

2

Explorations on chaotic behaviors of Recurrent Neural

Networks

by

Bagdat Myrzakhmetov

Submitted to the Department of Mathematics
on Apr 29, 2019, in partial fulfillment of the

requirements for the degree of
Master of Science in Applied Mathematics

Abstract

In this thesis work we analyzed the dynamics of the Recurrent Neural Network archi-
tectures. We explored the chaotic nature of state-of-the-art Recurrent Neural Net-
works: Vanilla Recurrent Network, Recurrent Highway Networks and Structurally
Constrained Recurrent Network. Our experiments showed that they exhibit chaotic
behavior in the absence of input data. We also proposed a way of removing chaos
chaos from Recurrent Neural Networks. Our findings show that initialization of the
weight matrices during the training plays an important role, as initialization with
the matrices whose norm is smaller than one will lead to the non-chaotic behavior
of the Recurrent Neural Networks. The advantage of the non-chaotic cells is stable
dynamics. At the end, we tested our chaos-free version of the Recurrent Highway
Networks (RHN) in a real-world application.

In a sequence-to-sequence modeling experiments, particularly in the language
modeling task, chaos-free version of RHN perform on par with the original version by
using the same hyperparameters.

Thesis Supervisor: Zhenisbek Assylbekov
Title: Assistant Professor

3

4

Acknowledgments

First of all I would like to thank my supervisor, Professor Zhenisbek Assylbekov

who suggested this interesting project, supported and gave direction throughout the

year. Special thanks to Rustem Takhanov who was my second supervisor, who gave

interesting suggestions. Also, I would like to thank Professor Anastasios Bountis,

who is specialist in chaos theory, for his valuable feedback. Finally, I would like to

thank my family, friends for supporting me every time.

5

6

Contents

1 Introduction 13

1.1 Motivations for exploring the dynamics of the RNN 14

1.2 Description of dynamics of the systems 15

1.3 Background information . 17

1.3.1 Historical background . 17

1.3.2 Chaos theory . 18

1.3.3 Strange attractor . 20

1.3.4 Bifurcation . 22

1.4 Recurrent Neural Networks as dynamical systems 23

2 Chaoticity of RNNs 25

2.1 Vanilla RNN architecture . 25

2.2 Vanilla RNN in 1D case . 28

2.2.1 Fixed point and Bifurcation Analysis 28

2.2.2 Lyapunov Exponent . 32

2.3 Multidimensional case for Vanilla RNN 34

3 Chaotic behavior of RHN 39

3.1 Recurrent Highway Networks . 39

3.1.1 Revisiting Gradient Flow in Recurrent Networks 40

3.1.2 Recurrent Highway Networks (RHN) 40

3.1.3 Experiments . 42

3.2 Dynamics of RHN . 44

7

3.2.1 RHN chaoticity in 1D . 44

3.2.2 RHN chaoticity in 2D . 46

4 SCRN chaoticity 53

4.1 SCRN architecture . 53

4.1.1 Simple Recurrent Networks 54

4.1.2 Context features . 55

4.2 SCRN chaoticity . 57

5 EXPERIMENTS 63

5.1 Language Modeling . 63

5.1.1 Neural Language Modeling . 64

5.1.2 Experiments with Chaos Free Network 65

5.2 Non-chaotically initialized RHN . 68

5.3 Conclusion and future work . 69

A Tables 71

B Figures 73

8

List of Figures

1-1 Geometric interpretation of instability on initial conditions. 19

1-2 Explanation of transitivity. 19

1-3 Lorenz Attractor . 22

2-1 Recurrent Neural Network architecture and its unfolding 26

2-2 Implicit plot of ℎ = tanh(𝑊ℎ). 29

2-3 One solution of ℎ = tanh(ℎ). 29

2-4 Three solutions of ℎ = tanh(2ℎ). 30

2-5 Bifurcation diagram of the 1𝐷 RNN ℎ𝑛+1 = tanh(𝑊ℎ𝑛). 30

2-6 Solutions of ℎ = tanh(tanh(ℎ)). 31

2-7 Lyapunov coefficient versus 𝑊 value. 34

2-8 State vs. time graphs for 2𝐷 case when the norm is larger than one . 35

2-9 𝑡 vs. ℎ for vanilla RNN . 36

2-10 Euclidean distance from the 2 close points for vanilla RNN. 37

3-1 Illustration of the Gers̆gorin circle theorem. 41

3-2 RHN layer inside the recurrent loop 42

3-3 Bifurcation diagram of the 1D map 𝑥𝑛+1 = 𝜎(𝑟 * 𝑥𝑛)⊙ (𝑡𝑎𝑛ℎ(𝑟 * 𝑥𝑛)−

𝑥𝑛)) + 𝑥𝑛 . 46

3-4 Strange attractor of chaotic behavior of RHN for the weight matrices:

𝑅𝑡=[[0, 1],[1, 0]] and 𝑅ℎ=[[-5, -8],[8, 5]] 47

3-5 𝑠(1) vs. 𝑛 . 48

3-6 𝑠(2) vs. 𝑛 . 48

3-7 Euclidean distance from the 2 close points 49

9

3-8 Divergence of two close points (red and blue points). 50

3-9 Strange attractor of chaotic behavior of RHN for the weight matrices:

𝑅𝑡=[[-2, 6], [0, -6]] and 𝑅ℎ=[[-5, -8], [8, 5]] 50

3-10 Strange attractor of chaotic behavior of RHN for the weight matrices:

𝑅𝑡=[[0, 3], [2, 0]] and 𝑅ℎ=[[-5, -8], [8, 5]] 51

3-11 Attractor for weight matrices: 𝑅𝑡=[[0, 0.5], [0.5, 0]] and 𝑅ℎ=[[-0.4,

-0.3], [0.3, 0.2]] . 52

4-1 (a) Simple recurrent network. (b) RNN architecture suggested by

Mikolov et all (2015), Recurrent network with context features. 54

4-2 ℎ(1) vs ℎ(2) for the SCRN architecture, with weight matrices 𝑃 =

[[−5, 6], [0,−6]] and 𝑅 = [[−7,−6], [6,−4]]. 58

4-3 𝑡 vs. ℎ for SCRN for 𝑡 = 10000 . 58

4-4 ℎ(1) vs ℎ(2) for the SCRN architecture, with weight matrices 𝑃 =

[[1, 0], [0, 1]] and 𝑅 = [[−1,−6], [6,−9]]. 59

4-5 ℎ(1) vs ℎ(2) for the non-chaotic SCRN 60

4-6 Euclidean distance from the 2 close points for the chaotic SCRN. . . 61

4-7 Euclidean distance from the 2 close points for the non-chaotic SCRN. 61

5-1 Strange attractor in two-unit LSTM 66

5-2 ℎ1 vs. ℎ2 in two-unit LSTM . 67

5-3 Strange attractor in two-unit GRU. 67

B-1 Strange attractor of chaotic behavior of RHN for the weight matrices:

𝑅𝑡=[[1, 3], [2, 0]] and 𝑅ℎ=[[-5, -12], [9, 4]]. 74

B-2 𝑡 vs. ℎ for SCRN for 𝑡 = 2000 . 75

10

List of Tables

3.1 Validation and test set perplexity of recent state of the art word-level

language models on the Penn Treebank dataset [59] 43

4.1 Results on Penn Tree Bank corpus: SRN, LSTM and structurally con-

strained recurrent nets (SCRN). 56

5.1 Perplexity on the PTB set. 68

A.1 Lyapunov coefficient versus 𝑊 value 71

11

12

Chapter 1

Introduction

The dynamics of the Neural Networks has been studied in recent papers ([54, 40]).

Laurent and Brecht ([27]) proposed to design architecture of a Recurrent Neural Net-

work (RNN) cell in such a way that it is not chaotic. The concept of chaos ([53, 39])

comes from the theory of nonlinear dynamical systems and essentially means that

wide divergence in outcomes of a system is due to small differences in initial condi-

tions (such as those due to rounding errors in numerical computation). So, Laurent

and Brecht show that the widely-used RNN cells, LSTM ([18]) and GRU ([10]), are

chaotic. Depending on the initialization of the weights, LSTM and GRU might show

a chaotic behavior. The proposed Chaos Free Network (CFN) architecture is devoid

of chaos and is not inferior to LSTM. Recently, there were two main advancements

over ubiquitous LSTM architecture: 1) Zoph and Le [60] used LSTM to generate a

new RNN cell, which they refer to as a ‘Neural Architecture Search’ (NAS) cell; 2)

Zilly et al. [59] extended the success of Highway networks ([51]) to recurrent net-

works and suggested a new RNN cell, which they refer to as a ‘Recurrent Highway

Network’ (RHN) cell. Both, NAS and RHN cells significantly outperform the LSTM

cell in language modeling tasks when evaluated on a traditional PTB dataset ([31]).

Also, Structurally Constrained Recurrent Network (SCRN) proposed by Mikolov et

al. [33] showed comparable results to the LSTM cell on the language modeling task.

Therefore the following questions arise: Are these new state of the art architectures

chaotic? If so, then according to Laurent and Brecht ([27]) there should be non-

13

chaotic alternatives that do not underperform significantly. And if there are no such

analogs, can chaos be necessary after all? We will try to answer these questions in

this thesis work.

Chapter two describes the chaotic behaviour of the simple Recurrent Neural Net-

work (Vanilla RNN, Elman et al. [13]) architecture by using the different techniques

and the way of the making the neural network non-chaotic.

Chapter three describes the dynamics of the Recurrent Highway Networks ([59]).

This section also gives some inside information about the Recurrent Highway Net-

works and also suggests making the non-chaotic alternatives.

Chapter four describes the Structurally Constrained Recurrent Networks (SCRN

by Mikolov et al. [33]) and its dynamics.

Chapter five describes real-world applications and different experiments performed

by using the chaotic as well as non-chaotic Recurrent Neural Networks.

1.1 Motivations for exploring the dynamics of the

RNN

The success of the Recurrent Neural Networks (RNN) in many sequence-to-sequence

tasks attracted the attention of researchers to the analysis of the internal architecture

of RNN cells. The idea of exploring the dynamics of Recurrent Neural Networks is

motivated by recent studies on the dynamics of recurrent neural networks by Laurent

and Brecht ([27]). There are several proposed new RNN architectures, and the aim

is to identify whether they are chaotic or not. If these systems are chaotic, then we

would propose non-chaotic neural cells. One thing, compared to Laurent and Brecht

[27], instead of creating a new architecture, we try to suggest ways to make the RNN

cells non-chaotic.

Another important motivation was an attempt to understand the internal struc-

ture of Recurrent Neural Networks. Even now, Recurrent Neural Networks, can be

considered as a “black box”, and there are some studies ([40, 54]) that tried to under-

14

stand the inside structure of recurrent neural networks. Now people want to have a

“understandable” neural network. Dynamic Systems are a widely used technique for

mathematical modeling of many real-world problems. We try to analyze Recurrent

Neural Network from a dynamical point of view, i.e. we consider the RNN system as

a dynamical systems.

Taking these ideas, it seems that the exploring of the dynamics of the recent, state

of the art Recurrent Neural Network architectures is a decent idea. If we explore the

chaos in the dynamics of Recurrent Neural Networks, we will try to suggest non-

chaotic alternatives.

In the end, we compare chaotic and non-chaotic architectures in real world appli-

cations. We test these architectures in Language Modeling tasks.

1.2 Description of dynamics of the systems

A dynamical system Φ𝑡 is any object or process for which the concept of state space

is uniquely defined as a set of certain quantities at a given time 𝑡 and a rule is given

that describes the change (evolution) of the initial state over time [4]. One of the

examples of a simple dynamical system described by 𝑥𝑡+1 = 5𝑥𝑡. Here the variable 𝑡

stands for time and 𝑥𝑡 denotes the state value at time 𝑡.

The rule that allows to predict the future state of the dynamic system by the ini-

tial state, is called the rule of evolution. Dynamical systems are mechanical, physical,

chemical, and biological objects, computational processes, and information transfor-

mation processes performed in accordance with specific algorithms. The descriptions

of dynamic systems for defining the rule of evolution are also varied: using differential

equations, discrete mappings, graph theory, Markov chain theory, etc. The choice of

one of the description methods sets a specific type of mathematical model with the

corresponding system dynamics [3]. There are two types of the evolution rule: if the

predicted next state has a unique consequent, then the system is called determinis-

tic and if there are several consequent for a given state, then the system is called

stochastic or random.

