
Copula functions in Credit Metrics’ VaR estimation

Capstone Project by Shynggys Magzanov

Supervisor: Dr.Dongming Wei, Second Reader: Dr.Zhenisbek Assylbekov

Abstract

Credit risk modelling of a portfolio of exposures is essential part of activity of every financial institution. However this

procedure is complicated since the joint behavior of chosen exposures must be known. In this paper Value at Risk percentile

of the portfolio consisting of three corporate bonds issued by Lukoil, Gazprom and Norilsk Nickel was estimated at three

different significance levels within the frame of Credit Metrics approach proposed by J.P.Morgan. Following the Asset value

model, Monte-Carlo simulations were performed to obtain possible portfolio values in one year time horizon. Where the joint

distribution of asset returns of three companies was constructed by means of pair-copula construction method discussed in Aas,

Czado, Frigessi,Bakken (2009). Results reveal that for particular portfolio of bonds at 90%, 95% and 99% confidence levels

the value of our portfolio will not fall below 2057.915 ,1798.117 and 1375.011 dollars respectively.

1. Introduction

Credit Metrics is a methodology of estimating possible changes in value of the portfolio of exposures

provided by J.P.Morgan [3]. The type of risk under the consideration is the one caused by the change

in a credit rating of the issuer of the financial instrument. Since the subject of the interest is the whole

portfolio value, the joint behavior of the exposures must be analyzed and properly modelled. Conven-

tional Credit Metrics’ approach is based on the assumption that asset returns of each issuer company

is univariate Normally distributed and their joint behavior is modelled by multivariate Gaussian distri-

bution. Being relatively easy to apply, given assumption underestimates possible risks due to inability

of the model to properly describe the dependence structure between companies’ asset returns. Within

the frame of the Credit Metrics’ Asset value model, the main objective of the project is to capture the

dependence structure in a portfolio of bonds issued by Lukoil, Gazprom and Norilsk Nickel by means of

Copula functions. Copula functions are powerful tools that were discovered by Sklar back in 1959, but

found their application in finance only by the late 90s of the last century. Copulas are used in modelling a

multivariate distributions given margins, and are useful in separating the information about margins from

their dependence structure [2]. Before getting started with portfolio analysis, this paper gives a general

overview of Copula theory, conventional dependence measures and method of pair-copula construction.
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2. Theory

2.1 Copulas

2.1.1. Concept of Copula and properties of Copulas

Every joint distribution function of random variables contains information about its margins and de-

pendence structure between them. Concept of Copula comes in handy when it is needed to isolate that

dependence structure from margins. Copula is a function that links univariate margins and their joint

multivariate distributions. Let us consider the properties that a function must satisfy in order to be a

copula.

Definition 2.1. A d-dimensional copula is a distribution function on [0, 1]d with standard uniform

marginal distributions. C is a mapping such that C : [0, 1]d → [0, 1] and satisfying the following

properties:

1. C(u1, ..., ud) is increasing in each component ui .

2. C(1, ..., 1, ui, 1, ..., 1) = ui for all i ∈ {1, ..., d}, ui ∈ [0, 1]

3. For all (a1, ..., ad), (b1, ..., bd) ∈ [0, 1]d with ai 6 bi we have

2∑
i1=1

...
2∑

id=1

(−1)i1+...+idC(u1i1 , ..., udid) ≥ 0, (1)

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , d}.[1]

It turns out that for every copula function there are upper and lower bounds, called Frechet-Hoeffding

bounds, that are described in the following theorem.

Theorem 2.2. For every copula C(u1, ..., ud) there are upper and lower bounds [1]:

max

{
d∑
i=1

ui + 1− d, 0

}
6 C(u) 6 min1≤i≤d{ui} (2)

However, it can be proven that the concept of the lower bound cannot be extended to dimensions higher

than two.[1]

The following theorem is a fundamental building block that states the existence of copula functions and

allows one to construct joint distribution function using copulas and margins.

Theorem 2.3.(Sklar’s Theorem)Let F be a joint distribution function with margins F1, ..., Fd . Then

there exists a copula C : [0, 1]d → [0, 1] such that, for all x1, ..., xd in R̄ = [−∞,∞],

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)). (3)
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If the margins are continuous, then C is unique; otherwise C is uniquely determined on RanF1 ×
RanF2× ...×RanFd , whereRanFi = Fi(R) denotes the range of Fi . Conversely, ifC is a copula and

F1, ..., Fd are univariate distribution functions, then the function F defined in (3) is a joint distribution

function with margins F1, ..., Fd.

Proposition 2.4.(Invariance Principle) Let (X1, ..., Xd) be a random vector with continuous margins

and copula C and let T1, ..., Td be strictly increasing functions. Then (T1(X1), ..., Td(Xd)) also has

copula C.

Sklar’s theorem along with Proposition 2.4 and Probability integral and Quantile transformations yields

a powerful result making it possible to construct a multivariate distribution given a vector of any contin-

uous random variables.

2.1.2. Families of Copulas

There exist different types of Copulas that can be classified into three major groups: Fundamental cop-

ulas, Implicit and Explicit copulas. Special dependence structures as independence or comonotonicity

are represented by so called fundamental copulas. Copulas that are derived from known multivariate

distributions but not having an explicit closed-form expressions are known as Implicit copulas. Whereas

in contrast, copulas that do posses simple closed-form are Explicit copulas[1].

Fundamental Copulas

The independence copula, as the name suggests, describes independence of random variables and has a

form:

Π(u1, ..., ud) =

d∏
i=1

ui (4)

Which means that random variables U1, ..., Ud are independent if and only if their Copula is Π. Comono-

tonicity copula is the upper bound of every copula function mentioned in equation (2). It represents per-

fectly positive dependence structure between random variables. While perfectly negative dependence

structure is described by the lower Frechet bound in (2) and called countermonotonicity copula.

