unity without this requirement. The algorithmic procedure is
applicable to sets of gates which are diffusive enough, in the sense that sequences of moderate length cover the
space of unitary matrices in a uniform way. We prove that the number of gates sufficient for reaching a precision
ε scales as log(1/ε)log 3/ log 2 while the precompilation time is increased as compared to that of the Solovay-Kitaev
algorithm by the exponential factor 3/2.
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Approximation up to a given accuracy of an arbitrary unitary
transformation by a series of standard transformations is an
important ingredient of programming of quantum computers,
which was formulated and solved [1,2] in the case where the set
of M predetermined standard transformations contains both
direct operations and their inverses. The so-called Solovay-
Kitaev (SK) theorem provides the proof of existence together
with the method for constructing the solution. Based on the
elements in the proof of the SK theorem, the Dawson-Nielsen
(DNSK) algorithm [3] provides the exact steps for identifying
a series of length L, which scales with the required accuracy ε

as O[log(1/ε)3.97], and with running time as O[log(1/ε)2.71].
For the special case of qubits, different techniques have been
suggested [4,5] improving the running time of this algorithm,
while in the general case it has been proved [2,6] that the use
of extra ancilla qubits further improves the relations of both
the length and the running time, with the accuracy ε.

Here we address the question [3] whether it is possible
to generalize the results of the SK theorem onto the case
where the set of predetermined operations does not contain
the inverses. In view of the fast development of quantum
technologies, this problem has theoretical but also practical
interest since experimentalists sometimes do not have access
to inverse operations. For instance, time is the main quantum
control (positive) parameter and one may employ it to construct
both a gate and its inverse. On the other hand decoherence effect
inducing constraints in time might prevent one from doing so
in practice.

Progress on the possibility of extending the SK theorem has
been reported in [7,8] and also in a very recent related work
[9]. Our answer is also positive and conditional on a specific
property of the given set. We require that sequences of gates
of moderate length (composed of 15–20 gates) cover the space

of unitary matrices in a uniform way. This property of sets was
initially investigated in [10] and criteria have been formally
developed in [11] in the case where the inverse operators are
included in the set. More recently the powerfulness of such
sets, so-called efficiently universal, over just computationally
universal ones, has been demonstrated in [12] for the problem
of quantum compiling. In view of lack of formal criteria for
the case where the inverses are not available, we avoid the
use of the term of “efficiently universal sets” and we employ
instead the loosely defined term of “diffusive sets.” As in
[12], we require that such sets are composed of noncommuting
computationally universal gates and in addition that sequences
of moderate length composed of the gates of these sets cover
densely and uniformly the space of unitary matrices. For the
special case of qubits where the property of diffusivity can
be visually over viewed (see Fig. 1), we have found out that
a considerable number of computationally universal sets are
also diffusive (our estimation ≈ 30%). In addition, we have
noticed that by multiplying a set of computationally universal
gates with a random unitary matrix [13], one transforms with
high probability the former into a diffusive set. Physically this
random matrix may stand for the free evolution of the quantum
system that interpolates the control actions which generate the
gate operations.

Let us now briefly present the idea of our approach and
the structure of this manuscript, assuming that the reader is
a little familiar with the proof of the SK theorem. As in the
latter, our aim is to develop a universal algorithmic method
for constructing a series of successive (εi, ε

2
i ) nets around the

identity and with the requirement εi+1 = ε2
i [14]. A (εi, ε

2
i ) net

signifies that in the εi neighborhood of the identity operator
there are sequences of gates of length Li and for each of these
sequences there is another point at distance less than ε2

i . After
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(a) (b)

FIG. 1. Geometric representation of all sequences T̂ of length 17
generated by two different computationally universal sets of (two)
single-qubit gates. (a) A diffusive set and (b) a nondiffusive one.

we introduce our notation and a geometric picture that permits
us to interpreter the nets and our methods in a geometric
fashion, we explain how the nets can be used to improve
the approximation for given Û in the standard recursive way.
Then we present our main result, a method for successively
producing the nets via “shrinking.” We justify the limits of
this method using the theory of random walks and we confirm
our theoretical predictions with a compiling example for phase
rotation gates.