15

The definition of a dynamic system includes the state space 𝑠 and the time-

dependent 𝑡 evolution operator Φ𝑡 (rule), according to which the system from the

initial state 𝑠0 comes to the state 𝑠𝑡 at the time 𝑡. The state of a dynamic system

is described by a set of 𝑠 variables chosen for reasons of their natural interpretation,

simplicity of description, symmetry, etc. The set of states (phases) of a dynamic

system forms a phase space in which a point corresponds to each state, and evolution

is represented by moving a point along phase trajectory - a curve embedded in the

phase space. For example, the motion of 𝑛 particles under the action of attraction

forces is described in the phase space by the set of all sets of coordinates and velocities

of these particles, and the evolution operator is determined by the solution of the

corresponding ODE system [2]. A state space could be continuous or discrete.

The set of instants of time 𝑡 can be either an interval of the real line R (then

it is said that time is continuous) or a set of integers or natural numbers (discrete

time) [55]. In the second case, the “movement” of a phase space point is more like

instantaneous “jumps” from one point to another: the trajectory of such a system

is not a smooth curve, but simply a set of points, and is usually called an orbit.

Nevertheless, despite the external difference, there is a close relationship between

systems with continuous and discrete time: many properties are common to these

classes of systems or are easily transferred from one to another [55].

Features of the evolution of the system are manifested in the type of phase tra-

jectories. The sequence 𝑠1 = 𝑓(𝑠0), 𝑠2 = 𝑓(𝑓(𝑠0)) = 𝑓 2(𝑠0) ≡ 𝑓 ∘ 𝑓, ..., i.e., {𝑠𝑘}∞𝑘=0,

is called the forward orbit (or forward trajectory), this is a time-ordered sequence of

states. The equilibrium state of a dynamical system corresponds to a degenerate tra-

jectory - a point in phase space, to periodic motion - a closed curve, to quasiperiodic

motion that has base frequencies in the 𝑚 spectrum âĂŤ a curve on the 𝑚-dimensional

torus embedded in the phase space [2]. The steady state (steady motion) of a dissi-

pative system corresponds to an attractor - a set of trajectories that attract all close

trajectories to themselves [2].

16

1.3 Background information

1.3.1 Historical background

A dynamic approach to the description of systems of various origins has been known

since the time of Newton. It is the basis for the analysis of most of the classical phe-

nomena in physics and other natural sciences: first, the corresponding mathematical

model is constructed in the form of dynamic equations, and then their solutions are

studied in one way or another, which, in principle, can be compared with experimental

data [29].

A. Poincaré and A. M. Lyapunov can be considered the founders of the theory

of Dynamic Systems. In the late 19th - early 20th centuries, they discovered and

investigated a class of problems (in celestial mechanics, in the theory of equilibrium

figures of a rotating fluid, etc.), in which it was necessary to know the behavior of

not one single solution 𝑥(𝑡) of the system of ordinary differential equations (ODE),

but all (or very many) solutions corresponding to different initial states of a real (for

example, physical) system. In this case, 𝑥(𝑡) can be represented as a curve in the

space of all possible states (that is, the values of vectors 𝑥) and use the geometric

properties of this curve to understand and describe the properties of the solution 𝑥(𝑡).

Such a curve is called a phase trajectory [2].

Although the dynamic system is a kind of mathematical abstraction, this paradigm

has proven to be a very productive tool in describing many real phenomena. The

greatest success in this direction was obtained in the first third of the twentieth cen-

tury, when the theory of oscillations of two-dimensional systems was created. Sub-

sequent research efforts were devoted to exploring the possibility of extending this

theory to multidimensional systems. However, despite significant discoveries in this

area, until the 60s of the twentieth century it was not clear how complex the move-

ments in such systems could be.

The situation radically changed after S. Smale [49] introduced the hyperbolic

theory. Research in this direction revealed a wide variety of dynamics of nonlinear

systems and led to one of the most important discoveries of the twentieth century -

17

dynamic chaos. The Y-systems [5] were introduced, bifurcations of separatrix loops,

leading to complex behavior [44, 45] were described, famous Lorenz systems [28] were

introduced and billiard models, which are simplified models of statistical physics

[47, 48], were studied.

In the 2nd half of the 20th century. D. V. Anosov, V. I. Arnold, R. Bowen, R.

Manet, Ya. G. Sinai, S. Smale, S. Hayashi, L. P. Shilnikov, and others developed and

created a deep and coherent theory of Dynamic Systems, which gives the correct idea

of the nature of deterministic processes and allows you to explore the models of real

systems.

1.3.2 Chaos theory

Chaos theory is the interdisciplinary subject which describes dynamic systems’ sen-

sitivity to the initial conditions.

Currently, there are several possibilities to introduce the concept of chaos. The

most common and frequently used definition was proposed in Devaney (1989, [12]).

It relies on the property of the system’s extreme (exponentially strong) sensitivity to

setting initial conditions or to external influences. This seems to be quite natural,

since the main manifestation of dynamic chaos is the exponential divergence of close

trajectories.

However, to define the concept of chaos one exponential instability is not enough.

In addition, the condition of transitivity and the presence of some regularity, called

the density of periodic orbits (i.e. cycles), is necessary. Often, transitivity is replaced

by the condition of topological mixing, which is stronger [29].

Let 𝑀 be a metric space. According to Devaney (1989, [12]), a mapping 𝑓 : 𝑀 →

𝑀 is called chaotic if the following statements hold: (a) 𝑓 is unstable with respect

to the specification of the initial conditions; (b) 𝑓 is topologically transitive; (c) the

periodic points of the mapping 𝑓 are dense in the space 𝑀 .

A mapping 𝑓 is said to be unstable with respect to the initial conditions, if there

is some quantity (instability constant) 𝛿 such that for some point 𝑥 ∈ 𝑀 and 𝜖 there

is a point 𝑦 ∈ 𝑀 for which 𝑑𝑖𝑠𝑡(𝑥, 𝑦) < 𝜖 and 𝑑𝑖𝑠𝑡(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) ≥ 𝛿 for some 𝑛 ∈ 𝑁 ,

18

where 𝑑𝑖𝑠𝑡(·) means distance. The geometric interpretation of these relationships is

shown in Figure 1-1. It is noteworthy that the constant 𝛿 does not depend on 𝑥 or

on 𝜖. It is determined only by the properties of the system under consideration.

x

y

f (x)

f (y)

𝛿
Ɛ

n

n

Figure 1-1: Geometric interpretation of instability on initial conditions.

Further, a mapping 𝑓 is called transitive if, for any two open sets 𝑈 , 𝑉 , there is a

number 𝑛 such that 𝑓𝑛(𝑈)∩𝑉 ̸= ∅. The informal sense of the property of transitivity

is demonstrated by Fig 1-2. We note that it is known from the theory of metric spaces

that transitivity is equivalent to the existence of a dense trajectory.

U F (U)n

V

Figure 1-2: Explanation of transitivity.

Finally, the density property of periodic trajectories means that there exists at

least one (and, therefore, infinitely many) periodic trajectories in any neighborhood

of any point in 𝑀 [29].

Thus, a chaotic system must have three important properties: unpredictability

(exponential instability), indecomposability (transitivity), and a regularity element

(density of orbits). However, Banks et al. [7] discovered that, in the above definition,

19

the condition of sensitive dependence on the initial conditions is redundant. Conse-

quently, if the mapping is continuous, the transitivity property holds, and the orbits

are dense, then the system has a sensitive dependence on the initial conditions. A

little later, it was shown [6] that neither the transitivity nor the density of orbits

follow from the remaining two conditions in the definition of chaos. Apparently, a

transformation defined on a compact set can be defined as chaotic if it has a sensitive

dependence on the initial conditions and has dense orbits.

More recently, a definition of the chaoticity of a dynamical system was proposed

in Kolesov and Rozov [23], which, in addition to the sensitive dependence on the

initial conditions, also includes the requirement of trajectory complexity. Here, by

complexity, the authors understand in a certain sense the absence of recurrence. It

was also shown that the definition of chaos, based on instability with respect to

initial conditions, transitivity and density of orbits [12], implies chaos, proposed by

the authors in [23].

There are other definitions of chaos. For example, Gulik [17] states that the chaos

exists when either there is a substantial dependence on the initial conditions, or the

function has a positive Lyapunov exponent at each point of its definition domain and

therefore is not ultimately periodic. Thus, shows the importance of the Lyapunov

exponent [30] to explore the chaoticity of the systems.

1.3.3 Strange attractor

The term appeared in the XX century and is used both to describe the behavior

of nonlinear systems, and as a broad scientific metaphor. If a system falls into a

neighborhood of some attractor (it can be a point or a whole region of space), then

its various trajectories (variants) of behavior “attract" to it.

The use of the term “attractor" is easy to understand if we look at the pendulum

example in a viscous medium. Suppose that the pendulum is in the lower position

of a stable equilibrium (at a stable stationary point). If now to perturb him a little,

then he will begin to make damped oscillations around this equilibrium position. In

this sense, the equilibrium state of the pendulum would seem to be attracting, or

20

attractor [29]. In this case, obviously, the attractor will have zero measure. In a

similar way, one can get an idea of attractors corresponding to periodic (limit cycles)

and quasiperiodic (invariant tori) motions. The formalization of these ideas leads

to the modern concept of an attractor. There are a significant number of different

attractors, but mainly, we can distinguish three types:

1. “Point attractor". This can be a system of swinging pendulum, which, with

time, stops the friction force at one point. Here, the system “attracts" to the

initial equilibrium point.

2. “Limit cycle". If there is no friction, then the pendulum will fluctuate forever

and become a regular periodic system.

3. “Strange attractor." If we randomly change the action affected to the pendulum

at regular time intervals, the resulting motion will be different and non-periodic.

However, it is limited by the maximum amplitude of the pendulum and the

laws of physics. As a result, a movement will be a chaotic, and shows strange

attractor.

A strange attractor is some “complexly arranged” phase space to which almost all

trajectories from its certain neighborhood attract, and the motion on the set itself

has an exponentially unstable character. Such a combination of global compression

with local instability leads to the fact that the attractor can no longer be smooth

as, for example, a torus; it is stratified in a certain way and is a Cantor set in some

section [29]. A strange attractor may appear after several new bifurcations.

The concept of “strange attractor” and the possibility of its existence were first

mentioned in [42], and the main idea in [42] was that such subsets of the phase space

play a decisive role in solving the problem of turbulence. Although this approach

was not fully justified as showed in [26], the work [42] provided the impetus to the

development of the theory of chaotic dynamical systems and their applications.

Chaoticity is based on exponential instability. At the same time, in order for

the system to have a chaotic behavior (i.e., to have a sensitive dependence on the

21

initial conditions), only an instability is necessary, which appears in the definition

of hyperbolicity. But it is not at all necessary that this instability be the same for

all trajectories. Moreover, for different trajectories the number of unstable directions

may be different. This is, for example, the Lorenz attractor. Attractors of this type do

not collapse under small perturbations, but their geometric structure, in general, may

vary. Lorenz attractor or “butterfly effect" is the famous attractor in chaos theory,

proposed by Lorenz in 1963 [28]. We also reproduced this attractor, and this is given

in Figure 1-3.

Figure 1-3: Lorenz Attractor

1.3.4 Bifurcation

The term bifurcation is derived from the Latin bifurcus - “forked", “separation" and

is used in a broad sense to denote all sorts of qualitative rearrangements of various

objects when the parameters on which they depend change [37]. In some cases, if

the parameter of the system changes, then the behavior of the system might change

smoothly. However, in some cases, when a parameter passes through a certain crit-

ical value, the dynamics of the system may change dramatically. The values of the

22

parameters at which the restructuring of the steady-state modes of motion in the

system occurs are called the bifurcation parameter values (or the bifurcation point),

and this change itself is called the bifurcation. As a result of a sequence of bifurcations

in a dynamic evolving system, the establishment of a chaotic regime is possible. The

bifurcation cascade is one of the typical scenarios of transition from order to chaos.

The model of complex system development through the sequence of bifurcations and

the idea of chaos is applicable to the phenomena of the most diverse nature: physical,

biological, social, economic, i.e. to any systems where there is a sequence of period

doubling bifurcations [37]. The establishment of chaotic behavior in a dynamic system

as a result of a sequence of bifurcations is usually called a scenario of chaos [29].

The bifurcation point is one of the most significant concepts of the theory of self-

organization, dynamics. This is such a period or moment in the history of a system

when it turns from one systemic definition to another. Its qualitative characteristics

after reaching the bifurcation point are doomed to a fundamental change, leading to

a change in the essence of the system itself. The system transformation mechanism

that operates at such times is associated with the branching of the system trajectory,

which is determined by the presence of competition of attractors [37].