Implicit Copulas

One of the most popular representatives of implicit copulas is Gaussian copula, which was introduced in

valuation of financial derivatives as Credit Swaps, First-to-Default Contracts by Li (1999). Being widely

adopted by finance professionals due to its simplicity before the Financial Crisis in 2008, later it was

accused as “The formula that killed Wall Street” by Felix Salmon. General representation of Gaussian

3



copula is as follows:

CGaP (u) = P (Φ(X1) ≤ u1, ...,Φ(Xd) ≤ ud) = ΦP (Φ−1(u1), ...,Φ
−1(ud)) (5)

WhereΦP is a standard univariate normal distribution function, and ΦP stands for the joint distribution

function of the vector of random variables X ∼ Nd(0, P ).

As it was proven by Li (1999), Asset Value method of the Credit Metrics approach implicitly uses

Gaussian Copula in it’s correlation formula, even though the Credit Metrics Technical Document does

not refer to the concept of copula.

Another member of the given family is a d-dimensional t Copula,expressed as

Ctν,P (u) = tν,P (t−1ν (u1), ..., t
−1
ν (ud)) (6)

tν in equation (6) represents standard univariate t distribution, while the joint distribution function of the

vector X ∼ td(ν, 0, P ) is denoted as tν,P .

According to Mashal & Zeevi (2002) and Breymann (2003) when it comes to modelling multivariate

joint distribution of financial returns data, t copula outperforms Gaussian copula. This is partially related

to the ability of the t copula to capture phenomena of extreme values, which is a prevalent occurrence in

financial return data [1].

Explicit Copulas

As an illustration of explicit copulas, representatives of Archimedean copulas, Gumbel and Clayton, are

chosen.

Bivariate Gumbel copula

CGuθ (u1, u2) = exp{−((− lnu1)
θ + (− lnu2)

θ)
1
θ }, 1 ≤ θ <∞ (7)

Bivariate Clayton copula

CClθ (u1, u2) = (u−θ1 + u−θ2 − 1)−
1
θ , 0 < θ <∞ (8)

For further disscussion of Copula families the readers are encouraged to refer to Nelsen (1999).

2.2. Measures of Dependence

In a modern finance theory the concept of correlation is of high importance. However, Embrechts,

McNeil and Straumann (1999) argue that this consept is a source of confusion in that frame. Financial

theory refers to the term “correlation” to describe any type of dependence between random varibles.

When in fact, correlation is a mearuse of a particular dependence structure. While it might be a decent
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measure of dependence when risks are eliptically distributed, this will not be true in realm where risks

do not follow elliptical or spherical distributions [5]. Section 2.2 concentrates on types of dependence

measures, their limitations and relationships with copula functions.

2.2.1. Linear correlation

Definition 2.5. Given random variables X and Y with finite variances, the linear correlation coefficient

is defined as

r =
Cov[X,Y ]√

V ar(X)V ar(Y )
(9)

Where Covariance between two random variables is Cov[X,Y ] = E[XY ]− E[X]E[Y ].

As the name suggests, Pearson’s linear correlation coefficient measures linear dependence between ran-

dom variables. −1 ≤ r[X,Y ] ≤ 1, where -1 corresponds to the perfect negative correlation and 1

represents perfect positive correlation. However, there are some limitations of the given metric:

• Random variables must follow Normal distribution for the linear correlation coefficient to be a

reasonable measure of dependence.

• It can be noticed from eq.(9) that linear correlation coefficient requires finite variances of consid-

ered random variables. This may cause a problem when dealing with heavy-tailed distributions

[5].

• Independence of random variables imply zero linear correlation between them, but the converse

is not necessarily true.

• Even though it is invariant under strictly increasing linear transformations, it is not invariant under

non-linear strictly increasing transformations[5].

2.2.2. Rank correlation coefficients

The two widely used nonparametric measures of association are Kendall’s tau and Spearman’s rho. Both

of them are measures of concordance between two continuous random variables X and Y. Kendall’s tau

is represented as:

τ = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0] (10)

In the following theorem Nelsen (1999) represents the way in which Kendall’s tau depends only on

Copula function.

Theorem 2.6. Let X and Y be continuous random variables whose copula is C. Then the population

version of Kendall’s tau for X and Y is given by

τX,Y = 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1 (11)

In case of Spearman’s rho consider three independent random vectors (X1, Y1),(X2, Y2), and (X3, Y3).
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Then Spearman’s rho is defined as:

ρX,Y = 3(P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]) (12)

In the same fassion as Theorem 2.6, it can be shown that

ρX,Y = 12

∫ 1

0

∫ 1

0
C(u, v)dudv − 3 (13)

Distinction between Kendall’s tau and Spearman’s rho comes from dependence structure that they mea-

sure. While the first one is a metric of average likelihood ratio dependence, the latter one focuses on

measuring average quadrant dependence [2].

2.2.3. Coefficients of Tail dependence

If the subject of concern is the joint behavior of two random variables in the tails of the distributions,

then coefficients of upper and lower tail dependence must be analyzed.

Definition 2.7. Let X and Y be random variables with distribution functions F1 and F2. The coefficient

of upper tail dependence of X and Y is

lim
α→1−

P [Y > F−12 (α)|X > F−11 (α)] = λU (14)

provided a limit λ ∈ [0; 1] exists. If λ ∈ (0; 1], X and Y are said to be asymptotically dependent (in the

upper tail); if λ = 0 they are asymptotically independent.Similarly, the lower tail dependence is

lim
α→0+

P [Y ≤ F−12 (α)|X ≤ F−11 (α)] = λL (15)

Nelsen (1999) shows the relationship between tail dependence coefficients and copulas in the Theorem

2.8.

Theorem 2.8. Consider X,Y, F1 and F2 from Definition 2.7. Given the existence of upper and lower

limits,

λU = 2− lim
α→1−

1− C(α, α)

1− α
(16)

λL = lim
α→0+

C(α, α)

α
(17)

From equations (11),(13),(16) and (17) it can be seen that given a copula function, one can deduce

different dependence measures.
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2.3 Pair-Copula Construction

Modelling bivariate distribution by means of copulas is relatively easy task, since there are a lot of

work devoted to that topic. However, things get complicated as the dimension of the distribution gets

higher. This project makes use of the hierarchial model called Pair-Copula construction, described

in Aas, Czado, Frigessi, Bakken (2009). The main idea is to decompose a multivariate density into

blocks of bivariate pair copulas, applied on original variables and on their conditional and unconditional

distribution functions [6]. Details of algorithms described below can be found in [6].

