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Abstract— The nervous system is a complex intra-body com-
munication system, called neuro-spike communications, for trans-
ferring vital information throughout the body. This system con-
sists of unreliable neural components like axon and synapses. The
nervous system can deal with the unreliability of its components
by making use of multiple synapses. In this paper, we analyze the
performance of neuro-synaptic channels consisting of multiple
synapses. It is assumed that synaptic channels are subject to
synaptic noise, random vesicle release, and inter-neuron interfer-
ence. The optimal detection for two cases of multiple cooperative
synapses and multiple interfering synapses is investigated. The
closed-form expressions of the PDF of variable quantal amplitude
is derived that is used to calculate the probability of detection
error.

I. INTRODUCTION

Molecular communication is an emerging technology for
applications requiring nanoscale networks (see, e.g., [1]–[3]).
One of the main examples of molecular communication is
the human nervous system which is used for transferring vital
information throughout the body. In this paper, similar to [4]–
[6], the stochastic channel model of neuro-synaptic channels
in the central synapses is considered and we study the optimal
detection of signals at the postsynaptic terminal. In this paper,
in contrast to our former work [6], we consider the multiple
synapses case in which multiple synapses are transmitting to
a single receiving neuron. This is a practical assumption since
the value of the vesicle release probability is low in practice.
Hence, to transfer the information reliably, the cooperative
transmission by neurons is required. In addition, we consider
the case that multiple synapses destructively add up to the
desired signal. This kind of interference is more common
in central nervous system diseases like multiple sclerosis
(MS) [7]. In MS, the myelin sheath, which covers the axons,
degenerates, and damaged axons interfere with each other due
to ion exchanges during axonal propagation (see, e.g., [8]).

In this paper, we evaluate the neuro-synaptic communication
with multiple synapses under different random impairments
like synaptic noise, random vesicle release, interference, and
random amplitude of the spikes regenerated at the postsynaptic
terminal. The goal is to optimally detect the signals at the
postsynaptic terminal when there exist multiple transmitting
synapses. The optimal detection for two cases of multiple
cooperative synapses and multiple interfering synapses are
investigated. The closed-form expressions of the probability
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density function (PDF) of variable quantal amplitude is derived
that is used to find the probability of detection error.

The rest of the paper is organized as follows: In Section II,
the channel model for Neuro-Synaptic system is given. The
Neuro-Synaptic channels with multiple synapses are studied
in Section III, where two cases of cooperative aggregation
and additive interference are investigated. In Section IV, the
problems of optimal spike detection for two cases of cooper-
ative and interfering multiple access are formulated and the
detection error probability are derived.

II. NEURO-SYNAPTIC CHANNEL MODEL

Fig. 1 depicts the model for a neuro-synaptic communica-
tion channel between the presynaptic neuron and postsynaptic
neuron in central synapses. In the model, the spike train x(t) in
the axon, which is due to the process of neural spike response
(see, e.g., [9]) is written as

x(t) =
∑
n

δ(t− τn), (1)

where δ(t) is unit impulse function and τn is the time of spike
occurrence. The information is carried by the timing of spikes,
i.e., inter-spike intervals represented by the occurrence time
of the spikes τn’s. The spike train x(t) can be modeled as a
doubly Poisson stochastic process which is an inhomogeneous
Poisson process with mean λ(t) called average firing rate [10].
A spike is a fluctuation of 100 mV electric voltage Considering
the resting potential of around Vrest = −65 mV, a neuron
typically fires a spike whenever its membrane potential reaches
the threshold potential of around Vth = −50 mV. The detailed
description of the spike train generation can be found in [10].

Due to refractory effect, similar to [4], [6], [9], the spike
train in (1) can be divided into bins of size Tf . When x(t)
reaches the presynaptic terminal of the neuron, neurotrans-
mitters are released into the synaptic cleft. The release of
neurotransmitters from vesicle is a random process which is
again modeled as binary random variable W . When a spike
is arrived at the presynaptic terminal, a vesicle containing
neurotransmitters is released with the probability of pr and
we have V = 1.

The next stage in the modeling of the neuro-synaptic
channel is variable quantal amplitude denoted by q. This is
another form of the uncertainty which is due to the influx
of neurotransmitters variably absorbed by receptors at the the
receiving neuron. Moreover, this form of the molecular-based
communication has a pulse shape at the receiving neuron of
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Fig. 1. The mathematical model for the neuro-synaptic communication channel.

the form [4]

w(t) =
wmax t

Tmax
exp(1− t/Tmax), (2)

for t > 0, where wmax and Tmax represent the maximum value
of the pulse shape and its corresponding time, respectively.

