

INNOVATIVE SOLUTIONS FOR LITHIUM ION BATTERY FUTURE DEVELOPMENT

Rachid Yazami

21/8/2019

Outline

- A brief introduction to entropymetry
- Applications of entropymetry
- Fast charging methods
 - "Natural charging", Non-linear Volammetry (NLV)
 - "Cascade Pulse Charging" (CPC)
- Summary

A brief introduction to entropymetry

• Basic equations:

$$\Delta G(x) = \Delta H(x) - T\Delta S(x)$$

$$\Delta G(x) = -nFE^{0}(x)$$

$$E^{0}(x) = \text{OCV at any SOC 'x'}$$

$$\Delta S = nF \frac{\partial E^{0}(x)}{\partial T}$$

$$\Delta H = -nF(E^{0} - T \frac{\partial E^{0}(x)}{\partial T})$$

21/8/2019

ETMS: BA-2000 Equipment

Entropymetry in 3 steps

Applications of entropymetry

1. Chemistry recognition, QC

The Universal Battery SOC Law

 $SOC = \alpha + \beta \Delta S + \gamma \Delta H$

• This law applies to all tested chemistries, including

LIB, NiCd, NiMH,
 Li-MnO₂, Li-FeS₂
 Alkaline Zn/MnO2 and Zn/C cells

• α , β and γ depend on the cell' chemistry and on SOH

1. Alkaline Zn/MnO₂ cells

SOC- Δ S- Δ H 3D plots

21/8/2019

SOC simulation

2. ZINC /CARBON DRY CELL

SOC simulation

13

3. Lithium (primary) cells a. Li/MnO₂ cells

3D plots

b. Li-FeS₂ cells

2. RECHARGEABLE CELLS

a. Lithium Ion Batteries

SOC- Δ S- Δ H 3D plots

21/8/2019

SOC Simulation

SOC= α + $\beta \Delta$ **S** + $\gamma \Delta$ **H**

19

Linear relationship applies to all LIB chemistries

SOC fitting parameters for # LIBs

Battery #	α	β	γ	R ²
1	-471.6797	0.4299	-1.4449	0.989
2	-422.2317	0.7183	-1.3116	0.996
3	-438.1669	0.3607	-1.3688	0.991
4	-445.4292	0.6906	-1.3734	0.994
5	-423.5349	0.4894	-1.3335	0.994

b. Ni-MH

SOC- Δ S- Δ H 3D plots Ni-MH

SOC Simulation

Battery #	α	β γ		R ²	
1	-503.7	8.5	-3.8	0.85	

21/8/2019

24

α , β and γ depend on SOH

Cycle # (55 ºC, 1C-rate)	SOH (%)	α	β	γ	R ²
0	100	-523.56	0.31312	-1.6159	
50	97.7	-453.82	0.08161	-1.4162	
100	92.9	-438.82	0.15153	-1.3736	
150	91.5	-417.76	0.024905	-1.3119	0.00.
200	89.5	-414.18	0.081835	-1.3004	0.99+
50	88.5	-432.2	0.15816	-1.3561	
300	86.6	-390.2	0.095205	-1.2439	
350	84.7	-434.42	0.18258	-1.3638	

21/8/2019

Internal short-circuit model for thermal runaway

y a court-circuit.

La membrane fond au contact des points chauds de la cathode

Internal Short-Circuit Detection

21/8/2019

Enthalpy vs OCV (Average)

Open Circuit Voltage (V)

Entropy vs OCV (Average)

Open Circuit Voltage (V)

The Imbedded Chip for online SOC, SOH and SOS online assessment

5. Fast charging: beyond CCCV

a. Non-linear voltammetry (NLV)

Solving a differential equation:

$$\boldsymbol{\phi}\left(\boldsymbol{i},\boldsymbol{\nu},\frac{\partial \boldsymbol{i}}{\partial \boldsymbol{t}},\frac{\partial \boldsymbol{\nu}}{\partial \boldsymbol{t}},\boldsymbol{\mathrm{SOH}}\right) = \boldsymbol{0}$$

Typical current, voltage, capacity profiles during NLV charging

Charge-discharge profiles

Charge profile may be different at each cycle

-Voltage ----Current

Intermittent NLV charge profile

— Voltage(V) —— Current(A)

Temperature Profile

5. Fast charging: CPC

b. Cascade Pulse Charge

CPC in 10 min: voltage profile

Introduction: electrode processes in LIB

Theoretical lithium composition in anode and cathode in a C/LCO cell

	Charge state	Discharge state	Capacity (mAh/g)
Graphite anode	LiC ₆	Li ₀ C ₆	372
LCO cathode	Li _{0.5} CoO ₂	LiCoO ₂	138

Ideal cell reaction:

 $0.5Li_0C_6 + LiCoO_2 \leftrightarrow 0.5LiC_6 + Li_{0.5}CoO_2$

Theoretical lithium composition in anode and cathode vs. SOC of a C/LCO cell

X=SOC of the full cell, $0 \le X \le 100\%; \ 0 \le x = \frac{X}{100} \le 1$

- Anode composition: $Li_{x}C_{6}$
- Cathode composition: $Li_{1-\frac{x}{2}}CoO_2$

Question: What is the actual Li composition in anode and cathode vs. SOC in a real cell?