1.4 Recurrent Neural Networks as dynamical sys-

tems

Recall that the Recurrent Neural Network models can be considered as a mapping

from R𝑑 → R𝑑. Thus, the mapping for Recurrent Neural Networks will be: Φ : R𝑑 ↦→

R𝑑. The general form of the recurrent neural network is given in the following form:

𝑢𝑡 = Φ(𝑢𝑡−1,𝑊1𝑥𝑡,𝑊2𝑥𝑡, ...,𝑊𝑘𝑥𝑡) (1.1)

where 𝑥𝑡 is the 𝑡-th input data, and 𝑊 is the weight matrices. Depending on the

structure of Recurrent Neural Networks, there could be several weight matrices. Φ is

an evolution rule that transforms the state 𝑢𝑡 and the input data at each time point

23

𝑡. This function Φ can be a sigmoid function, a tanh function or it can have several

activation functions depending on the architecture of RNN. 𝑡 is the current time and

𝑢𝑡 is the current state.

For a given mapping, we have the initial state 𝑢0, the initial time 𝑡0 and, according

to Laurent and Brecht [27], the mapping Φ: 𝑢𝑡+1 = Φ(𝑢𝑡), 𝑡 > 𝑡0, 𝑢𝑡0 = 𝑢0 𝑡 = 𝑡0,

defines a discrete-time dynamical system, and this is a simple repeated iteration of

the mapping Φ.

The set of all visited states 𝒪+(𝑢0) := {𝑢𝑡0 , 𝑢𝑡0+1, ..., 𝑢𝑡0+𝑛, ...} forms a forward

trajectory (can also be called a forward orbit) through 𝑢0 [27]. This forward trajectory

can be used to build an attractor for a dynamical system. If the dynamical system

is chaotic, then the attractors will have the form of fractal sets, and this is called as

strange attractors.

According to Laurent and Brecht [27], to gain inside information about the under-

lying structure of Recurrent Neural Networks, it has been proven that it is better to

evaluate dynamical systems, forward orbits when there is no input data is provided

from outside. Thus, we don’t consider any effects from outside, and dynamical system

given in Equation 1.1 will become:

𝑢𝑡 = Φ(𝑢𝑡−1), Φ(𝑢) := Φ(𝑢, 0, 0, ..., 0). (1.2)

If we compare the dynamical systems in 1.1 and 1.2, we can say that the time-

invariant system in 1.2 is much more tractable than in 1.1 [27], and it allows to explore

inside the architecture of Recurrent Neural Networks. We can play around with the

parameters, without any external inputs. By restricting external input data, we can

separate external influences from influencing into the model. This 1.2 is called as a

dynamical systems induced by RNN [27].

24

Chapter 2

Chaoticity of RNNs

2.1 Vanilla RNN architecture

Recurrent Neural Networks (RNN) are widely used technique to model the sequence-

to-sequence models. Simple feed-forward neural networks are unable to memorize

sequences by virtue of their architecture, in contrast to the Recurrent Neural Net-

works. RNN can also be called feed forward networks, but neurons in such a network

transmit values not only to the neuron in the next layer, but also to themselves in the

next stage. That is, when the data first arrives at the neuron, it processes them in

accordance with the activation function, sends it to the next layer and stores some of

this information. When data is received for the second time, the neuron, along with

this data, also receives the value that it saved at the previous iteration, as input.

A neural network is called recurrent if it contains inverse connections between

neurons, i.e. the output of the neuron is transmitted to the input of another neuron

located in a layer with a smaller index. The presence of feedback provides informa-

tion not only from the previous layer, but also from previous training passes, which

guarantees the preservation of temporal information. This means that the result will

also depend on the sequence in which the training data was transmitted. This allows

to model sequences.

The main idea of RNN is to generate a fixed dimension vector from the input

sequence of characters using recursion. Suppose that at step 𝑡 we have the vector

25

ℎ𝑡−1, which is the history of all the previous input data. RNN will calculate the

new vector ℎ𝑡 (that is, its hidden state), which combines all the previous input data

(𝑥1, 𝑥2, ..., 𝑥𝑡−1), as well as the new symbol 𝑥𝑡 with:

ℎ𝑡 = 𝜑𝜃(𝑥𝑡, ℎ𝑡−1)

where 𝜑𝜃 is a function parametrized by 𝜃, which takes as input a new input data

𝑥𝑡 and a history ℎ𝑡−1 to the 𝑡-th word. Initially, we can assume that ℎ0 is a zero

vector. The recurrent activation function 𝜑 is usually implemented as a simple affine

transformation, followed by an element-wise nonlinear function

ℎ𝑡 = tanh(𝑈𝑥𝑡 + 𝑊ℎ𝑡−1 + 𝑏). (2.1)

In this equation, the following parameters are present: input weight matrix 𝑈 ,

recurrent weight matrix 𝑊 and bias vector 𝑏. It should be noted that this is not

the only option. There are many ways to develop new recurrent activation functions

(ReLU, sigmoid, several mixed functions, etc.), usually they are non-linear functions.

U U U U

W
W

W W W

V V V V

x xt+1xtxt-1

h

o

ht-1

ot-1

ht

ot

ht+1

ot+1

Unfold

Figure 2-1: Recurrent Neural Network architecture and its unfolding

Figure 2-1 shows the unwrapped internal structure of Recurrent Neural Networks.

From here, we can see that the input data 𝑥 unwrapped into parts, i.e. if our input

26

data 𝑥 is a text sentence, then each 𝑥𝑡 corresponds to each words. So, each layer

corresponds to each word. The network contains three layers, an input layer, a hidden

layer and an output layer.

Equation 2.1 shows the calculations of RNN. In the input layer, 𝑥𝑡 is an input

word, usually each word is modelled using one-hot encoding vectors, or it can take

an embedded word vector.

The hidden layer ℎ𝑡 is calculated by using the previous hidden state information

ℎ𝑡−1 and the new input 𝑥𝑡. For example, suppose we want to calculate the hidden

state value of the third word: ℎ3, using Equation 2.1, ℎ3 = tanh(𝑈𝑥3 + 𝑊ℎ2 + 𝑏).

Here ℎ2 contains information about previous words sequences, and is calculated as

ℎ2 = tanh(𝑈𝑥2 +𝑊ℎ1 + 𝑏) and so on. From here we can notice the role of the hidden

state values ℎ𝑡, it contains information about previous word sequences, calculated

recursively. For this reason, the hidden state value ℎ𝑡 is refers as the “memory” of the

RNN architecture. It is assumed that RNNs can use unlimited history information,

and it has current connections on hidden states, so that history information can

circulate within a network for an arbitrarily long time.

However, in practice, ℎ𝑡 might not contain very long sequence information, there

are problems with the gradient vanishing during training. A number of papers have

shown that it is possible to increase the efficiency of learning RNN using more complex

activation functions, for example, using neurons with a long short-term memory unit

(LSTM), gated recurrent unit (GRU), recurrent highway networks (RHN) and etc.

The output at time 𝑡 is calculated by 𝑜𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉 ℎ𝑡). It takes the value of

the hidden state (history) and, multiplying the hidden state value into the matrix

𝑉 , passes through a non-linear function. Depending on the task (classification or

sequence prediction), this function might be softmax or sigmoid. In addition, again,

depending on the task (many-to-many, one-to-many, many-to-one), we may not need

to predict the output at each time 𝑡, in some cases we may need calculate the output

only at the end.

This form of Recurrent Neural Networks first proposed by Elman [13] and Jordan

[21] in 1990 and can be considered as a simple or “vanilla” Recurrent Neural Network.

27

2.2 Vanilla RNN in 1D case

In this section we consider the dynamics of the Vanilla Recurrent Neural Network.

Before analyzing the complex neural network architectures of Recurrent Highway

Network (RHN) and Neural Architecture Search (NAS), we started by analyzing

the simple Recurrent Neural Network (RNN), proposed by Elman in 1990 [13], for

chaoticity. So, for the Simple RNN architecture we want to discuss the nonlinear map

ℎ𝑡+1 = tanh(𝑊ℎ𝑡 + 𝑈𝑥𝑡+1 + 𝑏), where 𝑊 and 𝑈 are the weight matrices. We assume

that there is no input data is provided, and the bias term is zero, so our system will

become: ℎ𝑡+1 = tanh(𝑊ℎ𝑡).

In this subsection, we consider the simple RNN architecture in 1D case, we assume

that our values ℎ,𝑊 ∈ R, i.e. our state and weight are scalars.

Claim 1. A dynamical system induced by Simple RNN:

ℎ𝑡+1 = tanh(𝑊ℎ𝑡), ℎ𝑡,𝑊 ∈ R (2.2)

is non-chaotic when 𝑊 ∈ (1, 1).

2.2.1 Fixed point and Bifurcation Analysis

First, we would like to analyze the map given in Equation 2.2 for extremum points.

𝑓 ′(ℎ) = 𝜕
𝜕ℎ

tanh(𝑊ℎ)

𝜕
𝜕ℎ

tanh(ℎ) = (𝑒ℎ+𝑒−ℎ)(𝑒ℎ+𝑒−ℎ)−(𝑒ℎ−𝑒−ℎ)(𝑒ℎ−𝑒−ℎ)

(𝑒ℎ+𝑒−ℎ)2
= 1 − (𝑒ℎ−𝑒−ℎ)

2

(𝑒ℎ+𝑒−ℎ)2
= 1 − tanh2(ℎ) =

sech2 ℎ.

If we also consider the weight parameter 𝑊 :

𝜕

𝜕ℎ
(tanh(𝑊ℎ)) = 𝑊 sech2(𝑊ℎ) = 𝑊 (1 − tanh2(𝑊ℎ)) (2.3)

If we take 𝑓 ′(ℎ) = 0 ⇒ 1 − tanh2(ℎ) = 0 ⇒ (tanh(ℎ) − 1)(tanh(ℎ) + 1) = 0. No

solutions exists. So there is no maximum or minimum points.

For 𝑓 ′(ℎ) = 𝑊 (1 − tanh2(𝑊ℎ)) = 0, only solution exists when 𝑊 = 0.

28

Finding the the fixed points and the periodic points of maps and then study the

region of their stability is important in bifurcation theory [25]. The fixed points can

be calculated by solving the equation 𝑓(𝑥) = 𝑥. For our case, ℎ = tanh(𝑊ℎ), for

𝑊 ≤ 1 there is only one solution: ℎ = 0, for other values, there are 3 solutions.

The implicit plot of ℎ = tanh(𝑊ℎ) is given in Figure 2-2. Plots of ℎ and tanh(𝑊ℎ)

for 𝑊 = 1, 2 are provided in Figure 2-3 and 2-4.

Figure 2-2: Implicit plot of ℎ = tanh(𝑊ℎ).

In order to analyze the stability of the fixed points, we use the stability criterion:

if |𝑓 ′(𝑥)|𝑥=𝑥* < 1 then the fixed point 𝑥 = 𝑥* is stable, otherwise it is unstable [25].

In our case, we have fixed points ℎ = 0, ℎ1(𝑊) and ℎ2(𝑊). For the first fixed

point ℎ = 0: |𝑓 ′(ℎ)|ℎ=0 = 𝑊 (1 − tanh2(𝑊ℎ)) = 𝑊 (1 − tanh2(0)) = 𝑊 (1 − 0) = 𝑊 .

So, by using the above notation, fixed point ℎ = 0 is stable when |𝑊 | < 1, otherwise

it is unstable. Hence ℎ = 0 remains as a stable fixed point when −1 < 𝑊 < 1.

When 𝑊 passes through the value 1, the stable fixed point ℎ = 0 becomes an

unstable one and this shows a qualitative change in the behavior of the fixed point at

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

tanh(h)
h

Figure 2-3: One solution of ℎ = tanh(ℎ).

29

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

tanh(2h)
h

Figure 2-4: Three solutions of ℎ = tanh(2ℎ).

-8 -6 -4 -2 0 2 4 6 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2-5: Bifurcation diagram of the 1𝐷 RNN ℎ𝑛+1 = tanh(𝑊ℎ𝑛).

𝑊 = 1. So we consider 𝑊 = 1 as the first bifurcation point. Also at 𝑊 = −1, there

also occurs a bifurcation.

To analyze the fixed points ℎ1(𝑊) and ℎ2(𝑊), we have to solve the inequality:

|𝑊 (1 − tanh2(𝑊ℎ))| < 1, where ℎ1 ∈ (0, 1) and ℎ2 ∈ (−1, 0). If this inequal-

ity holds, then the fixed points are stable. The solutions of this inequality will be

|𝑊 | sech2(𝑊ℎ) < 1. Most of the values of ℎ1 and ℎ2 are close to 1 and -1. If we put

these values of ℎ into the inequality |𝑊 | sech2(𝑊ℎ) < 1, then this inequality holds

for all 𝑊 , therefore we do not consider these fixed points.

The bifurcation diagram of the 1𝐷 RNN is given in Figure 2-5. We want to study

the long term behavior of the map, so, after understanding the behavior of the fixed

30

points of 𝑓 = tanh(𝑊ℎ), we now consider the periodic points of period 2 and higher

and analyze their stability property. The period 2 points are fixed points of the second

order iteration of the map. So, let us consider the iterated map 𝑓 2(ℎ).