Throughout this work we consider that M, the set of given
gates, contains just two unitary operations, Â = exp [−iÔ0]
and B̂ = exp [−iÔ1], determined by two Hermitian operators
Ôi=0,1 in a Hilbert space of N dimensions. Each sequence of k

transformations, i.e., of length L = k, picked from the set M
can be encoded by a binary number μ = {f, j, . . . p, q} in k

registers

T̂f,j,...,p,q = e−iÔf e−iÔj l · · · e−iÔq e−iÔp , (1)

where f, j, . . . p, q = 0, 1. One may attribute a d = N 2 − 1
dimensional real vector −→

r = {rn} to such a sequence T̂ , and
in general to any unitary transformation Û , and this geometric
representation is particularly useful for our analysis. The
“mapping” can be achieved by casting log Û in the sum of
the su(N ) traceless generators ĝn:

−i log Û =
d∑

n=1

rnĝn = −→
r · −→

g . (2)

If the generators are normalized, Tr(ĝi · ĝj ) = δij , then rn =
Tr(−i log Û · ĝn). The unity operator corresponds to −→

r = 0,
while all other unitary operations corresponds to points in
the hypersphere around it. Some additional information about
this mapping is provided in the Appendix and hereafter we
sometimes refer to a unitary Û as to a point, implying the
edge of the corresponding vector −→

r Û in the d-dimensional
space. For single-qubit operations the a vector −→

r = (rx, ry, rz)
is three dimensional and can be visualized, and in Fig. 1 we use
this possibility to observe the difference between a diffusive
and a nondiffusive set of computationally universal pairs of
gates.

The representation of unitary operators as vectors leads
naturally to the following definition of distance D between
two unitary operators:

D
(
Û1, Û2

) = |−→r (Û−1
1 ·Û2 )|, (3)

where the right-hand side of the equation describes the length
of the vector for the unitary matrix Û−1

1 · Û2. By definition the
following property holds:D(Û1, Û2) = D(Û1 · Û−1

2 , Î ). In our
proofs where we are mostly interested in the regime of small
distances, we use D as a measure of distance between unitary
operators; in fact we have tested that this perfectly correlates
with other measures in use [1,15].

Using the introduced notation we can more clearly state now
the objective of the quantum compiling task and the utility of
constructing successive nets.

Quantum Compiling: Given an arbitrary unitary transfor-
mation Û , identify a sequence T̂f,j,...,p,q of gates from the
set M, of a total length L, which approximates Û to a given
accuracy ε, or else,

D(T̂f, j, . . . , p, q︸ ︷︷ ︸
L

, Û ) < ε. (4)

Different strategies can be in principle designed to solve this
problem and each of them is characterized by three relations:
the relation between the total length L of the sequence and the
achieved precision ε, the relation between the running time of
the algorithm and ε, and the precompilation time. All these
relations cannot simultaneously scale in an optimal way and
there is an apparent interplay among them. For instance, the
simplest strategy is the exploration of all possible sequences
of a given length and identification of a sequence closest to the
required transformation Û . This is the well-known coverage
problem, typical of coding theory, which yields indeed the
shortest sequenceL ∝ log(1/ε) for a given accuracy. However,
the identification of such a sequence requires a time-consuming
work of exploration of all possibilities, whereas the running
time scales exponentially with L thus making the approach
intractable in the high accuracy limit (however, see [15]
for an enhanced protocol). This strategy does not require
precompilation time since every new Û requires a new search;
but on the other hand, and for the same reason, this is not a
universal strategy.