The last stage in the synaptic channel shown in Fig. 1 is
related to adding additive white Gaussian noise available at
the postsynaptic terminal. Therefore, the received signal can
be written as

y(t) = V hw(t) + e(t), (3)

where e(t) is the synaptic background noise that is white and
Gaussian with zero-mean and variance of σ2

n [5].

III. NEURO-SYNAPTIC SYSTEM WITH MULTIPLE
SYNAPSES

In this section, we consider scenarios that involve multiple
synapses at the transmitter side. When presynaptic signals are
related to the same information source, they are summing up
constructively, and it is called cooperative synaptic communi-
cations. On the other hand, the received signals at the post-
synaptic neuron could come from different sources, and thus,
some neurons may interfere with synaptic communications.

A. Cooperative Synaptic Communications

First, we consider the case that we have multiple synapses
cooperatively transmit their data toward a single postsynaptic
terminal. Note that this is a practical assumption since the
value of the vesicle release probability pr is low is practice.
Hence, to transfer the information reliably, the cooperative
transmission by neurons is inevitable.

To get the spatial diversity gain due to the cooperative
multiple synaptic case, we calculate the optimal decision strat-
egy. The postsynaptic membrane voltage of the cooperative
synaptic communication when a spike is transmitted becomes

yM (t) =
M∑

m=1

Vm hm w(t) + e(t), (4)

where M is the number of independent parallel synapses,
and Vm is the vesicle release process at the m-th synapse.
The random variable Vm is modeled as a Bernoulli random
variable. In addition, the random variable hm is the variable

quantal amplitude of the m-th synaptic connection. Note that
in (4), we assumed that the same type of receptors is used for
all synaptic connections. Hence, the EPSP waveform w(t) is
the same for all summation terms in (4).

Proposition 1: Considering a set of independent k-th order
Gamma random variables H = {h1, · · · , hM} with mean
and variance of λ and σ2, respectively, and a set of inde-
pendent Bernoulli random variables V = {V1, · · · , VM} with
parameter pr, the probability distribution function (PDF) of
the summation of independent Gamma distributed random
variables, i.e., HM =

∑M
m=1 Vm hm is given by

fM (h) = (1− pr)
Mδ(h)

+
M∑

m=1

(
M
m

)
pmr (1− pr)

M−mµkm

(km− 1)!
hkm−1 exp(−µh).

(5)

where µ = λ/σ2, k = λ2/σ2.
Proof: The PDF of hm is given as f(h) =

µk

(k−1)! h
k−1 exp (−µh). From [11], it can be shown that, for a

fixed M0, the sum of independent Gamma-distributed random
variables with the same parameter µ and of order km is again a
Gamma distributed random variable with the order

∑M0

m=1 km.
Therefore, we have

fM (h |M0) =
µkM0

(kM0 − 1)!
hkM0−1 exp (−µh) . (6)

Now, by defining M0 =
∑M

m=1 Vm, it is clear that it has a

binomial distribution, i.e., Pr{M0 = m} =

(
M
m

)
pmr (1 −

pr)
M−m. Hence, based on the law of total probability, the

PDF of QM can be written as

fM (h) =
M∑

m=0

Pr{M0 = m}fM (h |m)

= (1− pr)
Mδ(h) +

M∑
m=1

Pr{M0 = m}fM (h |m)

= (1− pr)
Mδ(h)

+

M∑
m=1

(
M
m

)
pmr (1− pr)

M−mµkm

(km− 1)!
hkm−1 exp(−µh).

(7)
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Fig. 2. The cooperative and interfering multiple access model for the
neuro-synaptic communication channel when there are M constructive and
N destructive synapses.

B. Synaptic Interference Case

In this subsection, we assume multiple neurons cause in-
terference to the desired signal. Thus, unlike the previous
subsection, the interfering synapses destructively add up their
signals similar to the synaptic background white noise. For
example, in the MS disease, the myelin covering the axon are
damaged and it makes the synaptic connections vulnerable to
interference from other adjacent neurons.

We assume that the postsynaptic neuron receive signals
from N interfering synapses. Thus, the postsynaptic membrane
voltage of (4) when a spike is transmitted is changed to

yM,N (t) =
M∑

m=1

Vm hm w(t) +
N∑
i=1

V ′
i h

′
i w(t) + e(t), (8)

where V ′
i is the binary random variable for modeling the

vesicle release mechanism at the i-th interfering synapse and
h′
i is the variable quantal amplitude of the i-th interfering

synaptic connection. Fig. 2 depicts this scenario in which there
are M constructive and N destructive synapses.