Let X = (X1, ..., Xn) be a vector of random variables with a joint pdf f(x1, ..., xn). Then this density

can be expressed as

f(x1, ..., xn) = fn(xn)f(xn−1|xn)...f(x1|x2, ..., xn) (18)

From Sklar’s theorem (eq.(3)) for absolutely continuous F with strictly increasing, continuous marginal

CDFs F1, ..., Fn we obtain

f(x1, ..., xn) = c1...n{F1(x1), ..., Fn(xn)}f1(x1)...fn(xn) (19)

where c1...n - n-variate copula density. The proof of (19) for the bivariate case was taken from Meucci

(2011). Consider the same random vector of continuous random variables X ∼ F , where Xi ∼ Fi for

i = 1, ..., n. By the Definition of Copula

FU(u) = P{U1 ≤ u1, ..., Un ≤ un} = P{F1(X1) ≤ u1, ..., Fn(Xn) ≤ un} (20)

= P{X1 ≤ F−11 (u1), ..., Xn ≤ F−1n (un)} = F (F−11 (u1), ..., F
−1
n (un))

By differentiating both sides, one can obtain Sklar’s Theorem (for bivariate case the result is provided

below)

fU(u1, u2) = ∂2u1,u2FU(u1, u2) = ∂2u1,u2F (F−11 (u1), F
−1
2 (u2)) (21)

= ∂2x1,x2F (F−11 (u1), F
−1
2 (u2))du1F

−1
1 (u1)du2F

−1
2 (u2)

=
∂2x1,x2F (F−11 (u1), F

−1
2 (u2))

dx1F1(F
−1
1 (u1))dx2F2(F

−1
2 (u2))

=
f(F−11 (u1), F

−1
2 (u2))

f1(F
−1
1 (u1))f2(F

−1
2 (u2))

By rearranging the equation (21) the following equality is obtained:

f(F−11 (u1), F
−1
2 (u2)) = fU(u1, u2) · f1(F−11 (u1)) · f2(F−12 (u2)) (22)

where fU(u1, u2) is the Copula density.
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Every conditional density term in (18) can be decomposed as follows:

f(x|v) = cxvj |v−j{F (x|v−j), F (vj |v−j)}f(x|v−j), (23)

where v is a d-dimansional vector, vj is a component of v, and v−j represents a vector v without j-th

component. To conclude, according to Joe (1996), Bedford and Cooke (2001b,2002) cited in [6], a

multivariate distribution can be decomposed as a product of pair-copulas, acting on distinct conditional

PDFs under appropriate regularity conditions.

As it can be seen from equation(23) pair-copula construction model requires marginal conditional CDFs.

Joe (1996) concluded that for ∀ j,

F (x|v) =
∂Cx,vj |v−j{F (x|v−j), F (vj |v−j)}

∂F (vj |v−j)
(24)

Where Cij|k in equation (24) represents bivariate copula distribution.

For univariate v, expression (24) is simplified as

F (x|v) =
∂Cxv{F (x), F (v)}

∂F (v)
(25)

When x and v are uniform

h(x, v,Θ) = F (x|v) =
∂Cx,v(x, v,Θ)

∂v
(26)

Where Θ - the set of parameters for the copula of the joint distribution of x and v.

For high-dimensional distributions there are number of distinct ways of possible pair-copula construc-

tions. In order to arrange them Bedford and Cooke (2001b,2002) came up with a graphical model called

the regular vine [6]. In this project the main subjects of concern are two special cases: the C- and

D-vines.

In D-vine multidimensional distribution f(x1, ..., xn) is decomposed by the following expression:

n∏
k=1

f(xk)
n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,...,i+j−1{F (xi|xi+1, ..., xi+j−1), F (xi+j |xi+1, ..., xi+j−1)} (27)

Where index j identifies the trees, and index i identifies the edges in the tree.

While C-vine decomposition is

n∏
k=1

f(xk)

n−1∏
j=1

n−j∏
i=1

cj,j+i|1,...,j−1{F (xj |x1, ..., xj−1), F (xj+i|x1, ..., xj−1)} (28)

In triviriate case, like the one to be considered in this project, it can be easily deduced that C- and D-vine

decompositions are the same
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f(x1, x2, x3) = f1(x1) · f2(x2) · f3(x3)

·c12{F1(x1), F2(x2)} · c23{F2(x2), F3(x3))}

·c13|2{F (x1|x2), F (x3|x2)}

(29)

It may be noticed that in (29) there are only three distinct decompositions, even though 6 permutations

are possible.

Estimation of parameters for a C-vine

Since this project is focused on trivariate case, it is sufficient to mention parameter estimation only for

the C-vine. For the C-vine, the log-likelihood function is expressed as

n−1∑
j=1

n−j∑
i=1

T∑
t=1

log[cj,j+i|1,...,j−1{F (xj,t|x1,t, ..., xj−1,t), F (xj+i,t|x1,t, ..., xj−1,t)}] (30)

Note that in each sum the number of parameters to be estimated depends on the type of copula that was

chosen.

Since the log-likelihood needs to be numerically maximized over all parameters, there is an algorithm

for determining the starting values of optimization in Aas, Czado, Frigessi, Bakken (2006).

1. Estimation of the parameters of the copula in the first tree from the data.

2. Computing conditional distribution functions for the second tree using previously found copula

parameters from tree 1 and the h-function defined in equation (26).

3. Estimation of the parameters of the copula in the second tree from the observations in step 2.

4. Computing observations for the third tree using previously found copula parameters from tree 2

and the h-function.

5. Estimation of the parameters of the copula in the third tree from the observations in step 4.

6. etc.

It is significant to mention that since the marginal distributions are unknown, parameter estimation must

rely on the normalized ranks of the data. Implying that it is actually a pseudo-likelihood which is being

maximized [6].