The SK theorem for sets including inverses offers [3] a
balance between the three relations, which could be possibly
optimal; both the length of sequence and running time scale
poly-logarithmically with ε and notably these are independent
of the dimension of the Hilbert space N , while the precompi-
lation time scales polynomially with ε and exponentially with
d = N 2 − 1. The SK theorem, and in consequence the DNSK
algorithm, are heavily based on a “succesful” construction of a
sequence of (εi, ε

2
i )nets around the identity. Once these nets are

constructed and stored, one can perform a standard procedure
(ignoring always the telescoping step and assuming εi+1 = ε2

i )
to approximate a given unitary Û :

(i) One first performs a number of relatively short sequences
of transformations T̂f, j, . . . p, q︸ ︷︷ ︸

r

of length ≈ 16–20 that serve

as initial reference points. Let us call this net the sampling net.
(ii) For the given Û one has to identify by exhaustive search

in the sampling net the closest reference point T̂ (0) such that
distance D(Û−1T̂ (0), Î ) < ε0. If it is not the case, one should
restart augmenting the length r .
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(iii) One can then use the net (ε0, ε
2
0 ) in order to identify the

sequence T̂ (ε0 ) such as D(Û−1T̂ (0)T̂ (ε0 ), Î ) < ε2
0.

(iv) The procedure is repeated n times and at the last step
one arrives at the desired result: a sequence of gates Â and B̂

T̂ (0)T̂ (ε0 ) · · · T̂ (εn )

of length r + ∑n
i=0 Li that reproduces the given unitary in

ε = ε2
n approximation: D(Û−1T̂ (0)T̂ (ε0 ) . . . T̂ (εn ), Î ) < ε.

The dependence of the final length L with ε is determined
by the relation between Li+1 and Li . If Li+1 = MLi where
M ∈ N, it is straightforward to prove the dependence is the
desired, poly-logarithmic one:

Ln = r
[
log (1/εn)/ log (1/ε0)

]log M/ log 2
. (5)

Now, let us turn to the main question of how to construct the
sequence of nets and let us assume hereafter that the given set of
gates (including the inverses or not) is a diffusive one. The latter
condition permits us to consider the points on these nets—even
on the sampling one—as uniformly distributed according to
the Haar measure. Using then the formula for the volume of a
sphere in the d-dimensional space, one can calculate that the
number of required points is for a sufficient density up to a
constant factor (εi )−d . We desire to employ the Ki ∝ (εi )−d

points (sequences) of the εi net to identify the Ki+1 ∝ (εi )−2d

points of the consecutive εi+1 net.
We first consider the case where the inverses are available

in the set, we follow the main idea introduced in [1,2] in order
to arrive at a simplified version of the DNSK algorithm. The
key idea in [1,2] is to apply the normal commutator to a pair
of sequences T̂

(εi )
(1) and T̂

(εi )
(2) of the εi net, employing also

the inverses of these, T̂
(εi )

(1)
−1

and T̂
(εi )

(2)
−1

, which are naturally
included in the same net. By definition a normal commutator

is T̂
(εi )

(1) T̂
(εi )

(2) T̂
(εi )

(1)
−1

T̂
(εi )

(2)
−1

and the result of this product is a
new sequence at distance less than ε2

i from unity. This new
point or sequence can be included in the consequent εi+1 net.
The normal commutator thus naturally leads to the so-called
shrinking of the initial net. The number of distinct normal com-
mutators that can be formed by Ki points of the εi net matches
the number of points required in the εi+1 net, independently
of the dimension of the Hilbert space, and there is no need
for additional “search” steps during the precompilation stage.
Now concerning the scaling of the length of the sequences with
the ith order of the net, Lεi+1 = 4Lεi

, and by inserting M = 4
into Eq. (5) we arrive at a quadratic dependence between
length and accuracy: Ln ∼ [(log (1/εn)]2. In what has been
described we have ignored the extra step of “telescoping” [14]
and we name this simple and faster version fast DNSK. This
simplified version can be compared with the algorithm that
we suggest on the same grounds. In addition the requirement
of diffusive characters of gates seems to partially compensate
for the telescoping procedure (see standard deviation of the
approximation in Fig. 2).