IV. SIGNAL DETECTION

In this section, we derive the probability of an erroneous
receiver decision in recovering the binary information X based
on the received postsynaptic signal y(t). In additive white
Gaussian noise (AWGN) channels, the matched filters are
the optimal in minimizing the error probability [12]. It is
also known that correlation receivers give the same optimal
performance, and here we obtain the optimal binary decision
by correlating of the postsynaptic signal y(t) and the waveform
w(t).

A. Hypothesis Testing for Cooperative Synaptic Communica-
tions

We formulate the problem of finding the error probability in
detecting S as a hypothesis test. After observing the signal y(t)

over one bin of size Tf , the hypothesis test for the decision
on a single spike decision is written as{

H0 : yM (t) = e(t),

H1 : yM (t) =
∑M

m=1 Vm hm w(t) + e(t),
(9)

where H0 and H1 refer to two cases of no spike , i.e., S = 0,
and spike existence, i.e., S = 1, respectively. The choice of Tf

should be long enough for one spike only. Due to stochastic
nature of e(t), Vm, and hm, both H0 and H1 events become
random processes.

By assuming y = [yM (t1), yM (t2), . . . , yM (tn)] in the
interval of length Tf , the conditional PDF of yM (t) over H0

and H1 are denoted by fY {y |S = 0} and fY {y |S = 1},
respectively.

The likelihood ratio of the problem stated in (9) can be
written as [13]

ΛS(y) =
fY {y |S = 1}
fY {y |S = 0}

. (10)

For the binary decision, the region H0 consists of values
of y for which ΛS(y) < Λ0, and H1 of values of y for
which ΛS(y) > Λ0. The critical threshold Λ0 is given by
Λ0 = pprior/(1 − pprior) where pprior = P{S = 0} is the prior
probability of hypothesis H0.

Since the aggregated amplitude HM =
∑M

m=1 Vm hm of the
received signal in H1 is stochastic, the composite hypothesis
test for the detection of signals with unknown parameters can
be utilized [13]. Note that the received signal y has jointly
normal distribution when conditioned over {h1, · · · , hM},
for both cases of H0 and H1. Therefore, from (10) and by
increasing the number of samples, the equivalent continuous
time conditional likelihood ratio can be written as [13], we
have

ΛS(y|h1, · · · , hM ) = exp

(
2HM

∫ Tf

0
w(t)y(t)dt−H2

MEw

N0

)
,

(11)
where N0 is the power spectral density of e(t) and Ew =∫ Tf

0
w2(t) dt is the energy of the excitatory postsynaptic

potential (EPSP) response h(t). By assuming that w(t) is non-
zero only in the refractory time slot of duration of Tf , and by
using the expression in (2), we have

Ew
∼=

w2
maxe

2

T 2
max

∫ +∞

0

α2e
−2α

max dα =
e2

4
Tmax w

2
max. (12)

Now, by averaging ΛS(y|h1, · · · , hM ) in (11) over random
variables {h1, · · · , hM}, the likelihood ratio can be calculated
as in (13), where

Ψm,M =

(
M
m

)
pmr (1− pr)

M−mµkm,

and c(y) =
∫ Tf

0
w(t)y(t)dt is the correlation of the postsy-

naptic signal y(t) and waveform w(t).
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ΛS(y) =

∫ ∞

0

fM (h) exp

(
2h c(y)− h2Ew

N0

)
dh = (1− pr)

M+

M∑
m=1

Ψm,M

(km− 1)!

∫ ∞

0

hkm−1exp(−µh)exp
(
2h c(y)− h2Ew

N0

)
dh,

(13)

From [14], the closed-form solution for the integral in (13)
can be obtained as

ΛS(y) =(1− pr)
M +

M∑
m=1

Ψm,M

(
2Ew

N0

)−km/2

× exp

[
(µN0 − 2 c(y))2

8N0Ew

]
C−km

(
µN0 − 2 c(y)√

2N0Ew

)
(14)

where Ck(·) is the parabolic cylinder function of order k [14].
The parameter k in the distribution of fM (h) in Proposition

1 is used to model the variability of h [4]. For the case of
k = 1 and M = 1, the PDF has the maximum variability
indicates the worst-case scenario, and from [14, Eq. 3.322],
ΛS(y) becomes

ΛS(y) =1− pr+ (15)

prµ

√
N0π

Ew
exp

(
(µN0 − 2 c(y))2

4N0Ew

)
Q

(
λN0 − 2 c(y)

2
√
N0Ew

)
where Q(.) is the q-function of the standard normal distribu-
tion.