3. Application

The portfolio whose Value at Risk in one year time horizon is to be analyzed consists of corporate

bonds issued by three Russian companies: Lukoil oil company, Gazprom and Norilsk Nickel. Table 1

represents detailed information about the chosen portfolio.
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Bond Issuer Face value Coupon(%) Years till Maturity S&P Rating Seniority

1 LUKOIL 1000 4.750 7 years BBB Senior Unsecured
2 GAZPROM 1000 4.950 3 years BBB- Senior Unsecured
3 NORNICKEL 1000 6.625 3 years BBB- Senior Unsecured

Table 1: Bond Portfolio

As it was mentioned earlier, an algorithm to estimate VaR of the portfolio is based on Credit Metrics

approach provided by J.P.Morgan [3]. Credit Migration Likelihood matrix and the Table of Recovery

rates in case of default were provided by National Rating Agency of Russia and Moody’s Investors

Service respectively.(Figure 3 and Table 6) While one-year forward zero rates,which can be found in

Table 7, were randomly generated from beta distribution by shifting parameters. According to Credit

migration liklihood matrix, in one year credit ratings of our companies might migrate to 23 possible

states, and therefore the value of the portfolio might change. Twenty three possible present values

of each of the 3 bonds in year 2020 were calculated and discounted one year back, so that they are

represented in today’s money. Results are provided in Table 8. Note that there are no values of bonds in

case of default, those are calculated by means of randomly generated recovery rates by using values from

Table 6 as parameters of the beta distribution. In order to analyze the joint credit migration behavior of

our portfolio of bonds, Asset value model of Credit Metrics was applied. According to this model, the

process that drives change in credit rating of the company is it’s asset value. The assumption is that there

are certain thresholds of asset returns so that whenever asset value of a company in one year crosses that

threshold, credit rating of the firm changes. But to find those thresholds for each company it is required

to model the individual distributions of asset returns of every firm. For that purpose, stock returns of

Lukoil, Gazprom and Norilsk Nickel were analyzed. Daily closing prices of stocks from 03.01.2006 to

22.02.2019 were provided by Yahoo Finance.

3.1. Determining stock returns distribution

Spearman’s linear correlation coefficients reveal positive correlation between each pair of log-returns.

Magnitudes of linear correlations are as follows: 0.8131511 between Lukoil and Gazprom, 0.6947848

between Lukoil and Norilsk Nickel, and 0.6998833 between Gazprom and Norilsk Nickel.

Table 2 contains some basic statistical information about log-returns of each company.

Company Mean St.dev Skewness Kurtosis

LUKOIL 0.0000966 0.0277087 -0.9949134 21.57685
GAZPROM -0.0003492 0.02867866 -0.02841426 9.503326
NORNICKEL 0.0002536 0.03418533 -0.4783684 26.74476

Table 2: Statistics of log-returns

It can be noticed that log-returns of Lukoil and Norilsk Nickel have positive mean, while returns of

Gazprom display negative mean. All the returns are left tailed and posses large kurtosis, which is a clear

implication of non-normality of our log-returns. Small p-values of Jarque-Bera test for normality of our

10



log-returns confirm that. (Table 9)

The next step was to check if the log-returns posses serial correlation. By means of Ljung-Box test

performed on squared log-returns for 20 lags it was concluded that all 3 log-return series do posses serial

correlation at 1% significance level. Insted of performing a test for stationarity of given time series, it

was decided to directly fit ARIMA model because it can make non-stationary time series stationary

through differencing, as a result providing so called Integrated time series. It is a common appearance

that the variance of stock return time series changes due to trends or seasonalities. Such variability is

called Heteroscedasticity [1]. And most of the time Heteroscedasticity appears to be serially correlated

and therefore, conditional on periods of increased variance. That is why such time series are referred as

conditionally heteroscedastic. In order to capture these trends GARCH model was fitted. Parameters of

ARIMA(p,d,q)-GARCH(m,n) are estimated by numerically optimizing the likelihood function. Number

of lags p,d,q to be used in a model are determined by fitting ARIMA(p,d,q) models where p and q ranged

from 1 to 4, and d ranged from 0 to 2. The best fit was determined by AIC criterion. On the residuals of

appropriate ARIMA models, GARCH models were fitted using “tseries” library in R. As a result models

in Table 3 were chosen.

Company ARIMA(p,d,q)-GARCH(m,n)

LUKOIL ARIMA(4,1,3)-GARCH(1,1)
GAZPROM ARIMA(3,0,4)-GARCH(1,1)
NORNICKEL ARIMA(4,1,3)-GARCH(1,1)

Table 3: ARIMA-GARCH model fit

Plots of ACF of residuals and PACF of squared residuals can be found in Figures 4,5,6. Furthermore,

Ljung-Box test for serial independence, which was performed on the residuals of ARIMA-GARCH

models, resulted in p-values 0.9652 for Lukoil, 0.9944 for Gazprom and 0.4609 for Norilsk Nickel,

meaning that at 1% significance level residuals are serially independent.

3.2 Finding asset return thresholds

Another huge assumption made by Credit Metrics approach is that company’s asset returns are normally

distributed and when portfolio consists of bonds issued by multiple companies, joint asset returns are

multivariate normally distributed. In order to check the validity of that assumption, Normal distribution

and Student t distributions were fitted to residuals obtained earlier. By comparing AIC and BIC criteria of

both fits, it was found that t distribution describes returns data slightly better than Normal distribution for

all 3 companies. Results of those fits and their corresponding parameters can be found in Tables 11,12.

Then, using CDFs of these t distributions, asset return thresholds were calculated. As an illustration, let

us consider thresholds of Lukoil. Let R denote the stock returns of Lukoil. From Table 1 it is evident

that Lukoil is currently rated as BBB. To visualize the problem, consider the following Figure.
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Figure 1: Lukoil stock log-return thresholds

The event of default of Lukoil equivalent to saying that log-returns of the firm’s stocks fell below the

default threshold. But since the probability of BBB rated company migrating to other ratings is provided

by Credit Migration Likelihood matrix (Figure 3), the thresholds can be computed as follows:

Pr(Default) = P (R ≤ tDef ) = Ft(tDef ) = 0.1736

tDef = F−1t (0.1736) = −0.82389251

Pr(Downgrade to C-) = P (tDef < R ≤ tC−) =

= Ft(tC−)− Ft(tDef ) = 0.0099

tC− = F−1t (0.0099 + Ft(tDef )) = −0.78751139

...