Now, let us consider the case where the inverses are not
accessible and therefore the idea of normal commutators is
not applicable. Let us start as before with the εi net and
select at random M sequences from this net. Then construct
a new sequence by taking one of the (M!) products of
these sequences. If εi is small enough one may interpret, in

FIG. 2. Accuracy of approximation ε of phase rotation gates R2d

for d = 1, . . . , 7 by sequences of two diffusive gates, plotted vs length
of the sequence. Blue squares: results obtained with the introduced
algorithm. Red circular dots: results of the fast DNSK. Different
columns correspond to different initial lengths r of the sequences
in the sampling net. From left to right: r = 16, 17, 18, 16, 17, 18.

approximation O(ε2
i ), this new point as a result of an M-steps

random walk in the d -dimensional space (see Lemma in the
Appendix). More precisely the steps of this random walk are
the vectors (sequences) of the εi net, which are isotropic in
the d-dimensional space and their size is in the interval [0, ε]
with a standard deviation of the order ε as well. If now all
M products are produced from points (sequences) of the εi

net, the resulting (εi )−Md new points are going to follow the
distribution of a random walk and diffuse out of the unity. Such
random walks have been well studied (see, for instance, [16])
and it is straightforward to derive the probability of finding a
new point or sequence at distance r = |�r| from the origin of
the hypersphere after M steps,

PM (r ) = 2

(
d

2Mε2

)d/2
rd−1

�
(

d
2

)e
− dr2

2Mε2 . (6)

To build the εi+1 net, one needs to post-select from the new
diffused distribution of points the ones at distanceD < ε2

i from
the origin.

To claim that the suggested method for shrinking is applica-
ble we need though to answer three questions: (1) What is the
minimum number of steps M that provides the required density
of points for the consequent εi+1-net? (2) How does the time
for constructing the nets compare to the precompilation time
of fast DNSK? (3) Is the quality of the produced εi+1 net good
enough to ensure the successful construction of the εi+2 net?

It turns out that M = 3 gives sufficient density of points
inside the radius ε2

i for any dimension d. To prove this state-
ment we first calculate the cumulative distribution function for
probability distribution Eq. (6), plug in ε2

i , and arrive at

PM (r < ε2
i ) = 1 −

�
(

d
2 ,

dε2
i

2M

)
�

(
d
2

) . (7)
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However, an approximate formula for the distribution in Eq. (7)
is more easy to overview as

PM (r < ε2
i ) ≈ 2

(
d

2M

)d/2
εd

�
(

d
2

) . (8)

The latter can be derived by noting that the maximum of
the Rayleigh type of distribution in Eq. (6) is outside the
region of r < ε2

i and thus its contribution can be ignored. If
Eq. (8) is multiplied with the total number of points (εi )−Md

resulting from the diffusion process, one arrives at a formula
that provides the number of points at distance less than ε2

i

from the origin (unity). For M = 3, the required (for sufficient
density) order (εi )−2d is reached for any dimension d.

Since M = 3 is sufficient one needs to perform all triplet
products of the sequences in the εi net and then post-select
the points (sequences) for which |−→r | < ε2

i . The number of
sequences of the εi net is approximately Ki ∝ (εi )−d and
therefore the number of necessary operations is ∝ (εi )−3d . In
the fast DNSK the number of operations for constructing all
normal commutators is ∝ (εi )−2d . We may thus conclude that
the time in our method is increased exponentially by a factor of
1.5. We believe that this is a natural consequence of the fact that
the two methods have the same running time, but our suggested
method achieves better scaling of length with approximation
[see Eq. (5) with M = 3 while for fast DNSK M = 4]. In the
Appendix we additionally prove that it is very unlikely that
the long precompilation time of the algorithm that we suggest
here can be shortened. There we show that if the post-selection
process on the points is replaced by a pre-selection process,
then this problem maps into an NP hard problem, namely, to
the 0–1 knapsack problem in d dimensions.

Addressing now the last question. The number of points
inside the radius ε2

i is increasing as rd−1 [see Eq. (6)] and there-
fore has approximately the desired dependence of a uniform
distribution. In addition, under our assumption of diffusive set,
the new points should be distributed in an isotropic way. Here
though we suggest an additional step to ensure isotropicity
which we have found very useful in practice: for each point
or sequence identified to belong in the εi+1 net, construct
all cyclic permutations of the gates in the sequence. Cyclic
permutations leave the spectrum of the sequence intact, and
the length of the vector |−→r Û | depends only on the spectrum of
the corresponding unitary Û . Therefore, cyclic permutations of
sequence leave the distanceD from unity invariant and the cor-
responding new points are distributed over the hyperspherical
surface of the original point.