If we draw the graph of 𝑓 2(ℎ) = tanh(tanh(ℎ)) for 𝑊 = 1 with the line 𝑥 = 𝑦,

there will be only one point of intersection, which is ℎ = 0, which is already our first

order fixed point of 𝑓 . This graph is shown in Figure 2-6.

The fixed points of 𝑓 are also fixed points of 𝑓 2 as 𝑓(ℎ) = ℎ ⇒ 𝑓(𝑓(ℎ)) = 𝑓(ℎ) ⇒

𝑓 2(ℎ) = ℎ. The period 2 points of the map are given by the solution of the equation:

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

tanh(tanh(h))
h

Figure 2-6: Solutions of ℎ = tanh(tanh(ℎ)).

𝑓 2(ℎ) = 𝑓(𝑓(ℎ)) = tanh(𝑊 (tanh(𝑊ℎ))) = ℎ. We find the solutions ℎ ≈ −1, ℎ = 0

and ℎ ≈ 1 for other values of 𝑊 (except 𝑊 = 1).

Let us see how the derivatives of the second iterate function change at the bifur-

cation value.

𝜕
𝜕ℎ

(tanh(𝑊 tanh(𝑊ℎ))) = 𝑊 2 sech2(𝑊ℎ) sech2(𝑊 tanh(𝑊ℎ)).

Now let’s analyze the bifurcation points:

|𝑓 ′(ℎ)| = 𝑊 2 sech2(𝑊ℎ) sech2(𝑊 tanh(𝑊ℎ)) ⇒

|𝑓 ′(ℎ)|ℎ=1 = 𝑊 2 sech2(𝑊) sech2(𝑊 tanh(𝑊)).

The value of the above equation is always less than the absolute values of |1| for

any values of 𝑊 . So all points of 𝑊 are stable on the second order periods.

So for all values of 𝑊 , 𝑊 2 sech2(𝑊) sech2(𝑊 tanh(𝑊)) will be between -1 and 1.

Also for the second fixed point, we have

31

|𝑓 ′(ℎ)|ℎ=−1 = 𝑊 2 sech2(−𝑊) sech2(𝑊 tanh(−𝑊)).

Here also −1 < 𝑊 2 sech2(−𝑊) sech2(𝑊 tanh(−𝑊)) < 1 is for any values of 𝑊 . This

means that these two fixed points of 𝑓 2 are stable fixed points for all values of 𝑊 and

they will not become unstable. Periodic points of period 2 will not occur.

2.2.2 Lyapunov Exponent

There are several ways to diagnose whether the system under investigation is in a

chaotic state or not. As Moon [36] states, “chaos in deterministic systems implies a

sensitive dependence on initial conditions". This means that two trajectories that

are close to each other in the phase space at some initial moment of time diverge

exponentially in a short average time [36]. If 𝑑0 is a measure of the initial distance

between two reference points, then after a short time 𝑡, the distance between the

trajectories leaving these points becomes equal to:

𝑑(𝑡) = 𝑑02
𝜆𝑡 (2.4)

Here, 𝜆 is the Lyapunov Exponent.

Wolf et al. [57] give an excellent review on Lyapunov exponent [30] and their use

to identify chaoticity of the systems. Also they suggest useful calculations how to

measure the Lyapunov exponent.

As Moon staes [36], the exponential divergence of chaotic trajectories can only

be local, since if the system is limited, then 𝑑(𝑡) cannot grow to infinity. For this

reason, in order to determine the measure of the divergence of the trajectories, it is

necessary to average the exponential growth over many points along the trajectory

[36]. The calculation of the Lyapunov exponent begins in the choice of the reference

trajectory [57], points on the adjacent trajectory and measurement of 𝑑(𝑡)
𝑑0

. When

the distance 𝑑(𝑡) becomes too large (i.e. its growth deviates from the exponential

behavior), the experimenter finds a new “neighboring" trajectory and determines the

new initial distance 𝑑0(𝑡) [36]. So, by using the above notion, the Lyaponov exponent

32

can be calculated as:

𝜆 =
1

𝑡𝑛 − 𝑡0

𝑛∑︁
𝑖=1

ln
𝑑(𝑡𝑖)

𝑑0(𝑡𝑖−1)
(2.5)

In practice, the calculation of the Lyapunov exponent using Equation 2.5 is difficult.

To make the calculation easier, there used “close" enough numerical estimations of

the Lyapunov exponent. Consider given one-dimensional mappings: 𝑥𝑛+1 = 𝑓(𝑥𝑛),

where the function 𝑓 is smooth and differentiable, the distance between adjacent

trajectories is measured by the quantity |𝜕𝑓/𝜕𝑥|. To verify this, we introduce two

initial conditions: 𝑥 and 𝑥 + 𝛿. Then in the relation 2.4:

𝑑0 = 𝛿 (2.6)

𝑑1 = 𝑓(𝑥0 + 𝛿) − 𝑓(𝑥0) =
𝜕𝑓

𝜕𝑥

⃒⃒⃒⃒
𝑥0

𝛿 (2.7)

Following Equation 2.5, determine the Lyapunov exponent as:

𝜆 = lim
𝑛→∞

1

𝑛

𝑛−1∑︁
𝑖=0

ln
⃒⃒⃒
𝑓 ′(𝑥𝑖)

⃒⃒⃒
. (2.8)

The criterion of chaos in terms of the Lyapunov exponent, if 𝜆 is positive, then there

is a chaotic behavior, as neighboring trajectories separate from each other at large 𝑛

[46]. If 𝜆 is negative, then there is a non-chaotic behavior, as trajectories converge to

a fixed point or a limit cycle. We have calculated the Lyapunov exponent for some

values of 𝑊 in case of the Simple RNN map.

In our case, 𝑓(ℎ) = tanh(𝑊ℎ) and 𝑓 ′(ℎ) = 𝑊 (1 − tanh2(𝑊ℎ)). For Equation

2.8, we have considered iteration size of 100000 (instead of ∞) to get the values of

Lyapunov Exponent. We used Python scripts to calculate the values. Full results

with the numerical values are given in A.1.

In Figure 2-7 we draw the values of Lyapunov Exponent versus the weight value

𝑊 . From this Figure we can see that the values of -1.1 and 1.1 of 𝑊 the Lyapunov

Exponents become positive, showing the beginning of a chaotic region. Also this

Figure 2-7 further supports the first two bifurcation points as -1.0 and 1.0 where

33

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Weight

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Ly
ap

un
ov

 E
xp

on
en

t

Figure 2-7: Lyapunov coefficient versus 𝑊 value.

the Lyapunov Exponent is almost zero. Moreover, after attaining the chaotic region

at 𝑊 = 1.0 and 𝑊 = −1.0, we see the negative Lyapunov exponent values. They

signify that within the chaotic region also, at certain values of the parameter, there

are regular behaviors. This is supported also by the bifurcation diagram which we

have drawn in Figure 2-5 in the previous section. (After some values of 𝑊 , it will

stabilize).

2.3 Multidimensional case for Vanilla RNN

Now, consider the high dimension cases. For vanilla RNN:

ℎ(𝑡+1) = tanh (𝑊ℎ𝑡), ℎ𝑡 ∈ 𝑅𝑑 (2.9)

Claim 2. If ||𝑊 || < 1, then for (2.9) we have the following statement: for any ℎ0 we

have 𝑙𝑖𝑚(𝑛→∞)ℎ𝑡 = 0.

Proof. ||ℎ𝑡+1|| = || tanh (𝑊ℎ𝑡)|| ≤ ||𝑊ℎ𝑡|| ≤ ||𝑊 ||||ℎ𝑡||. Therefore, ||ℎ𝑡|| ≤ ||𝑊 ||𝑡||ℎ0|| →

0, 𝑡 → ∞.

Claim 3. There exists 𝑊 with ||𝑊 || > 1, such that induced dynamical system (2.9)

is chaotic (means that there should be at least 1 nontrivial attractor, i.e. attractor

which is not a point).

34

(a) ℎ(1) vs 𝑡 (b) ℎ(2) vs 𝑡

Figure 2-8: State vs. time graphs for 2𝐷 case when the norm is larger than one

When do we have these Claims 2 and 3? Let ||ℎ|| be a norm on R𝑑 such that

|| tanh (ℎ)|| ≤ ||ℎ||. Examples of such norm are:

a) ||ℎ||𝑝 = (
∑︀𝑑

𝑖=1 ℎ
𝑝
𝑖)

1/𝑝 is a 𝑙𝑝 norm. For any such norm let us define corresponding

matrix norm as ||𝑊 ||𝑝 = maxℎ:||ℎ||𝑝=1 ||𝑊ℎ||𝑝.

Now, we tested the weight matrix, the norm of which is greater than 1. Lets

consider the weight matrix 𝑊 =

⎡⎣−1 −4

−3 −2

⎤⎦. If we plot the graph of ℎ(1) vs. 𝑡 and

ℎ(2) vs. 𝑡, then we get the graphs shown in Figure 2-8.

Also for the weight matrix: 𝑊 =

⎡⎣ 4 1

−9 −7

⎤⎦ the last three values of ℎ1 and ℎ2

will be: [..., 0.99512, 0.99512, 0.99512] and [..., -0.97297, -0.97297, -0.97297].

For the weight matrix: 𝑊 =

⎡⎣−2 6

0 −6

⎤⎦ the last three values of ℎ1 and ℎ2 will be:

[..., -0.999990, 0.99999, -0.99999] and [..., 0.99998, -0.99998, 0.99998].

For the weight matrix: 𝑊 =

⎡⎣−1 −6

6 −9

⎤⎦ the last three values of ℎ1 and ℎ2 will be:

[..., -0.99999, 0.99999, -0.99999] and [..., -0.99454, 0.99454, -0.99454].

In the above example, all norms are larger than one (Frobenius norm, nuclear

norm (trace norm), max norm, 𝑙1 norm, 𝑙2 norm).

What happens when ||𝑊 || = 1? If 𝑊 = 𝐼, then we have: ℎ𝑡+1 = tanh (ℎ𝑡). Then

we can get the following graphs: the graph of ℎ1 vs 𝑡 and the graph of ℎ2 vs 𝑡 is given

35

(a) ℎ(1) vs 𝑡 (b) ℎ(2) vs 𝑡

Figure 2-9: 𝑡 vs. ℎ for vanilla RNN

in Figure 2-9. In both cases ℎinf eventually goes to zero.

Also if we take the weight matrices whose norm is smaller than 1, then, both ℎ1

and ℎ2 goes to the zero for 𝑡 → ∞ and we will get the same picture as in Figure 2-9.

We will have non-chaotic behavior in vanilla RNN.

Now we tested the chaoticity using the Lyapunov Exponent as described in Section

2.2.2. We choose two points that are initially very close to each other. Then we iterate

these two points through our map and calculate the Euclidean distance between them.

We initialize the weight matrix 𝑊ℎ =

⎡⎣−7 −6

6 −4

⎤⎦, whose norm is greater than 1.

Then, if we draw the graph of the Euclidean distance, we can get a graph as shown

in Figure 2-10a.

Next, we repeat the above experiment, but in this case with the weight matrix

𝑊ℎ =

⎡⎣−0.1237 −0.3446

0.3282 −0.3723

⎤⎦, whose norm is smaller than one. Then, if we draw the

graph of the Euclidean distance, we can get the graph shown in Figure 2-10b. From

here, again, we can see that if we initialize the weight matrix with a matrix whose

norm is greater than one, then after some iteration we might notice a divergence. On

the other hand, initialization with a matrix whose norm is smaller than one will give

a zero difference immediately after the first iterations.

36

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.000000

0.000005

0.000010

0.000015

0.000020

0.000025

0.000030

0.000035

0.000040

(a) ℎ(1) vs 𝑡

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1e−7

(b) ℎ(2) vs 𝑡

Figure 2-10: Euclidean distance from the 2 close points for vanilla RNN.

37

38

Chapter 3

Chaotic behavior of RHN

3.1 Recurrent Highway Networks

After exploring the vanilla RNN, we considered the dynamics of the state-of-the-art

RNN architectures. Recurrent Highway Network (RHN) proposed by [59] introduced

a new theoretical analysis based on the Gers̆gorins circle theorem [15]. This theo-

rem helps to clarify many optimization issues and modeling. Their approach allows

transition depths to be larger than one and it improves the LSTM cell. Depending

on the depth of the transition, on the Penn Treebank corpus, RHN improves word-

level perplexity from 90.6 to 65.4, using the same number of parameters. Also RHN

architecture outperform all experiments on larger datasets.