(31)

In the same fassion thresholds for all 22 credit ratings can be found for all 3 companies. Note that there

is no need to find a threshold for AAA rating, since every log-return above the AA+ threshold will lead

to the upgrade of a company to AAA. Asset return thresholds for all companies can be found in Tables

13,14,15. Now in order to perform Monte-Carlo simulations of possible porfolio values, it was needed

to define joint behavoir of firms’ credit migration. To model that behavoir, appropriate Copula function

must be fitted.

3.2 Fitting Copula

Since the margins of Copula functions must be uniform on the unit interval, CDFs of respective t dis-

tributions were used to apply Probability integral transform to our log-returns so that they follow uni-

form distributions on [0,1]. With margins defined, the next step was to construct trivariate distribtuion

by means of pair-copula cunstruction method discussed above. “CDVineCondFit” function of “CD-
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VineCopulaConditional” package in R was exploited in order to fit bivariate copula to each pair accord-

ing to the algorithm explained above by conditioning Nornickel returns. The function is implemented

in such a way that it fits all 40 copulas (list of implemented copulas can be found in R documentation),

finds maximum likelihood estimators of parameters for each of them, and then chooses the best fit by

BIC crteria. Table 4 shows the structure of pair-copula construction.

Tree Edge Copula Par1 Par2 Kendall’s tau Upper t.d. Lower t.d.

1 3,1 t 0.62 7.51 0.42 0.19 0.19
3,2 t 0.63 6.99 0.43 0.21 0.21

2 2,1|3 t 0.59 8.33 0.40 0.15 0.15

Table 4: Joint distribution of 3 companies

It can be seen that there is a positive dependence between companies’ asset returns expressed in terms

of Kendall’s tau. t Copula is able to capture Tail dependence. Coefficients of Tail dependence in Table 4

reveal the extent to which companies’ asset returns are tend to jointly take extreme values.

3.3 Estimating VaR

3.3.1. Assigning Credit Ratings

With the purpose to perform Monte-Carlo simulation of possible portfolio values, 3305 random points

were simulated from the modelled joint distribution. Figure 7 depicts pairplots of simulated points,

where X1, X2 and X3 represent Lukoil, Gazprom and Nornickel respectively. Uniform marginal values

of those points were transformed back using inverse CDFs of previously found respective t distributions.

Then, those transformed randomly generated points represent possible asset returns of each company in

comovement with other firms. For each scenario of possible asset returns appropriate credit rating was

assigned to a firm based on which interval of return thresholds it lies. Let us continue with an illustration

for Lukoil. Let the simulated asset return of Lukoil be equal to -0.8. From the example displayed in

equation (35), it can be seen that -0.8 is in the interval (tDef , tC-). Therefore, in this particular possible

case Lukoil will be assigned a credit rating of “C-”. Following the same procedure, appropriate credit

ratings were assigned to all 3 companies.

3.3.2. Maping Credit Ratings to Bond values

As it was mentioned earlier, in 1 year time horizon the present values of the bonds might change de-

pending on what credit rating an issuer company will be assigned. Now the simulated credit ratings of

each company from the previous section were mapped to the appropriate bond values from the Table 8.

As an example let us consider the case of a particular realization where in 1 year Lukoil and Gazprom

downgraded to “CC”, while Norilsk Nickel upgraded to “A”. In this case, according to the Table 8, the

value of our portfolio is 624.9620+829.4743+984.2259 = 2438.6622 dollars.
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3.3.3. Estimating VaR

By the algoritghm described above possible portfolio values in 1 year time horizon were calculated for

all 3305 simulated scenarios. Figure 2 represents the histogram of possible values of our portfolio.

Figure 2: Histogram of possible portfolio values in one year time horizon

From here calculating VaR, which is an α-percentile, is a straightforward procedure, which amounts to

ordering values in an ascending order, and choosing αN-th element.

As a result, with 90%, 95% and 99% confidence it can be concluded that the value of the portfolio will

not fall below 2057.915, 1798.117 and 1375.011 dollars respectively. Alternatively, all the described

procedures were performed following the assumptions of conventional Credit Metrics approach that

asset returns follow Normal distribution and their joint behavior is modelled by multivariate Normal

distribution. Results are provided in Table 5.

α VaR using Copula VaR using normality

10 2057.915 2080.033
5 1798.117 1806.129
1 1375.011 1374.067

Table 5: Values at Risk

Even taking into account the randomness coming from calculating value of a bond in case of default,
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VaR of our portfolio calculated by following conventional Credit Metrics approach is more optimistic

in comparison with VaR computed using Copula approach. The difference might be insignificant in

particular case, but it potentially might cause problems when working with large portfolios.

4. Conclusion

In this project Copula functions were integrated to Credit Metrics methodology of credit risk modelling.

Following Asset value approach, dependence structure of joint credit rating movements was modelled

using asset returns of issuser companies. As it turned out t-distributions were best to describe asset re-

turns of our companies. By means of pair-copula constrution method results in Table 4 were yielded. It

turned out that asset returns of Lukoil, Gazprom and Norilsk Nickel posses positive dependence struc-

ture. Moreover, there are upper and lower tail dependence between each pair representing degree to

which returns might take extreme values jointly. From modelled joint distribution 3305 random points

were generated in order to perform Monte Carlo simulation of possible joint asset returns. Those values

were exploited to obtain possible values of our portfolio in one year. Then VaR percentile was estimated

at different confidence levels.