In the Fig. 2 we present quantum compiling results obtained
with the proposed algorithm versus the fast DNSK. More
precisely, we approximate the phase rotation gates,

R2d =
(

1 0
0 eiπ/2d

)
, with d = 1, . . . , 7, (9)

using the introduced algorithm and then the fast DNSK,
keeping the parameters of produced nets very similar in both
cases. For both methods we have used the same pair of
diffusive gates (see Appendix), but naturally for the latter
we have included the inverses. On each column the seven
points describe the approximation of the seven phase rotations
of Eq. (9). There is no correlation between the precision

achieved and the order d of the phase gates and for this
reason we have not marked with d the points on the plot.
For each method we present three numerical results (three
columns) that correspond to three different lengths of the initial
sampling net r = 16, 17, 18, giving different lengths L to the
final sequence that approximate the gate (horizontal axis on
Fig. 2). For both methods we have used the sampling and
the ε0 nets. To quantify the accuracy ε we use as measure

of distance dF (Û1, Û2) =
√

2−|Tr(Û1Û
−1
2 )|

2 , introduced in [15].
More technical details on this example can be found in the
Appendix while the related programs can be downloaded from
the site www.qubit.kz.

The numerical results in Fig. 2 confirm our theoretical
prediction that the suggested algorithm provides better scaling
of length with accuracy than the DNSK. On the contrary from
the graph one cannot extract the scaling of the length with accu-
racy, Eq. (5). This would require results where different orders
of nets are used; here we only change the parameters of the sam-
pling net and we use the first net around unity for all the results.
The accuracy achieved for different gates is not uniform be-
cause we do not employ a procedure for extracting extra points
which would improve the quality of nets in terms of homogene-
ity. Therefore we think that our suggested algorithm can be fur-
ther upgraded by adding this additional procedure and possibly
other procedures which would extend its applicability to sets
of gates which are not completely but close to being diffusive.

In conclusion, we have suggested an algorithmic procedure
for generating nets of seq‘uences of gates around unity under
the condition that the given sets of gates are diffusive. This
algorithm results in better scaling of length with the approxima-
tion than a simplified fast version of the DNSK algorithm does,
and works in both the presence and absence of inverses. The
improvement in scaling can be justified by the fact that there
is an exponential counter-increase in precompilation time, as
compared to the DNSK algorithm. This confirms an expected
interplay between the relations characterizing algorithmic
procedures solving the same problem. When the inverses are
included in the set, the notion of diffusive sets converges to the
notion of “efficiently computational sets” introduced in [12]
and our results partially fulfill the predictions of that work
concerning the considerable improvement of the scaling of
length with accuracy. Finally, the accurate characterization of
the diffusive property of a set of gates remains an interesting
open question, deserving further investigation.
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APPENDIX

1. Additional information on the geometric
representation of unitary matrices

The representation of a unitary Û via −→
r in general ignores

the global phase since ĝ0 = Î is excluded from the set of
generators. On the other hand one obtains different vectors for
Û and −Û and in this work we want to totally ignore the global
phase. This problem can be resolved when the N -dimensional
quantum system stands for an assembly of n qubits, (N = 2n).
In this case, the introduced geometric space of unitaries is a
d-dimensional hypersphere of radius |−→r max| = 2

n
2 π centered

at |−→r min| = 0. The unitary −Î is located on the outer surface
while Î in the center of the hypersphere. This unwanted
discrepancy can be corrected by the following mapping: if
|−→r | > 2

n
2 −1π then −→

r −→ −−→
r (2

n
2 π − |−→r |)/|−→r |.