Recurrent Neural Networks can be considered as a powerful tool at representing

certain function classes and have credit assignment paths and so deep in time. How-

ever, some aspects of RNN do not take an advantage from the depth, mostly because

of the vanishing gradient problems. Srivastava et al., (2015 [51]) proposed Highway

Layers based on the LSTM cell, enabling the training of networks with even hundreds

of layers. Also, in this paper, authors made mathematical analysis on the strength

sides of the LSTM network.

The main idea behind increasing the depth of the step-to-step recurrent state

transition is to allow the RNN tick for several time steps per step of the sequence

([52, 16]). By using this technique we can adapt the recurrence depth to the problem.

39

3.1.1 Revisiting Gradient Flow in Recurrent Networks

Zilly et al. [59] did revising on the Gradient Flow problem. They showed gradient

vanishing and exploding problems with Jacobian matrix, namely the problem in terms

of largest singular values. Here, the spectral radius sheds light on boundary conditions

for vanishing and exploding gradients yet does not illuminate how the eigenvalues are

distributed overall. Then, Zilly et al. applied the Gers̆gorin circle theorem to provide

further insight into this problem.

Gers̆gorin circle theorem (GCT) (Gers̆gorin, 1931, [15]): For any square matrix

𝐴 ∈ R𝑛×𝑛,

spec(A) ⊂
⋃︁

𝑖∈{1,...,𝑛}

{︂
𝜆 ∈ C|

⃦⃦⃦
𝜆− 𝑎𝑖𝑖

⃦⃦⃦
C
≤

𝑛∑︁
𝑗=1,𝑗 ̸=𝑖

|𝑎𝑖𝑗|
}︂
, (3.1)

i.e., the eigenvalues of matrix A, comprising the spectrum of A, are located within the

union of the complex circles centered around the diagonal values 𝑎𝑖𝑖 of A with radius∑︀𝑛
𝑗=1,𝑗 ̸=𝑖 |𝑎𝑖𝑗| equal to the sum of the absolute values of the non-diagonal entries in

each row of A. In Figure 3-1 two Gers̆gorin circles are centered around their diagonal

entries 𝑎𝑖𝑖. The corresponding eigenvalues lie within the radius of the sum of absolute

values of non-diagonal entries 𝑎𝑖𝑗. Circle (1) represents an exemplar Gers̆gorin circle

for an RNN initialized with small random values. Circle (2) represents the same for

an RNN with identity initialization of the diagonal entries of the recurrent matrix and

small random values otherwise. The dashed circle denotes the unit circle of radius

1. Using GCT we can understand the relationship between the entries of R and the

possible locations of the eigenvalues of the Jacobian.

3.1.2 Recurrent Highway Networks (RHN)

The Highway layer computation is defined as

𝑦 = ℎ · 𝑡 + 𝑥 · 𝑐

where “·" denotes element-wise multiplication.

40

Figure 3-1: Illustration of the Gers̆gorin circle theorem.

Zilly et al. [59] proposed to construct a Recurrent Highway Network (RHN) layer

with one or multiple Highway layers in the recurrent state transition. An RHN layer

with a recurrence depth of 𝐿 is described by

𝑠
[𝑡]
𝑙 = ℎ

[𝑡]
𝑙 · 𝑡[𝑡]𝑙 + 𝑠

[𝑡]
𝑙−1 · 𝑐

[𝑡]
𝑙

where

h[𝑡]
𝑙 = tanh(W𝐻𝑥

[𝑡]I{𝑙=1} + R𝐻𝑙
𝑠
[𝑡]
𝑙−1 + 𝑏𝐻𝑙

), (7)

t[𝑡]𝑙 = 𝜎(W𝑇𝑥
[𝑡]I{𝑙=1} + R𝑇𝑙

𝑠
[𝑡]
𝑙−1 + 𝑏𝑇𝑙

), (8)

c[𝑡]𝑙 = 𝜎(W𝐶𝑥
[𝑡]I{𝑙=1} + R𝐶𝑙

𝑠
[𝑡]
𝑙−1 + 𝑏𝐶𝑙

), (9)

and I{} is the indicator function.

A schematic illustration of the RHN computation graph is shown in Figure 3-2.

It is important to note that an RHN layer with 𝐿 = 1 is essentially a basic variant

of an LSTM layer [59].

Zilly et al. did an analysis on RHN layers similar to standard RNNs based on

GCT. Omitting the inputs and biases, the temporal Jacobian 𝐴 = 𝜕𝑦[𝑡]

𝜕𝑦[𝑡−1] for an RHN

layer with recurrence depth of 1 (such that 𝑦[𝑡] = ℎ[𝑡] · 𝑡[𝑡] + 𝑦[𝑡− 1] · 𝑐[𝑡]) is given by

A = diag(c[𝑡]) + H′diag(t[𝑡]) + C′diag(y[𝑡−1]) + T′diag(h[𝑡]), (3.2)

41

Figure 3-2: RHN layer inside the recurrent loop

where

H
′
= R𝑇

𝐻diag[𝑡𝑎𝑛ℎ′(R𝐻y[𝑡−1])],

T
′
= R𝑇

𝑇diag[𝜎′(R𝑇y[𝑡−1])],

C
′
= R𝑇

𝐶diag[𝜎′(R𝐶y[𝑡−1])],

(3.3)

and has a spectrum of:

spec(A) ⊂
⋃︁

𝑖∈{1,...,𝑛}

{︂
𝜆 ∈ C|

⃦⃦⃦
𝜆− 𝑐

[𝑡]
𝑖 − H

′

𝑖𝑖t
[𝑡]
𝑖 − C

′

𝑖𝑖y
[𝑡−1]
𝑖 − T

′

𝑖𝑖h
[𝑡]
𝑖

⃦⃦⃦
C
≤

𝑛∑︁
𝑗=1,𝑗 ̸=𝑖

⃒⃒⃒
H

′

𝑖𝑗t
[𝑡]
𝑖 + C

′

𝑖𝑗y
[𝑡−1]
𝑖 + 𝑇

′
𝑖𝑗h

[𝑡]
𝑖

⃒⃒⃒ }︂
.

(3.4)

Last equation shows the influence of the gates on the eigenvalues of A. Compared

to the standard RNN, we can see that an RHN layer has more flexibility in adjusting

the centers and radii of the Gers̆gorin circles.

3.1.3 Experiments

During the experiments, 𝐶 values replaced by 𝐶(·) = 1𝑛 − 𝑇 (·), similar to the sug-

gestion for Highway Networks. Like all RNNs, in RHN also regularization can be

essential for obtaining good generalization. Zilly et al. used the regularization tech-

nique proposed by Gal (2016 [14]), which is an interpretation of dropout based on

42

Model Size Best Val. Test
RNN-LDA + KN-5 + cache (Mikolov & Zweig, 2012 [35]) 9 M - 92.0
Conv.+Highway+LSTM+dropout (Kim et al., 2015 [22]) 19 M - 78.9
LSTM+dropout (Zaremba et al., 2014 [58]) 66 M 82.2 78.4
Variational LSTM (Gal, 2016 [14]) 66 M 77.3 75.0
Variational LSTM + WT (Press & Wolf, 2017 [41]) 51 M 75.8 73.2
Pointer Sentinel-LSTM (Merity et al., 2016 [32]) 21 M 72.4 70.9
Variational LSTM + WT + augmented loss (Inan et al., 2016 [20]) 51 M 71.1 68.5
Variational RHN 32 M 71.2 68.5
Neural Architecture Search with base 8 (Zoph & Le, 2016 [60]) 32 M - 67.9
Variational RHN + WT 23 M 67.9 65.4
Neural Architecture Search with base 8 + WT (Zoph & Le, 2016 [60]) 25 M - 64.0
Neural Architecture Search with base 8 + WT (Zoph & Le, 2016 [60]) 54 M - 62.4

Table 3.1: Validation and test set perplexity of recent state of the art word-level
language models on the Penn Treebank dataset [59]

.

approximate variational inference.

For Penn Treebank dataset RHN with depths from 1 to 10 and with fixed total

parameters (32M) were applied. Also reported the results for each model trained with

WT regularization. For the best 10 layer model, reducing the weight decay further

improves the results to 67.9/65.4 validation/test perplexity. As the recurrence depth

increases from 1 to 10 layers the “width" of the network decreases from 1275 to 830

units since the number of parameters was kept fixed.

In Table 3.1 RHN results were compared with the best published results on this

dataset. RHNs outperform most single models as well as all previous ensembles, and

also benefit from WT regularization similar to LSTMs. However, the architecture

which found by reinforcement learning and hyperparameter search (Zoph & Le, 2016

[60]) gives the best results. We also reproduced the results of Zilly et al. in Tensorflow.

We got the perplexity 68.355 on the validation set and the perplexity 65.506 on the

test set for Penn Tree Bank datasets. These results are similar to the results in the

paper (it was 67.9 and 65.4).

43

3.2 Dynamics of RHN

RHN architecture is given in the following form: the Highway layer computation is

defined as:

𝑠𝑛+1 = 𝑡⊙ (ℎ− 𝑠𝑛) + 𝑠𝑛 (3.5)

where

𝑡 := 𝜎(𝑊𝑡𝑥 + 𝑅𝑡𝑠 + 𝑏𝑡);

ℎ := tanh(𝑊ℎ𝑥 + 𝑅ℎ𝑠 + 𝑏ℎ);

⊙ denotes Hadamard product.

3.2.1 RHN chaoticity in 1D

In this subsection we analyze the dynamics of the Recurrent Highway Network (RHN)

in 1D case. First, we can start with the analysis of fixed points and check the region

of their stability.

If we assume that no input is provided, then the induced form of the RHN will

become:

𝑡 := 𝜎(𝑅𝑡𝑠); (3.6)

ℎ := tanh(𝑅ℎ𝑠); (3.7)

𝑠𝑛+1 = 𝑡⊙ (ℎ− 𝑠𝑛) + 𝑠𝑛. (3.8)

If we put everything together, we will get the following equation:

𝑠𝑛+1 = 𝜎(𝑅𝑡𝑠𝑛) ⊙ (tanh(𝑅ℎ𝑠𝑛) − 𝑠𝑛) + 𝑠𝑛. (3.9)

For the Recurrent Highway Networks we have the following claim.

44

Claim 4. A dynamical system induced by RHN in Equation 3.9 shows non-chaotic

behavior when 𝑅 ∈ (1, 1), as thus follows from the properties of Vanilla RNN.

Proof. To find the fixed points, we have to solve the equation: 𝑥 = 𝑓(𝑥), so for the

Equation 3.9 we will have:

𝑠 = 𝜎(𝑅𝑡𝑠) ⊙ (tanh(𝑅ℎ𝑠) − 𝑠) + 𝑠 ⇒

0 = 𝜎(𝑅𝑡𝑠) ⊙ (tanh(𝑅ℎ𝑠) − 𝑠) ⇒

0 = 𝜎(𝑅𝑡𝑠) and 0 = tanh(𝑅ℎ𝑠) − 𝑠

0 = 𝜎(𝑅𝑡𝑠) ⇒ no solutions exists, as the values of sigmoid function lies between 0

and 1. So we will consider only the second part.

0 = tanh(𝑅ℎ𝑠) − 𝑠 ⇒

𝑠 = tanh(𝑅ℎ𝑠)

This equation 𝑠 = tanh(𝑅ℎ𝑠) is the case for the simple RNN. We already consid-

ered the fixed points of the simple RNN in section 2.2. So the fixed points of the

Recurrent Highway Networks are the same as the vanilla RNN. So, the fixed point

analysis of the Vanilla RNN can be applied for the Recurrent Highway Networks

(RHN). This proves our Claim 4.

We tried to plot the bifurcation diagram for 1D RHN. Classic logistic map is given

in the form: 𝑥𝑛+1 = 𝑟 * 𝑥𝑛 * (1 − 𝑥𝑛). What will be if we replace this equation with

the 𝑥𝑛+1 = 𝜎(𝑟 * 𝑥𝑛) ⊙ (tanh(𝑟 * 𝑥𝑛) − 𝑥𝑛)) + 𝑥𝑛. Then we will get the bifurcation

diagram shown in Figure 3-3. From here, we can notice that the system is stable at

some values of 𝑟. However, this example is very specific case of induced RHN form

in 3.9, where two weight parameters are the same.

45

Figure 3-3: Bifurcation diagram of the 1D map 𝑥𝑛+1 = 𝜎(𝑟 * 𝑥𝑛) ⊙ (𝑡𝑎𝑛ℎ(𝑟 * 𝑥𝑛) −
𝑥𝑛)) + 𝑥𝑛

3.2.2 RHN chaoticity in 2D

Claim 5. There exists 𝑅: ||𝑅|| > 1 such that a dynamical system induced by RHN

in Equation 3.9 is chaotic.