5. Suggestions for further research

As it was mentioned above, pair-copula construction is only one of the ways of modelling multidimen-

sional joint distribution by using copulas. So another method might be used to model joint distribution

of asset returns. Moreover, R implementation of pair-copula construction has 40 copula types to be fit-

ted, and the best fit was chosen by Goodnes-of-fit test. Thus, increasing number of implemented copulas

might result in a better fit. Concerning input parameters, real forward-zero rates can be used to make

a complete analysis of the portfolio. Additionally, a test can be performed to figure out whether the

differences of VaR’s found in Table 5 are statistically significant.
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7.Appendix

Figure 3: Credit Rating Migration Likelihood Table by National Rating Agency of Russia

Seniority Recovery Rate (%) st.dev

Senior Secured 62.3 15.4
Senior Unsecured 47.9 12.7
Subordinate 28 6.68

Table 6: Average Corporate Debt Recovery Rates Measured by Ultimate Recoveries, 1987-2017
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Category Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7

AAA 5.54 5.23 5.60 4.76 5.61 4.48 5.06
AA+ 6.23 5.65 5.93 6.22 5.67 5.93 4.78
AA 5.81 5.88 5.77 6.16 6.38 6.15 5.82
AA- 6.40 6.48 6.49 6.34 6.84 5.94 6.30
A+ 6.94 7.00 6.94 6.85 7.80 6.29 6.44
A 7.07 6.81 7.53 7.40 7.75 7.06 7.20
A- 7.16 8.08 6.95 7.61 6.94 7.36 7.31
BBB+ 8.21 7.54 7.34 7.85 8.08 8.09 7.43
BBB 8.21 8.58 7.97 7.62 8.38 7.95 8.82
BBB- 7.36 7.92 8.30 8.26 8.35 8.46 8.53
BB+ 9.41 9.72 9.04 9.30 8.76 8.78 9.29
BB 10.0 9.32 10.3 10.5 10.4 9.56 10.1
BB- 10.6 10.7 11.3 10.9 10.6 11.1 11.4
B+ 12.1 10.7 11.5 11.9 11.5 12.2 11.7
B 12.9 12.5 11.6 12.4 11.8 12.5 12.7
B- 13.3 12.9 12.8 13.3 13.5 13.1 13.5
CC+ 13.3 14.2 13.3 14.0 14.3 13.5 13.6
CC 13.9 14.2 15.2 14.8 13.5 15.1 13.4
CC- 14.6 13.8 15.1 14.6 14.9 14.2 14.6
C+ 15.6 15.8 14.9 15.2 15.5 15.1 15.5
C 15.9 15.6 15.1 14.9 14.9 15.8 15.3
C- 15.2 14.5 14.9 14.8 15.1 14.7 15.2

Table 7: Forward rates generated from beta distribution by changing parameters

Year-end rating LUKOIL bond GAZPROM bond NORNICKEL bond

AAA 950.0290 969.5942 1014.0616
AA+ 923.8489 963.2285 1007.5380
AA 910.2512 962.5074 1006.7746
AA- 893.7346 951.5238 995.5367
A+ 872.9929 943.5162 987.3345
A 857.3122 940.4325 984.2259
A- 853.1292 934.4570 977.9915
BBB+ 840.2922 935.7844 979.4084
BBB 820.9605 922.3582 965.6354
BBB- 818.2014 925.2208 968.6281
BB+ 785.9697 905.2442 948.1071
BB 755.5898 899.1159 941.9301
BB- 724.1725 881.6000 923.9692
B+ 706.4897 879.8096 922.1473
B 685.5049 865.8387 907.7371
B- 657.5539 853.2991 894.9415
CC+ 639.5347 841.9683 883.2936
CC 624.9620 829.4743 870.5918
CC- 621.2737 832.4938 873.7039
C+ 600.9724 820.6981 861.4985
C 602.7211 820.5169 861.3401
C- 613.4543 829.4793 870.5647

Table 8: Possible present values of Bonds
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Company JB p-value Decision

LUKOIL 64765 <2.2e-16 Rej H0

GAZPROM 12461 <2.2e-16 Rej H0

NORNICKEL 98789 <2.2e-16 Rej H0

Table 9: Jarque-Bera Test for Normality

Company χ2 df p-value Decision

LUKOIL 3108.1 20 <2.2e-16 Rej H0

GAZPROM 5014.9 20 <2.2e-16 Rej H0

NORNICKEL 2869.7 20 <2.2e-16 Rej H0

Table 10: Ljung-Box Test for Serial Independence before ARIMA-GARCH model

Figure 4: ACF and PACF of residuals and squared residuals of Lukoil log-returns after ARIMA(4,1,3)-

GARCH(1,1)

19



Figure 5: ACF and PACF of residuals and squared residuals of Gazprom log-returns after

ARIMA(3,0,4)-GARCH(1,1)

Figure 6: ACF and PACF of residuals and squared residuals of Nornickel log-returns after

ARIMA(4,1,3)-GARCH(1,1)
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Company mean st.dev AIC BIC

LUKOIL 0.002459044 1.000851347 9388.809 9401.015
GAZPROM -0.01254965 1.00089028 9389.066 9401.272
NORNICKEL 0.01349338 1.00410348 9410.252 9422.459

Table 11: Parameters of Normal Distribution fit

Company df mean st.dev AIC BIC

LUKOIL 6.53046942 0.01954184 0.83277494 9222.032 9240.342
GAZPROM 7.653713749 -0.008275583 0.861420330 9288.704 9307.014
NORNICKEL 6.57588223 0.03295066 0.82908809 9185.557 9203.867

Table 12: Parameters of Student t Distribution fit

AA+ 6.23057956 BBB 0.64293344 B- -0.44339645 D -0.82389251
AA 4.71334745 BBB- 0.03472303 CC+ -0.44391275
AA- 4.23347944 BB+ -0.01798963 CC -0.54965555
A+ 3.34881242 BB -0.11603182 CC- -0.77821076
A 2.33668737 BB- -0.14120916 C+ -0.77821076
A- 1.62154684 B+ -0.18535843 C -0.77856662
BBB+ 1.16756519 B -0.44313838 C- -0.78751139

Table 13: Asset return thresholds of LUKOIL

AA+ 4.81171054 BBB 0.85366114 B- -0.22289852 D -0.47180171
AA 4.43095332 BBB- 0.25034147 CC+ -0.22336057
AA- 4.19054120 BB+ 0.08293131 CC -0.26947527
A+ 3.48696049 BB -0.02143760 CC- -0.44815200
A 2.54964412 BB- -0.03973709 C+ -0.44815200
A- 1.86220113 B+ -0.11161573 C -0.44866783
BBB+ 1.40504026 B -0.22289852 C- -0.45513039