- Anode composition: $Li_{f(X)}C_6$,
- Cathode composition: $Li_{g(X)}MO_2$,

What is f(X)?, g(X)?

A very simple question, NO EXISTING ANSWER TODAY !

Why no answer?

• There are <u>4 unknowns</u>

 x_{min}, x_{max} and y_{min}, y_{max}

- Cathode: $x_{min} < g(X) < x_{max}$ in $Li_x MO_2$ Anode: $y_{min} < f(X) < y_{max}$ in $Li_v C_6$
- We need <u>4 independent equations</u>
 - > OCV vs. SOC gives 1 equation
 - > 3 equations are missing

Approach

At any SOC 'X' of a full cell, the following equations apply:

Free energy Open-circuit potential $E_0(cell) = E_0^+ - E_0^-$ Entropy Enthalpy

 $\Delta G(cell) = \Delta G^+ - \Delta G^ \Delta S(cell) = \Delta S^+ - \Delta S^ \Delta H(cell) = \Delta H^+ - \Delta H^-$

Measure OCP, entropy and enthalpy in half-cells and in a full cell

- Fit OCP, entropy and enthalpy data vs. SOC
- Fit entropy and enthalpy data vs. OCP
 - \succ Determine α_{ca} , β_{ca} , α_{an} , β_{an} in the 2 equations

$$g(X)=x = \alpha_{ca}X + \beta_{ca}$$

$$f(X)=y = \alpha_{an}X + \beta_{an}$$
$$x_{min}, x_{max}, y_{min}, y_{max}$$

1. OCP mismatch

2. Entropy profiles

2. Entropy mismatch

3. Enthalpy profiles

3. Enthalpy mismatch

Mismatch reduction by iterative computation

Mismatch reduction in aged cells (300#, 55 °C)

Computed parameters for fresh and aged cells

Sam	ple	Fresh	HT100	HT200	HT300	RT100	RT300	RT500
Capacity (mAh/cm²)	Cathode	2.28	2.11	1.94	1.99	2.31	2.28	2.18
	Anode	1.84	2.23	1.91	2.05	2.11	1.94	1.99
Fitting parameter S	α_{c}	0.91	1.32	1.23	1.00	1.24	1.08	1.10
	β _c	9.49	-19.15	-19.80	1.17	-10.19	0.71	-6.25
	α _a	0.82	0.95	1.12	0.78	1.15	1.01	0.92
	β_a	-1.75	-14.96	-24.18	-20.86	-32.06	-29.18	-1.53
Calculated b parameter s c d	а	0.41	0.44	0.37	0.31	0.47	0.40	0.38
	b	0.88	0.98	0.98	0.92	0.96	0.92	0.94
	С	0.39	0.55	0.56	0.41	0.63	0.51	0.48
	d	0.10	0.12	0.06	0.23	0.10	0.14	0.05
Lithium compositio n range	x _{max}	0.88	0.98	0.98	0.92	0.96	0.92	0.94
	<i>x_{min}</i>	0.47	0.54	0.61	0.60	0.49	0.52	0.56
	y_{max}	0.49	0.67	0.62	0.64	0.73	0.65	0.53
	Ymin	0.10	0.12	0.06	0.23	0.10	0.14	0.05

Lithium composition ranges in anode and cathode

Cell Regeneration

Summary

 A new method for accurate assessment of lithium composition in anode and cathode has been developed for the first time

• The method is based on ETM + data computation to reduce mismatch between full-cell and half-cells data

- Anode and cathode were found to operate with a relatively low utilization rate ~50-75%
- The method can be used to improve battery performances during manufacturing

 Anode and cathode performance decay differently according to ageing conditions

The Smart CHIP

• One Chip for each fast charger

Artificial Intelligence Technology

Connected Objects A Brain in Each Charger

Summary

- Entropymetry addresses major battery issues including
 - Chemistry, SOC, SOH and SOS
- Two ultra-fast charging methods have been developed:
 - NLV (natural charging in ~ 20 min)
 - CPC (possibly in ~10 min)
- These new methods are safe and allow for long cycle life (>1300#)

21/8/2019

Thank you

ALL DE LE DE

Rachid@kvi-battery.com