We performed experiments to check the chaotic behavior of the RHN in 2D. We

show that in the absence of the input data RHN can lead to dynamical systems

𝑠𝑛+1 = Φ(𝑠𝑛) that are chaotic ([53]). Again, we assume that there is no input data

is provided. Then the dynamical system induced by a two-dimensional RHN with

weight matrices: 𝑅𝑡 =

⎡⎣0 1

1 0

⎤⎦ and 𝑅ℎ =

⎡⎣−5 −8

8 5

⎤⎦ and zero bias for the model. 𝑠

can be initialized with any values. If we assume that no input data is provided and

all bias terms are zero, then the induced RHN architecture will become:

𝑡 := 𝜎(𝑅𝑡𝑠); (3.10)

ℎ := tanh(𝑅ℎ𝑠); (3.11)

46

Figure 3-4: Strange attractor of chaotic behavior of RHN for the weight matrices:
𝑅𝑡=[[0, 1],[1, 0]] and 𝑅ℎ=[[-5, -8],[8, 5]]

𝑠𝑛+1 = 𝑡⊙ (ℎ− 𝑠𝑛) + 𝑠𝑛. (3.12)

Now we plot the RHN state values 𝑠
(1)
𝑛 vs. 𝑠

(2)
𝑛 for 𝑛 = 100000 iterations. The

resulting plot is shown in Figure 3-4. Most trajectories converge toward the depicted

attractor. We can get above pictures for any initial values of 𝑠 (we can initialize with

zeros or any values) and for any number of highway layers (we tried 1, 5, 10 highway

layers). This picture shows the strange attractor as in LSTM and GRU given in

Laurent and Brecht [27].

Now we studied time series analysis of this system. If we plot 𝑠1 vs. 𝑛 we can

notice that the values of 𝑠1 will jump from one place to another in the chaotic manner.

There is no convergence. This is given in Figure 3-5. This is also true for 𝑠2 vs. 𝑛

(given in Figure 3-6). Then, if we plot the graph 𝑠1 vs. 𝑠2, we can get the strange

attractor as shown in Figure 3-4.

Next we tested chaoticity of the RHN by using the Lyapunov instability of Bernoulli

shift [39] as in section 2.2.2. We consider the two points which are initially very close

to each other, with 𝛿𝑠0 “infinitesimally small” differences: 𝛿𝑠0 := |𝑠′0 − 𝑠0|. Then we

iterate these two points through our induced RHN map 𝑠𝑛+1 = Φ(𝑠𝑛), in Equation

47

Figure 3-5: 𝑠(1) vs. 𝑛

Figure 3-6: 𝑠(2) vs. 𝑛

48

3.9, 100 times and calculated the Euclidean distance between |𝑠′𝑛 − 𝑠𝑛| these points.

The graph is given in Figure 3-7. From this graph we can see that after some iter-

ation, two trajectories diverge exponentially despite the fact that initially these two

points are highly localized, with the distance no more than 10−7. If we have positive

Figure 3-7: Euclidean distance from the 2 close points

𝜆, then we have a chaos. In Figure 3-8 shown the divergence of two very close points

after each iteration.

Also we tested the weight matrices 𝑅𝑡 =

⎡⎣−2 6

0 −6

⎤⎦ and 𝑅ℎ =

⎡⎣−5 −8

8 5

⎤⎦. The

norm of these matrices are larger than one. If we plot the graph of 𝑠1 vs. 𝑠2 with

𝑛 = 100000, then we again explore the strange attractor as shown in Figure 3-9. Here

again, for any initial value of 𝑠 and for any number of highway layers we will get this

picture.

The third example of the chaoticity of RHN can be obtained by using the following

parameters. Again, we consider the induced form of RHN as in Equation 3.9. If we

initialize the weight matrices with the following matrices, 𝑅𝑡 =

⎡⎣0 3

2 0

⎤⎦ and 𝑅ℎ =

49

Figure 3-8: Divergence of two close points (red and blue points).

Figure 3-9: Strange attractor of chaotic behavior of RHN for the weight matrices:
𝑅𝑡=[[-2, 6], [0, -6]] and 𝑅ℎ=[[-5, -8], [8, 5]]

50

Figure 3-10: Strange attractor of chaotic behavior of RHN for the weight matrices:
𝑅𝑡=[[0, 3], [2, 0]] and 𝑅ℎ=[[-5, -8], [8, 5]]

⎡⎣−5 −8

8 5

⎤⎦ and if we assume that the bias term is zero, then again we explore the

chaotic nature in induced RHN form. If we plot the forward trajectory of the induced

RHN, then we can get the strange attractor shown in Figure 3-10. Another example

of the chaoticity of RHN is given in B-1. Here again, we see the strange attractor for

some parameters.

After exploring the chaotic behavior in RHN, we now tried to build chaos-free

Neural Networks. For RHN, we again use our Claim 2 which was applied in vanilla

RNN. Here, if we initialize the weights with matrices whose norm is smaller than one,

then again we can have the non-chaotic behavior in RHN.

In the above cases, the norm of the weight matrices are larger than one and we

explored the chaotic behavior. Now, let’s analyze the case when the norm of the

matrices are smaller than 1. For example, we can test these weight matrices:

𝑅𝑡 =

⎡⎣ 0 0.5

0.5 0

⎤⎦ and 𝑅ℎ =

⎡⎣−0.4 −0.3

0.3 0.2

⎤⎦.

The norm of these two matrices are smaller than one. If we explore the values of

𝑠1 and 𝑠2 for 𝑛 → ∞, then, both values of 𝑠 will go to zero. We also plotted the graph

of 𝑠1 vs. 𝑠2. The plot is given in Figure 3-11. From this, we can see that we can get

non-chaotic RHN when we initialize the weight matrices with the values whose norm

51

Figure 3-11: Attractor for weight matrices: 𝑅𝑡=[[0, 0.5], [0.5, 0]] and 𝑅ℎ=[[-0.4, -0.3],
[0.3, 0.2]]

is smaller than one.

52

Chapter 4

SCRN chaoticity

4.1 SCRN architecture

Mikolov et al. [33] suggested an alternative RNN structure for the language modeling

task. It was one of the attempts on modifying the vanilla Recurrent Neural Network.

They called their RNN structure Structurally constrained recurrent network (SCRN).

As Mikolov et al. stated, the recurrent neural network is a powerful model that

can learn temporal patterns in sequential data. However, for a long time, RNNs are

difficult to train by using simple optimizers (e.g. stochastic gradient descent) during

the training, because of the vanishing gradient problem. Mikolov et all [33] showed

that learning longer term patterns in real data, in natural language, is perfectly pos-

sible using gradient descent. To achieve this, they do a slight structural modification

on the simple Recurrent neural Network architecture. They force some of the hid-

den units to change their state slowly by making part of the recurrent weight matrix

close to identity, and it will form a longer term memory. Their modified RNN struc-

ture achieved close results compared to the complex LSTMs networks on Language

Modeling task.

For a sequential data, Recurrent Neural Networks models fits well in many appli-

cations and it showed the state-of-the-art results in many tasks: Automatic Speech

Recognition, Language Modeling, Video Classification and etc. Recurrent Neural

Networks represent time recursively, and this recursion allows the model to store

53

complex sequences for arbitrarily long time periods.

But in practice, training the Recurrent Neural Networks can be considered as

hard. Simple recurrent networks suffer from the gradient vanishing problem during

the training. For this reason, simple Recurrent Networks (SRN) memory focused only

on short term patterns, ignoring longer term dependencies.

There are many architectures were proposed to solve these problems of SRN.

Widely used architecture is LSTM models. Mikolov et al. also proposed their meth-

ods, which partially solves the vanishing gradient problems.

4.1.1 Simple Recurrent Networks

Mikolov et al., [33] firstly describe simple recurrent network (SRN) in terms of archi-

tectures, and then they compare it with their proposed models. In SRN, there are

input layer, hidden layer with recurrent units and output layer. This can be seen

from the Figure 4-1, (a). In SRN, given the one-hot encoding input 𝑥𝑡 of a current

Figure 4-1: (a) Simple recurrent network. (b) RNN architecture suggested by Mikolov
et all (2015), Recurrent network with context features.

token, it predicts the probability 𝑦𝑡 of next one. Between input and output layers,

there are recurrent layer, which has 𝑚 hidden recurrent units, which allows to store

an additional information about the previous tokens.

At each time 𝑡 hidden state layer ℎ𝑡 is updated based on the previous state ℎ𝑡−1

and also the embedded input 𝑥𝑡 of the current token, which can be described on the

following equation:

54

ℎ𝑡 = 𝜎(𝐴𝑥𝑡 + 𝑅ℎ𝑡−1),

where 𝜎(𝑥) = 1/(1 + 𝑒𝑥𝑝(𝑥)) is the sigmoid function applied coordinate wise, 𝐴 is

the 𝑑×𝑚 token embedding matrix and 𝑅 is the 𝑚×𝑚 matrix of recurrent weights.

Given the state of these hidden units, then network outputs the probability vector 𝑦𝑡

of the next token, based on the following equation:

𝑦𝑡 = 𝑓(𝑈ℎ𝑡),

where 𝑓 is the soft-max function and 𝑈 is the 𝑚× 𝑑 output matrix.

4.1.2 Context features

Mikolov et al., [33] next describes their approach. The main difference from SRN,

they add another hidden layer which learns the contextual features using stochastic

gradient descent. This state of a hidden layer associated with a diagonal recurrent

matrix.

So, in the model of Mikolov et al., they have both: a fully connected recurrent

matrix to produce a set of quickly changing hidden units, and a diagonal matrix

that encourages the state of the context units to change slowly (in Figure 4-1 (b)

can be shown this detail). The first layer, or they call it “fast layer" (will be called

hidden layer), will behave as the same as Simple Recurrent Networks (SRN), while

the slowly changing layer (called context layer) can learn topic information, similar

to cache models. Let’s denote 𝑠𝑡 the state of the 𝑝 context units at time 𝑡, the update

can be described by the following equations:

𝑠𝑡 = (1 − 𝛼)𝐵𝑥𝑡 + 𝛼𝑠𝑡−1,

ℎ𝑡 = 𝜎(𝑃𝑠𝑡 + 𝐴𝑥𝑡 + 𝑅ℎ𝑡−1),

𝑦𝑡 = 𝑓(𝑈ℎ𝑡 + 𝑉 𝑠𝑡)

where 𝛼 is a parameter in (0, 1) and 𝑃 is a 𝑝 × 𝑚 matrix. There is no nonlinear

functions are applied to the state of the context units. This contextual hidden units

can be seen as an exponentially decaying bag of words representation of the history.

55

This exponential trace memory has been already proposed in the context of simple

recurrent networks [33].

Experiments

Mikolov et al. then tested their model for Language Modeling task in two datasets:

Penn Tree Bank corpus and Text8 corpus, which is the first 100 million characters

from the Wikipedia corpus. The results can be seen from Figure 4.1. Here, struc-

turally constrained recurrent network (SCRN) model can achieve results comparable

to the LSTM models, with relatively small numbers of parameters. Also, compared

to Simple Recurrent Networks, SCRN shows better results with even much smaller

number of parameters.

On the larger corpora Text8, LSTM showed slightly better results than the Mikolov

et al. approach (SCRN) in larger models (> 200 hidden units).

In conclusion, Mikolov et al. proposed architecture outperforms Simple Recurrent

Network architecture, but showed slightly lower results compared to LSTM architec-

ture in Large datasets, with large models. But one nice thing about their architecture

is, they have less parameters and the architecture is not so complicated as LSTM ar-

chitecture.

Model #hidden #context Validation Perplexity Test Perplexity
Ngram - - - 141

Ngram + cache - - - 125
SRN 50 - 153 144
SRN 100 - 137 129
SRN 300 - 133 129

LSTM 50 - 129 123
LSTM 100 - 120 115
LSTM 300 - 123 119
SCRN 40 10 133 127
SCRN 90 10 124 119
SCRN 100 40 120 115
SCRN 300 40 120 115

Table 4.1: Results on Penn Tree Bank corpus: SRN, LSTM and structurally con-
strained recurrent nets (SCRN).

56

4.2 SCRN chaoticity

Classic form of the SCRN is given in the following form:

𝑠𝑡+1 = (1 − 𝛼)𝑥𝑡+1𝐵 + 𝛼𝑠𝑡

ℎ𝑡+1 = 𝜎(𝑥𝑡+1𝐴 + 𝑠𝑡+1𝑃 + ℎ𝑡𝑅)

Again, if we assume that no input is provided, then the induced form of SCRN will

become:

𝑠𝑡+1 = 𝛼𝑠𝑡

ℎ𝑡+1 = 𝜎(𝑠𝑡+1𝑃 + ℎ𝑡𝑅)

Then, if we write them in one equation:

ℎ𝑡+1 = 𝜎(𝛼𝑠𝑡𝑃 + ℎ𝑡𝑅).. (4.1)

Claim 6. There exists 𝑅,𝑃 : ||𝑅|| > 1 and ||𝑃 || > 1 such that a dynamical system

induced by SCRN in Equation 4.1 is chaotic.