Table 14: Asset return thresholds of GAZPROM

AA+ 5.126972080 BBB 0.871458386 B- -0.174787089 D -0.416270428
AA 4.685954894 BBB- 0.283310372 CC+ -0.175234632
AA- 4.410596120 BB+ 0.121206467 CC -0.219911776
A+ 3.619359286 BB 0.020215301 CC- -0.393283229
A 2.601748684 BB- 0.002508811 C+ -0.393283229
A- 1.883635857 B+ -0.067047597 C -0.393784496
BBB+ 1.419206221 B -0.174787089 C- -0.400065019

Table 15: Asset return thresholds of NORNICKEL
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Figure 7: Simulated points from Joint distribution
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R Script

data<− read . t a b l e ( ” R e t u r n s 2 . t x t ” , h e a d e r =TRUE, sep =” , ” )

mean ( data $LUKOIL)
mean ( data $GAZPROM)
mean ( data $NORNICKEL)
n<− l e n g t h ( data $LUKOIL)
l r e t s L <− d i f f ( l o g ( data $LUKOIL ) , l a g =1)
head ( l r e t s L )
summary ( l r e t s L )
l r e t s G <− d i f f ( l o g ( data $GAZPROM) , l a g =1)
summary ( l r e t s G )
l r e t s N <− d i f f ( l o g ( data $NORNICKEL) , l a g =1)
summary ( l r e t s N )

sd ( l r e t s L )
sd ( l r e t s G )
sd ( l r e t s N )

l i b r a r y ( e1071 )

skewness ( l r e t s L )
skewness ( l r e t s G )
skewness ( l r e t s N )
k u r t o s i s ( l r e t s L )
k u r t o s i s ( l r e t s G )
k u r t o s i s ( l r e t s N )

cor ( l r e t s L , l r e t s G , method = ” p e a r s o n ” )
cor ( l r e t s L , l r e t s N , method = ” p e a r s o n ” )
cor ( l r e t s G , l r e t s N , method = ” p e a r s o n ” )

par ( mfrow=c ( 3 , 1 ) )
p l o t . t s ( l r e t s L )
p l o t . t s ( l r e t s G )
p l o t . t s ( l r e t s N )

par ( mfrow=c ( 1 , 3 ) )
h i s t ( l r e t s L , n c l a s s =40 , f r e q =FALSE , main= ’ R e t u rn h i s t o g r a m ’ )
curve ( dnorm ( x , mean=mean ( l r e t s L ) , sd=sd ( l r e t s L ) ) , from= −0.3 , t o = 0 . 2 , add=TRUE,
c o l =” r e d ” )
h i s t ( l r e t s G , n c l a s s =40 , f r e q =FALSE , main= ’ R e t u rn h i s t o g r a m ’ )
curve ( dnorm ( x , mean=mean ( l r e t s G ) , sd=sd ( l r e t s G ) ) , from= −0.3 , t o = 0 . 2 , add=TRUE,

23



c o l =” r e d ” )
h i s t ( l r e t s N , n c l a s s =40 , f r e q =FALSE , main= ’ R e t u rn h i s t o g r a m ’ )
curve ( dnorm ( x , mean=mean ( l r e t s N ) , sd=sd ( l r e t s N ) ) , from= −0.3 , t o = 0 . 2 , add=TRUE,
c o l =” r e d ” )
p l o t ( d e n s i t y ( l r e t s L ) , main= ’ Re tu rn e m p i r i c a l d i s t r i b u t i o n ’ )
curve ( dnorm ( x , mean=mean ( l r e t s L ) , sd=sd ( l r e t s L ) ) , from= −0.3 , t o = 0 . 2 , add=TRUE,
c o l =” r e d ” )

# Jarque−Bera t e s t f o r n o r m a l i t y
l i b r a r y ( n o r m t e s t )
j b . norm . t e s t ( l r e t s L , n r e p l =2000)
j b . norm . t e s t ( l r e t s G , n r e p l =2000)
j b . norm . t e s t ( l r e t s N , n r e p l =2000)

s q L r e t s L = l r e t s L * l r e t s L
s q L r e t s G = l r e t s G * l r e t s G
s q L r e t s N = l r e t s N * l r e t s N

# Ljung−Box t e s t f o r s e r i a l i n d e p e n d e n c e
l i b r a r y ( LSTS )\\
Box . Ljung . T e s t ( sqLre t sL , l a g = 24 , main = NULL)
Box . Ljung . T e s t ( sqLre t sG , l a g = 24 , main = NULL)
Box . Ljung . T e s t ( sqLre t sN , l a g = 24 , main = NULL)
t s . diag ( s q L r e t s L )
Box . t e s t ( sqLre t sL , t y p e =” Ljung ” , l a g =20 , f i t d f =0)
Box . t e s t ( sqLre t sG , t y p e =” Ljung ” , l a g =20 , f i t d f =0)
Box . t e s t ( sqLre t sN , t y p e =” Ljung ” , l a g =20 , f i t d f =0)

#ARIMA−GARCH model f i t t i n g
l i b r a r y ( aTSA )
l i b r a r y ( f o r e c a s t )
l i b r a r y ( r u g a r c h )

L <− as . numeric ( l r e t s L )
L <− L [ ! i s . na ( L ) ]

G <− as . numeric ( l r e t s G )
G <− G[ ! i s . na (G) ]

N <− as . numeric ( l r e t s N )
N <− N[ ! i s . na (N) ]

L f i n a l . a i c <− I n f
L f i n a l . order <− c ( 0 , 0 , 0 )
G f i n a l . a i c <− I n f
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G f i n a l . order <− c ( 0 , 0 , 0 )
N f i n a l . a i c <− I n f
N f i n a l . order <− c ( 0 , 0 , 0 )

f o r ( p i n 1 : 4 ) f o r ( d i n 0 : 2 ) f o r ( q i n 1 : 4 ) {
L c u r r e n t . a i c <− AIC ( a r ima ( L , order=c ( p , d , q ) , optim . c o n t r o l = l i s t ( max i t = 1 0 0 0 ) ) )
G c u r r e n t . a i c <− AIC ( a r ima (G, order=c ( p , d , q ) , optim . c o n t r o l = l i s t ( max i t = 1 0 0 0 ) ) )
N c u r r e n t . a i c <− AIC ( a r ima (N, order=c ( p , d , q ) , optim . c o n t r o l = l i s t ( max i t = 1 0 0 0 ) ) )
i f ( L c u r r e n t . a i c < L f i n a l . a i c ) {