We add here a Lemma which can be proved using the Baker-
Campbell-Hausdorff formula:

Lemma. If |−→r Û1
| < ε and |−→r Û2

| < ε where ε << 1, then

−→
r (Û1·Û2 ) = −→

r Û1
+ −→

r Û2
+ O(ε2). (A1)

2. Details of the example

To generate Fig. 2 we used a diffusive set M composed of
the gates {Â, B̂}. More precisely, Â = Ĥ · F̂ and B̂ = T̂ · F̂

where Ĥ is the Hadamard gate, T̂ the T gate, and F̂ a randomly
generated unitary matrix

F̂ =
(−0.40194 − i0.43507 −0.36803 − i0.71674

0.36803 − i0.71674 −0.40194 + i0.43507

)
.

(A2)

For the fast SK we used the analogous set M′ composed of
the gates {Â, B̂, Â−1, B̂−1}.

To achieve the approximations to the phase rotation gates
R2d for the case of the algorithm based on diffusion, we perform
the following steps:

(i) We create all the sequences of length L = 16. This is the
sampling net composed by k = 216 points.

(ii) From this net covering all space we select the points
inside the radius εs = 0.3. The εs is calculated according to
the formula

εs = 21/4√π

k1/3
. (A3)

(iii) We perform the diffusion process creating all triplets,
and then we post-select the ones which are inside the ra-
dius ε0 = (εs )2. We add 45 permutations for each successful
sequence. This way we create more points than the ones needed
for ε0 so we randomly select from these the sufficient number,
8/ε3

0.

(iv) We use the sampling and the ε0 net to identify the
sequences of total length 65 that approximate each of the seven
gates.

(v) We repeat the procedure for initial lengths L = 17 and
L = 18, to obtain better approximation with sequences of
lengths 68 and 72 respectively. We note here that the whole
procedure is very fast since of course the aimed precision is
low.

For the fast DNSK algorithm the steps are identical apart
from the fact that we construct the normal commutators instead
of triple products. For consistency, we include the permutation
step.

3. Pre-selecting instead of post-selecting

In the main text we have studied the straightforward method
for achieving shrinking by performing a diffusion process
followed up by post-selection. More precisely, our suggestion
is to construct all possible triplets from the Ki ∝ (εi )−d points
or sequences of the εi net, calculate for each of the resulting
sequences |−→r |, and then post-select those with |−→r | < ε2

i . Is
there a more efficient way for doing this? Let us first replace
the post-selection by pre-selection noting the following:

Given the sequences T̂
(εi )

1 , T̂ (εi )
2 , and T̂

(εi )
3 with correspond-

ing vectors −→
r 1, −→

r 2, and −→
r 3 which satisfy the condition

| ∑3
j=1

−→
r j | < ε2

i then D(T̂ εi

1 .T̂
εi

2 .T̂
εi

3 , Î ) < O(ε2
i ).

This pre-selection process on the points of the initial εi net
closely resembles a known computational problem: the 0–1
knapsack problem in d dimensions. Let us briefly state this
problem:

Given n d-dimensional vectors �vi with positive entries and
pi > 0 profit for each of them, and a d-dimensional bin �B
find the n-dimensional vector �x with 0–1 entries such that (i)∑n

i=1 xipi is maximized and (ii) it is subject to
∑n

i=1 xi �vi � �B.
The mapping of the pre-selection problem to the knapsack

problem is almost straightforward: one needs to (a) make the
entries of input points and vectors −→

r i from the εi net strictly
positive (so that they can represent �vi), (b) attribute a profit
pi to these vectors, and (c) adjust the entries of the bins �B
to the requirements of the εi+1 net. The first task can be
done by adding a fixed vector �v0 with |�v0| > εi to all −→

r i .
Concerning the profit one can attribute the same profit to all
input vectors, but instead of maximizing the total cost, just
minimize it. Finally, the entries of the bin should be adjusted
to Bk = 3�v0 + εi+1/

√
d for k = 1, . . . , d.

It has been proven [17] that there is no fully polynomial
time approximation scheme for d-dimensional knapsack and
that this is an NP-hard problem. In addition there is no
efficient polynomial time approximation scheme (EPTAS) [18]
even for low dimensions as d = 2. We may conclude that
the pre-selection process for our suggested method is not
computationally tractable in d dimensions given also the fact
that n (= Ki for our case) increases exponentially with d.
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