To verify this claim, we performed experiments with two-unit SCRN cells. We

again assume that no input data is provided. We initialize weight matrices 𝑃 =⎡⎣−5 6

0 −6

⎤⎦ and 𝑅 =

⎡⎣−7 −6

6 −4

⎤⎦. Then we iterate the induced SCRN in Equation

4.1 100000 times. If we draw forward trajectories, ℎ(1) vs ℎ(2), we can get a strange

attractor as shown in Figure 4-2. Most trajectories converge to the depicted attractor.

To get the picture shown in Figure 4-2, we initialize the values of ℎ and 𝑠 as

follows: ℎ = [0.30463, 0.64438] and 𝑠 = [0.82458, 0.28021].

Now, let’s study the time-series analyze of the above system. If we draw a graph

of 𝑡 vs. ℎ(1) and 𝑡 vs. ℎ(2) then we can see the picture shown in Figure 4-3. In Figure

4-3 we can see that the values of ℎ(1) and ℎ(2) jump from one place to another in the

chaotic manner. Up to a certain time iteration, ℎ(1) and ℎ(2) will be stable, then after

57

Figure 4-2: ℎ(1) vs ℎ(2) for the SCRN architecture, with weight matrices 𝑃 =
[[−5, 6], [0,−6]] and 𝑅 = [[−7,−6], [6,−4]].

(a) SCRN, 𝑡 vs. ℎ(1) (b) SCRN, 𝑡 vs. ℎ(2)

Figure 4-3: 𝑡 vs. ℎ for SCRN for 𝑡 = 10000

58

a while they will jump from one place to another. One interesting thing, the values

of ℎ(1) and ℎ(2) are bounded. If we enlarge the graph shown in Figure 4-3 in order

to see how the values of ℎ change over time 𝑡, we can get the graph shown in Figure

B-2. Approximately at 𝑡 = 1000 we notice jumps in the values of ℎ.

Also we tested another example. We initialize weight matrices with 𝑃 =

⎡⎣1 0

0 1

⎤⎦
and 𝑅 =

⎡⎣−1 −6

6 −9

⎤⎦, and again assume there is no input data is provided. Then

iterate induced SCRN in Equation 4.1 100000 times. If we draw a graph of state

values, ℎ(1) vs. ℎ(2), we can get another strange attractor shown in Figure 4-4.

Figure 4-4: ℎ(1) vs ℎ(2) for the SCRN architecture, with weight matrices 𝑃 =
[[1, 0], [0, 1]] and 𝑅 = [[−1,−6], [6,−9]].

Claim 7. A dynamical system induced by SCRN in Equation 4.1 shows non-chaotic

behavior when the norm of the weight matrices are smaller than one.

To be convinced of this, we take weight matrices whose norm is smaller than

one. Let’s initialize weight matrices as follows: 𝑃 =

⎡⎣−0.1237 −0.3446

0.3282 −0.3723

⎤⎦ and 𝑅 =

59

⎡⎣−0.475 0.3726

0 −0.2363

⎤⎦. The norms of these matrices are less than one. If we iterate the

induced SCRN 100000 times, and plot the graph of the state values ℎ(1) vs. ℎ(2), we

can get the graph shown in Figure 4-5. There is no strange attractor.

Figure 4-5: ℎ(1) vs ℎ(2) for the non-chaotic SCRN

Now we tested the chaoticity of the induced SCRN using the Lyapunov Exponent,

as described in Section 2.2.2. We choose two points that are initially very close to each

other. Then we iterate these two points through the SCRN map given in Equation 4.1,

and calculate the Euclidean distance between them at each iteration. We initialize

the weight matrices with 𝑃 =

⎡⎣−7 −6

6 −4

⎤⎦ and 𝑅 =

⎡⎣−5 6

0 −6

⎤⎦, whose norms are

larger than 1. Then, if we draw a graph of the Euclidean distance, we can get the

graph shown in Figure 4-6a. If we enlarge this Figure for a certain period of time,

then we can get the graph shown in Figure 4-6b. Here we can see that the difference

increases after some iteration and continues to increase.

Next, we repeat above experiment, but, in this case we initialize weight matrices

𝑃 =

⎡⎣−0.1237 −0.3446

0.3282 −0.3723

⎤⎦ and 𝑅 =

⎡⎣−0.475 0.3726

0 −0.2363

⎤⎦, whose norms are smaller

than one. Then, if we draw the graph of the Euclidean distance, we can get the graph

60

0 200 400 600 800 1000 1200

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
1e−8

(a) ℎ(1) vs 𝑡

900 950 1000 1050 1100 1150 1200

0.5

1.0

1.5

2.0

2.5

3.0

3.5
1e−8

(b) ℎ(2) vs 𝑡

Figure 4-6: Euclidean distance from the 2 close points for the chaotic SCRN.

shown in Figure 4-7. From here, again, we can see that if we take weight matrices

whose norm is smaller than one, then the difference will be equal to zero immediately

after the first iteration.

0 200 400 600 800 1000 1200

−0.04

−0.02

0.00

0.02

0.04

Figure 4-7: Euclidean distance from the 2 close points for the non-chaotic SCRN.

61

62

Chapter 5

EXPERIMENTS

5.1 Language Modeling

The main task of the language model is to determine whether the particular sequence

of words is appropriate or not in some context, determining whether the sequence

is accepted or discarded. It is used in various areas such as speech recognition, ma-

chine translation, handwriting recognition [43], spelling correction [24], augmentative

communication [38] and Natural Language Processing tasks (part-of-speech tagging,

natural language generation, word similarity, machine translation) [11, 9, 19]. Strict

rules may be required depending on the task, in which case language models are

created by humans and hand constructed networks are used. However, development

of the rule-based approaches is difficult and it even requires costly human efforts if

large vocabularies are involved. Also usefulness of this approach is limited: in most

cases (especially when a large vocabulary used) rules are inflexible and human mostly

produces the ungrammatical sequences of words during the speech. One thing, as

[56] states, in most cases the task of language modeling is “to predict how likely the

sequence of words is”, not to reject or accept as in rule-based language modeling. For

that reason, statistical probabilistic language models were developed. A large number

of word sequences are required to create the language models. Therefore the language

model should be able to assign probabilities not only for small amounts of words, but

also for the whole sentence. Nowadays it’s possible to create large and readable text

63

corpora consisting of millions of words, and language models can be created by using

this corpus.

5.1.1 Neural Language Modeling

Given the sequence of words, we want to predict the probability of each word (in the

dictionary). Language models allow us to measure the probability of choice, which

is an important contribution to machine translation (since sentences are likely to be

correct). A side effect of this ability is the ability to generate new texts by choosing

from output probabilities. We can generate other things, depending on what our

data is. In language modeling, our input usually represents a sequence of words (for

example, encoded as a vector with one hot state (one-hot)), and the output is a

sequence of predicted words. When learning the neural network, we feed the previous

layer 𝑜𝑡 = 𝑥𝑡+1 to the next layer as we want the result at step t to be the next word.

There are many types of neural architectures, which also applied successfully for

the language modeling tasks. Starting from the work of [8] there are many Recur-

rent Neural Architectures proposed. With Recurrent Neural Networks, it’s possible

to model the word sequences, as the recurrence allows to remember the previous

word history. Recurrent Neural Network can directly model the original conditional

probabilities:

𝑃 (𝑤1, ..., 𝑤𝑛) =
∏︁

(𝑤𝑖|𝑤1...𝑤𝑖1) (5.1)

To model the sequences, 𝑓 function constructed via recursion, initial condition is

given by ℎ0 = 0 and the recursion will be ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1). Here, ℎ𝑡 is called hidden

state or memory and it memorizes the history from 𝑥1 up to 𝑥𝑡1. Then, the output

function is defined by combination of ℎ𝑡 function:

𝑃 (𝑤1, ..., 𝑤𝑛) = 𝑔𝑤(ℎ𝑡) (5.2)

𝑓 can be any nonlinear function such as tanh, ReLU and 𝑔 can be a softmax func-

tion. In our work, we followed [58] who presented a simple regularization technique

64

for Recurrent Neural Networks (RNNs) with LSTM [18] units. Srivastava et al. [50]

proposed dropout technique for regularizing the neural networks, but this technique

does not work well with RNNs. This regularizing technique is tent to have overfit-

ting in many tasks. Zaremba et al. [58] showed that the correctly applied dropout

technique to LSTMs might substantially reduce the overfitting in various tasks. They

tested their dropout techniques on language modeling, speech recognition, machine

translation and image caption generation tasks. We also reproduced the language

modeling experiments from Zaremba et al. [58] using Tehsorflow [1] and the code can

be found here: https://github.com/Baghdat/RNN-word-Zaremba.

5.1.2 Experiments with Chaos Free Network

Laurent & Brecht [27] briefly demonstrated that in the absence of input data, LSTM

and GRU can lead to chaotic dynamic systems 𝑢𝑡 = Φ(𝑢𝑡−1) (Strogatz, 2014 [53]).

The figure shows a strange attractor of a dynamical system, and it can be obtained

from: 𝑢𝑡 =

⎡⎣ℎ𝑡

𝑠𝑡

⎤⎦ 𝑢𝑡 ↦→ Φ(𝑢) = 𝑢𝑡 =

⎡⎣𝑜⊙ tanh(𝑓 ⊙ 𝑐 + 𝑖⊙ 𝑔)

𝑓 ⊙ 𝑐 + 𝑖⊙ 𝑔

⎤⎦
𝑖 := 𝜎(𝑊𝑖ℎ + 𝑏𝑖) 𝑓 := 𝜎(𝑊𝑓ℎ + 𝑏𝑓) 𝑜 := 𝜎(𝑊𝑜ℎ + 𝑏𝑜) 𝑔 := 𝑡𝑎𝑛ℎ(𝑊𝑔ℎ + 𝑏𝑔)

They used a two-position LSTM with weight matrices to show that LSTM has a

strange attractor:

𝑊𝑖 =

⎡⎣−1 −4

−3 −2

⎤⎦ 𝑊𝑜 =

⎡⎣ 4 1

−9 −7

⎤⎦ 𝑊𝑓 =

⎡⎣−2 6

0 −6

⎤⎦ 𝑊𝑔 =

⎡⎣−1 −6

6 −9

⎤⎦
and zero bias for model parameters. These weight matrices were randomly formed

from the normal distribution with a standard deviation of 5. The strange attractor

in the figure was obtained by choosing in the initial state 𝑢0 = (ℎ0; 𝑐0) uniformly

randomly in [0; 1]2 × [0; 1]2. Then they built the h-component of the iterates of

𝑢𝑡 = (ℎ𝑡; 𝑐𝑡) for 𝑡 between 103 and 105.

We also conducted this experiment. We wrote a Python script to reproduce the

strange attractor. If we gave the weights that the authors provided, then we can get

the same picture as the authors.

65

https://github.com/Baghdat/RNN-word-Zaremba

Figure 5-1: Strange attractor in two-unit LSTM

However, if we give different weight values, then we may not get a strange attrac-

tor. For example, we simply changed the values of the weight matrices 𝑊𝑖 and 𝑊𝑜.

(Instead of 𝑊𝑖, weights 𝑊𝑜 were used and vice versa). Then we can get the following

diagram for ℎ1 versus ℎ2 (Figure 5-2).

It can be seen from the figure above that if we take random weights, we might not

get the same attractor that was presented in the article for LSTM.

We also reproduced the strange attractor with the GRU (Figure 5-3). Again, if

we give the same weight matrices as the authors, then we can get the same picture,

and if we change the weight matrices, then we cannot get a picture of the strange

attractor.

We also reproduced the results for the language modeling tasks. Implemented

chaos-free network can be found here: https://github.com/Baghdat/Chaos-Free-Network.

We reproduced the small sized and large sized Chaos-Free Networks. For 20 million

(in our experiment the model size was 17238900) parameter model with 2 layers, the

perplexity was 82.327/78.137 on validation/test sets with dropout and the perplexity

was 118.82/113.98 on validation/test sets without dropout. We also made 1 layer

CFN model.

66

https://github.com/Baghdat/Chaos-Free-Network

Figure 5-2: ℎ1 vs. ℎ2 in two-unit LSTM

Figure 5-3: Strange attractor in two-unit GRU.

67

5.2 Non-chaotically initialized RHN

In this section, we tested our non-chaotic neural cells in real-world applications. Our

aim is to identify, how non-chaotic version will affect on the performance. Is a non-

chaotic behaviour good in a real-world application? Do we need a chaoticity? Or

is it good to have a chaotic systems? To answer these questions, we performed

experiments.

We examined Recurrent Highway Networks on the language modeling task. We

use Penn Tree Bank (PTB) [31] corpus, which was pre-processed by Mikolov et al.