B. Hypothesis Testing Synaptic Interference Case

Now, we consider the problem of spike detection in a system
with interfering neurons discussed in Subsection III-B. Thus,
the hypothesis test described in (9) can be rewritten as{

H0 :yM,N (t) =
∑N

i=1 V
′
i h

′
iw(t) + e(t),

H1 :yM,N (t) =
∑M

m=1 Vmhmw(t) +
∑N

i=1 V
′
i h

′
iw(t) + e(t).

(16)

Now, by defining Ii = V ′
i h

′
i, the PDF of the ith interfering

component at the receiving neuron can be written as

fIi(γ) = pr
µk

(k − 1)!
µk−1 exp (−µγ) + (1− pr) δ(γ).

Similar to (11), we employ composite hypothesis testing.
Conditioned on {h1, · · · , hM} and {I1, · · · , IN}, y(t) has
jointly normal distribution over both hypotheses. Hence, from
(10), the conditional likelihood ratio for hypothesis test in
(16) can be written, using [13, p. 65], as in (17), where
E{·} denotes the expectation operation and HI =

∑N
n=1 In is

defined as the aggregated amplitude of the transmitted signal
under H0.

It is easy to check that the summation of two independent
random variable with the distribution stated in (5) will again
have the same distribution. Thus, HM+N = HM +HI which
is the summation of two identical and independent random
variables has a PDF of fM+N (h).

Now, the conditional likelihood ratio is averaged over un-
known variable and we have

ΛS(y)=

∫∞
0
fM+N (h) exp

(
2h c(y)−h2Ew

N0

)
dh∫∞

0
fN (hI) exp

(
2hI c(y)−h2

IEw

N0

)
dhI

(18)

where fN (hI) is similar to the PDF obtained in (5). By
replacing the PDF from Proposition 1 in (18), we have (19),
where ΦN = (1− pr)

N .
From [14, Eq. 3.462], the closed-form solution for the

integrals in (13) can be obtained as in (20), where ΘN
n =

Ψn,N

(
2Ew

N0

)−kn/2

. Hence, we obtained a closed-form solution
for the optimal detector.

C. Probability of Error

Now, we investigate the probability of error of spike detec-
tion at the receiving neuron. The average probability of error
of the hypothesis test in (9) or (16) can be written as

Pe =ppriorPfalse + (1− pprior)Pmiss (21)

The probability Pfalse of selecting hypothesis H1 when H0 is
valid is named false detection probability and can be written
as

Pfalse = P{R = 1|S = 0} = P{ΛS(y) > Λ0|S = 0} (22)

where R = 1 stands for the event that spike is detected by
the proposed binary detector. Moreover, the probability Pmiss
of choosing hypothesis H0 when H1 is correct is called miss-
detection probability and can be found as

Pmiss = P{R = 0|S = 1} = P{ΛS(y) ≤ Λ0|S = 1} (23)

where R = 0 stands for the event that spike is not detected at
the proposed binary detector.

The likelihood ratio ΛS(y) in (14) is a function of correlator
function c(y) =

∫ Tf

0
w(t)y(t)dt. Therefore, the CDF of ΛS(y)

can be represented in term of the CDF of c(y). If S = 0, one
can observe that

c(y) =

∫ Tf

0

w(t)y(t)dt = eout,

where eout is again a white Gaussian noise. In addition, if
S = 1, we have c(y) = EwHM+nout, which is the summation
of the random variable with the PDF in (5) and zero-mean
Gaussian random variable.

For the case of synaptic channel with interference, the
likelihood ratio ΛS(y) in (20) is a function of random variable
c(y), and thus, the CDF of ΛS(y) can be expressed in terms
of the CDF of c(y). If S = 1, one can observe that

c(y) =

∫ Tf

0

w(t)y(t)dt = EwHN + eout,
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ΛS(y) =

E
{

exp
(

−y2(t)−(H2
M+H2

I+2HI HM )Ew+2(HM+HI)
∫ Tf
0 w(t)y(t)dt

N0

)}
E
{

exp
(

−y2(t)+2HI

∫ Tf
0 w(t)y(t)dt−H2

IEw

N0

)} =

E
{

exp
(

2(HM+HI)
∫ Tf
0 w(t)y(t)dt−(HM+HI)

2Ew

N0

)}
E
{

exp
(

2HI

∫ Tf
0 w(t)y(t)dt−H2

I Ew

N0

)} ,

(17)

ΛS(y)=
ΦM+N+

∑M+N
i=1

Ψi,M+N

(ki−1)!

∫∞
0
hki−1exp(−µh)exp

(
2h c(y)−h2Ew

N0

)
dh

ΦN +
∑N

n=1
Ψn,M

(kn−1)!