[34]. First we reproduced the initial results from Zilly et al. [59] without weighting

(WT) of input and output mappings and got the 68.355 perplexity on the validation

set and 65.506 perplexity on the test set. These results are similar to the results in

the paper (In the paper it was 67.9 and 65.4).

Then we tested our chaos-free version. We initialized the weight matrix in a way,

such that their Frobenius norm do not exceed 1. We use TensorFlow ([1]) to perform

our experiments. We first created a matrix whose norm is smaller than one and feed

it during the initialization. We used the same hyper-parameters as in Zilly et al. [59]

during the training. On PTB dataset, our non-chaotic neural cells showed 68.715

perplexity on the validation set and 66.290 perplexity on the test set. Full results and

results of Chaos Free Network (CFN) [27] are given in Table 5.1. From this, we can

see that the chaos free version of RHN showed similar results as the chaotic version

and that chaos-free initialization will not lead to a decrease in performance.

The code for the experiments can be found here: https://github.com/Baghdat/

RHN_init.

Table 5.1: Perplexity on the PTB set.

Model Validation Perplexity Test Perplexity
Variational RHN + WT [59] 68.355 65.506
Non-chaotically initialized RHN 68.715 66.290
CFN (2 layers)+dropout [27] 79.7 74.9

68

https://github.com/Baghdat/RHN_init
https://github.com/Baghdat/RHN_init

5.3 Conclusion and future work

In this thesis work we analyzed the dynamics of the Recurrent Neural Networks. Our

analyses showed that the vanilla RNN, Structurally Constrained Recurrent Network

and the most recent RHN architecture exhibit a chaotic behavior in the absence of

input data. We found out that, depending on the initialization of the weight matrices,

we can have non-chaotic systems. Our experiments showed that the initialization of

the weights with the matrices whose norm is less than one can lead to non-chaotic

behavior. The advantage of non-chaotic cells is stable dynamics. We also performed

experiments with non-chaotic RHN cells. Our experiments on language modeling

with the PTB dataset showed similar results as an RHN cell with chaos by using the

same hyper-parameters. In the future, we are going to test non-chaotic RHN cells

for other tasks: speech processing, image processing. Also for NAS architecture, at

this moment, generating the architecture is an expensive process for us, as there are

not enough resources. We will test our chaos-free initialization for NAS architectures

again.

69

70

Appendix A

Tables

Table A.1: Lyapunov coefficient versus 𝑊 value

Parameter Lyapunov Parameter Lyapunov
value (W) Exponent value (W) exponent

-1 0.00000211 -1.2 0.150067308
1 0.00000101 1.2 0.150055520

1.1 0.08631033 2 -inf
-1.1 0.08630209 -2 -inf
0.9 -0.11629468 0.5 -0.88135679
-0.9 -0.11629206 -0.5 -0.88135706

71

72

Appendix B

Figures

73

Figure B-1: Strange attractor of chaotic behavior of RHN for the weight matrices:
𝑅𝑡=[[1, 3], [2, 0]] and 𝑅ℎ=[[-5, -12], [9, 4]].

74

(a) SCRN, 𝑡 vs. ℎ(1) (b) SCRN, 𝑡 vs. ℎ(2)

Figure B-2: 𝑡 vs. ℎ for SCRN for 𝑡 = 2000

75

76

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Mur-
ray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale machine
learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’16, pages 265–283, Berkeley, CA, USA, 2016.
USENIX Association.

[2] VS Afraimovich and Ml I Rabinovich. Dynamic system.
https://bigenc.ru/physics/text/1956597. Accessed: 2019-03-30, in Russian.

[3] VS Anishchenko. Complex oscillations in simple systems, 1990.

[4] VS Anishchenko. Dynamic systems. Soros Educational Journal, 11:77–84, 1997.
(in Russian).

[5] Dmitry Victorovich Anosov. Geodesic flows on closed riemannian manifolds of
negative curvature. Trudy Matematicheskogo Instituta Imeni VA Steklova, 90:3–
210, 1967.

[6] D Assaf and Steve Gadbois. Definition of chaos. American Mathematical
Monthly, 99(9):865–865, 1992.

[7] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey. On devaney’s definition
of chaos. Am. Math. Monthly, 99(4):332–334, April 1992.

[8] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A
neural probabilistic language model. J. Mach. Learn. Res., 3:1137–1155, March
2003.

[9] Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra,
Fredrick Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin. A
statistical approach to machine translation. Comput. Linguist., 16(2):79–85, June
1990.

[10] Kyunghyun Cho, Bart van Merriënboer, ÇaÄ§lar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using rnn encoder–decoder for statistical machine translation. In

77

Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, Doha, Qatar, October 2014. Association
for Computational Linguistics.

[11] Kenneth Ward Church. A stochastic parts program and noun phrase parser for
unrestricted text. In Proceedings of the Second Conference on Applied Natural
Language Processing, ANLC ’88, pages 136–143, Stroudsburg, PA, USA, 1988.
Association for Computational Linguistics.

[12] Robert L. Devaney. An introduction to chaotic dynamical systems / Robert L.
Devaney. Addison-Wesley Redwood City, Calif, 2nd ed. edition, 1989.

[13] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211,
1990.

[14] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of
dropout in recurrent neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 1019–1027. Curran Associates, Inc., 2016.

[15] Semyon Aranovich (S. Gerschgorin) Geršgorin. über die abgrenzung der eigen-
werte einer matrix. Bulletin de l’Académie des Sciences de l’URSS. Classe des
sciences mathématiques et na, 6:749–754, 1931.

[16] Alex Graves. Adaptive computation time for recurrent neural networks. CoRR,
abs/1603.08983, 2016.

[17] Denny Gulick. Encounters with chaos and fractals. Crc Press, 2012.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, November 1997.

[19] Jonathon Hull. Combining syntactic knowledge and visual text recognition: A
hidden markov model for part of speech tagging in a word recognition algorithm.
In AAAI Symposium: Probabilistic Approaches to Natural Language, pages 77–
83, 1992.

[20] Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors
and word classifiers: A loss framework for language modeling. arXiv preprint
arXiv:1611.01462, 2016.

[21] Michael I. Jordan. Attractor dynamics and parallelism in a connectionist sequen-
tial machine. In Joachim Diederich, editor, Artificial Neural Networks, pages
112–127. IEEE Press, Piscataway, NJ, USA, 1990.

[22] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-
aware neural language models. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, AAAI’16, pages 2741–2749. AAAI Press, 2016.

78

[23] Andrei Yu Kolesov and Nikolai Kh Rozov. On the definition of ‘chaos’. Russian
Mathematical Surveys, 64(4):701, 2009.

[24] Karen Kukich. Techniques for automatically correcting words in text. ACM
Comput. Surv., 24(4):377–439, December 1992.

[25] Yuri A. Kuznetsov. Elements of Applied Bifurcation Theory (2Nd Ed.). Springer-
Verlag, Berlin, Heidelberg, 1998.

[26] Polina S. Landa and P.V.E. McClintock. Development of turbulence in subsonic
submerged jets. Physics Reports, 397(1):1 – 62, 2004.

[27] Thomas Laurent and James von Brecht. A recurrent neural network without
chaos. arXiv preprint arXiv:1612.06212, 2016.

[28] Edward Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sci-
ences, 20(2):130–148, 1963.

[29] Alexander Loskutov. Mathematical foundations of chaotic dynamical systems.
Successes of physical Sciences, 177(9):989–1015, 2007. (in Russian).

[30] A. M. LYAPUNOV. The general problem of the stability of motion. International
Journal of Control, 55(3):531–534, 1992.

[31] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Build-
ing a large annotated corpus of english: The penn treebank. Computational
Linguistics, 19(2):313–330, June 1993.

[32] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer
sentinel mixture models. arXiv preprint arXiv:1609.07843, 2016.

[33] Tomas Mikolov, Armand Joulin, Sumit Chopra, Michael Mathieu, and
Marc’Aurelio Ranzato. Learning longer memory in recurrent neural networks.
arXiv preprint arXiv:1412.7753, 2014.

[34] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, and Sanjeev Khu-
danpur. Recurrent neural network based language model. In Proceedings of the
11th Annual Conference of the International Speech Communication Association
(INTERSPEECH 2010), volume 2010, pages 1045–1048. International Speech
Communication Association, 2010.

[35] Tomas Mikolov and Geoffrey Zweig. Context dependent recurrent neural network
language model. In SLT, pages 234–239. IEEE, 2012.

[36] Francis C Moon. Chaotic and fractal dynamics: introduction for applied scientists
and engineers. John Wiley & Sons, 2008.

79

[37] Oksana Anatolevna Muzyka. Bifurkatsii v prirode i obshchestve: yestestvenno
nauchnyy i sotsiosinergeticheskiy aspect (bifurcations in nature and society:
the natural scientific and sociosynergetic aspect). Sovremennyye naukoyemkiye
tekhnologii - Modern high technology, 1:87–91, 2011. in Russian.

[38] Alan Newell, Stefan Langer, and Marianne Hickey. The rÔle of natural language
processing in alternative and augmentative communication. Nat. Lang. Eng.,
4(1):1–16, March 1998.

[39] Edward Ott. Chaos in Dynamical Systems. Cambridge University Press, 2
edition, 2002.

[40] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of train-
ing recurrent neural networks. In Sanjoy Dasgupta and David McAllester, ed-
itors, Proceedings of the 30th International Conference on Machine Learning,
volume 28 of Proceedings of Machine Learning Research, pages 1310–1318, At-
lanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[41] Ofir Press and Lior Wolf. Using the output embedding to improve language
models. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers, pages 157–
163. Association for Computational Linguistics, 2017.

[42] David Ruelle and Floris Takens. On the nature of turbulence. Les rencontres
physiciens-mathématiciens de Strasbourg-RCP25, 12:1–44, 1971.

[43] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2 edition, 2003.

[44] Leonid Pavlovich Shilnikov. Some cases of generation of period motions from
singular trajectories. Matematicheskii Sbornik, 103(4):443–466, 1963.

[45] Leonid Pavlovich Shilnikov. A case of the existence of a denumerable set of pe-
riodic motions. In Doklady Akademii Nauk, volume 160, pages 558–561. Russian
Academy of Sciences, 1965.

[46] Shodhganga. Bifurcation and lyapunov exponent of a chaotic cubic
map. http://shodhganga.inflibnet.ac.in/bitstream/10603/70172/7/07_
chapter202.pdf. Accessed: 2019-02-10.

[47] Yakov Grigor’evich Sinai. On the foundations of the ergodic hypothesis for a
dynamical system of statistical mechanics. In Doklady Akademii Nauk, volume
153(6), pages 1261–1264. Russian Academy of Sciences, 1963.

[48] Yakov Grigor’evich Sinai. Dynamical systems with elastic reflections. ergodic
properties of dispersing billiards. Uspekhi Matematicheskikh Nauk, 25(2):141–
192, 1970.

80

http://shodhganga.inflibnet.ac.in/bitstream/10603/70172/7/07_chapter 202.pdf
http://shodhganga.inflibnet.ac.in/bitstream/10603/70172/7/07_chapter 202.pdf

[49] S SMALE. Diffeomorphisms with many periodic points. differential and combi-
natorial topology, pages 63–80, 1963.

[50] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.

[51] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep
networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28, pages 2377–
2385. Curran Associates, Inc., 2015.

[52] Rupesh Kumar Srivastava, Bas R Steunebrink, and Jürgen Schmidhuber. First
experiments with powerplay. Neural Networks, 41:130–136, 2013.

[53] Steven H Strogatz. Nonlinear Dynamics and Chaos with Student Solutions Man-
ual: With Applications to Physics, Biology, Chemistry, and Engineering. CRC
Press, 2018.

[54] David Sussillo and Omri Barak. Opening the black box: Low-dimensional dy-
namics in high-dimensional recurrent neural networks. Neural Computation,
25(3):626–649, 2013. PMID: 23272922.

[55] Pavlo Teslenko. Evolutionary theory and synergetics in project management.
Project Management and Production Development, 4 (36), 2010. in Russian.

[56] Edward William Daniel Whittaker. Statistical language modelling for automatic
speech recognition of Russian and English. Doctoral dissertation, University of
Cambridge, 2000.

[57] Alan Wolf, Jack B. Swift, Harry L. Swinney, and John A. Vastano. Determin-
ing lyapunov exponents from a time series. Physica D: Nonlinear Phenomena,
16(3):285 – 317, 1985.

[58] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network
regularization. CoRR, abs/1409.2329, 2014.

[59] Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutník, and Jürgen Schmid-
huber. Recurrent highway networks. In Doina Precup and Yee Whye Teh, ed-
itors, Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 4189–4198, In-
ternational Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[60] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, 2017.

81