∫∞
0

hkn−1exp(−µh)exp
(

2h c(y)−h2Ew

N0

)
dh

, (19)

ΛS(y) =
ΦM+N+

∑M+N
m=1 Θ

M+N
i exp

(
(µN0−2 c(y))2

8N0Ew

)
C−ki

(
µN0−2 c(y)√

2N0Ew

)
ΦN +

∑N
n=1 Θ

N
n exp

(
(µN0−2 c(y))2

8N0Ew

)
C−kn

(
µN0−2 c(y)√

2N0Ew

) (20)
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Fig. 3. The probability of detection error Pe curves versus the SNR for
different parameters of the vesicle release and number of synapses M , in a
neuro-synaptic communication channel with k = 1.

where eout is again a white Gaussian noise and the distribution
of HN is fN (hI) given in Proposition 1. In addition, if S = 1,
we have c(y) = EwHM+N + eout, which is the summation of
the random variable with the PDF of fM+N (h) and zero-mean
Gaussian random variable.

V. NUMERICAL RESULTS

In this section, we present our numerical results that show
the performance of the proposed hypothesis testing for both
cooperative synaptic case and synaptic interference case. For
the EPSP waveform, similar to [4], it is assumed that wmax =
2 mV and Tmax = 1 msec. The parameters of trial-to-trial
variability, modeled by the Gamma distribution, are assumed
to be λ = 1 and k = 1, 4. The refractory period is assumed
to be normally distributed with mean 5 msec [15], and hence,
we have Tf = 5 msec.

In Fig. 3, the performance of a neuro-synaptic communica-
tion channel with different conditions is evaluated. The curves
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Fig. 4. The probability of detection error Pe curves versus the SNR for
different parameters of the variable quantal amplitude and number of synapses
M in a neuro-synaptic communication channel with pr = 0.4.

are based on the transmission of 50000 transmitted symbols.
The probability of error curves versus SNR, i.e., Ew/N0, at
the receiving neuron are shown for different scenarios such as
different number of synapses, M = 1, 2, 4, 8, and different
values of synaptic release probability pr = 0.4, 0.7. The
Gamma distribution parameter k, which is used for modeling
the variable quantal amplitude, is assumed to be 1. It is shown
that by increasing the number of synapses, the probability of
error is significantly reduced in all SNR conditions. However,
the rate of decrease in Pe is reducing by increasing the
number of cooperating synapses. Thus, it is very efficient if a
few number of synapses are collaboratively transmit the data
toward the next neuron. The figure also shows the effect of
vesicle release probability, pr, on the system performance. For
example, one can observe that at Pe = 0.05, around 13 dB
more SNR is required for the synaptic release probability of
pr = 0.4, compared to a system with pr = 0.7, in a channel
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Fig. 5. The probability of detection error Pe curves versus the SNR for a
neuro-synaptic communication channel with different number of cooperating
and interfering synapses when pr = 0.4 and k = 1.

with M = 8.
Fig. 4 shows the impact of the parameter k in a system with

different number of synapses M = 1, 2, 4, 8 and pr = 0.4. It
is shown that by increasing the value of gamma distribution
variability parameter k, the performance is improved because
of the reduction in randomness of postsynaptic amplitude h.

In Fig. 5, we show the impact of the interfering synapses in
a neoro-synaptic channel with multiple synapses and pr = 0.4.
It can be shown that at SNR of 15 dB, the average probability
of error are increased by 0.07 and 0.1 when there are one
and two interfering synapses, respectively, in a channel with
M = 2 constructive synapses. In addition, one can observe
that the effect of interference in the performance degradation
is more destructive in average SNR conditions, i.e., in the
range from 15 dB to 20 dB.

Furthermore, in Fig. 6, we show the effect of increasing
the number of cooperating synapses on the performance of
a interference-free system with pr = 0.4 and k = 1, when
we use logarithmic scale for the probability of error. By
asymptotic analysis in high SNR conditions, it can be seen
that the diversity order of M is achievable when there are M
cooperating synapses.

VI. CONCLUSION

In this paper, the performance of the neuro-synaptic com-
munication with multiple synapses has been investigated under
different stochastic impairments like synaptic noise, random
vesicle release, interference, and random amplitude of the
spikes regenerated at the postsynaptic terminal. The impact
of interference from adjacent neurons have been analyzed.
This type of interference is more common in central nervous
system diseases like MS. In addition, the average probability
of error at the receiving neuron has been derived for two
cases of multiple cooperative synapses and multiple interfering
synapses are investigated.
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Fig. 6. The probability of detection error Pe curves versus the SNR
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