L f i n a l . a i c <− L c u r r e n t . a i c
L f i n a l . order <− c ( p , d , q )
L f i n a l . a r ima <− a r ima ( L , order= L f i n a l . order )

}
i f ( G c u r r e n t . a i c < G f i n a l . a i c ) {

G f i n a l . a i c <− G c u r r e n t . a i c
G f i n a l . order <− c ( p , d , q )
G f i n a l . a r ima <− a r ima (G, order= G f i n a l . order )

}
i f ( N c u r r e n t . a i c < N f i n a l . a i c ) {

N f i n a l . a i c <− N c u r r e n t . a i c
N f i n a l . order <− c ( p , d , q )
N f i n a l . a r ima <− a r ima (N, order= N f i n a l . order )

}
}
L f i n a l . order
G f i n a l . order
N f i n a l . order

par ( mfrow=c ( 2 , 2 ) )
a c f ( r e s i d ( L f i n a l . a r ima ) )
a c f ( r e s i d ( L f i n a l . a r ima ) ˆ 2 )
p a c f ( r e s i d ( L f i n a l . a r ima ) )
p a c f ( r e s i d ( L f i n a l . a r ima ) ˆ 2 )

a c f ( r e s i d ( G f i n a l . a r ima ) )
a c f ( r e s i d ( G f i n a l . a r ima ) ˆ 2 )
p a c f ( r e s i d ( G f i n a l . a r ima ) )
p a c f ( r e s i d ( G f i n a l . a r ima ) ˆ 2 )

a c f ( r e s i d ( N f i n a l . a r ima ) )
a c f ( r e s i d ( N f i n a l . a r ima ) ˆ 2 )
p a c f ( r e s i d ( N f i n a l . a r ima ) )
p a c f ( r e s i d ( N f i n a l . a r ima ) ˆ 2 )

l i b r a r y ( t s e r i e s )
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L . g a r c h <− g a r c h ( L , t r a c e =F )
L . r e s <− L . g a r c h $ r e s [−1]
summary ( L . g a r c h )

G. g a r c h <− g a r c h (G, t r a c e =F )
G. r e s <− G. g a r c h $ r e s [−1]
summary (G. g a r c h )

N. g a r c h <− g a r c h (N, t r a c e =F )
N. r e s <− N. g a r c h $ r e s [−1]
summary (N. g a r c h )

a c f ( L . r e s )
a c f ( L . r e s ˆ 2 )
p a c f ( L . r e s )
p a c f ( L . r e s ˆ 2 )

a c f (G. r e s )
a c f (G. r e s ˆ 2 )
p a c f (G. r e s )
p a c f (G. r e s ˆ 2 )

a c f (N. r e s )
a c f (N. r e s ˆ 2 )
p a c f (N. r e s )
p a c f (N. r e s ˆ 2 )

Box . t e s t ( L . r e s , l a g =20 , t y p e =” Ljung−Box” )
Box . t e s t (G. r e s , l a g =20 , t y p e =” Ljung−Box” )
Box . t e s t (N. r e s , l a g =20 , t y p e =” Ljung−Box” )

# F i t t i n g d i s t r i b u t i o n s t o r e s i d u a l s
l i b r a r y ( f i t d i s t r p l u s )
l i b r a r y ( metRology )

L . r e s <− L . r e s [ ! i s . na ( L . r e s ) ]
Lnorm <− f i t d i s t ( L . r e s , d i s t = ” norm ” )
summary ( Lnorm )

Lt <− f i t d i s t ( L . r e s , d i s t = ” t . s c a l e d ” , s t a r t = l i s t ( df = 3 , mean=mean ( L . r e s ) ,
sd=sd ( L . r e s ) ) )
summary ( Lt )
p l o t ( Lt )

G. r e s <− G. r e s [ ! i s . na (G. r e s ) ]
Gnorm <− f i t d i s t (G. r e s , d i s t = ” norm ” )
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summary ( Gnorm )

Gt <− f i t d i s t (G. r e s , d i s t = ” t . s c a l e d ” , s t a r t = l i s t ( df = 3 , mean=mean (G. r e s ) ,
sd=sd (G. r e s ) ) )
summary ( Gt )
p l o t ( Gt )

N. r e s <− N. r e s [ ! i s . na (N. r e s ) ]
Nnorm <− f i t d i s t (N. r e s , d i s t = ” norm ” )
summary ( Nnorm )

Nt <− f i t d i s t (N. r e s , d i s t = ” t . s c a l e d ” , s t a r t = l i s t ( df = 3 , mean=mean (N. r e s ) ,
sd=sd (N. r e s ) ) )
summary ( Nt )
p l o t ( Nt )

# I m p o r t i n g C r e d i t M i g r a t i o n m a t r i x and c a l c u l a t i n g t h r e s h o l d s o f a s s e t r e t u r n s
d a t a 2<−read . t a b l e ( ” t r a n s i t i o n . t x t ” , h e a d e r =TRUE, sep =” , ” )

t h r<−f u n c t i o n ( d ,m, s , v e c t o r ){
Def=qt . s c a l e d ( v e c t o r [ 1 ] , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
Cm= qt . s c a l e d ( v e c t o r [ 2 ] + v e c t o r [ 1 ] , df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE)
C= qt . s c a l e d ( v e c t o r [ 3 ] + pt . s c a l e d (Cm, df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
Cp=qt . s c a l e d ( v e c t o r [ 4 ] + pt . s c a l e d (C , df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
CCm=qt . s c a l e d ( v e c t o r [ 5 ] + pt . s c a l e d ( Cp , df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
CC=qt . s c a l e d ( v e c t o r [ 6 ] + pt . s c a l e d (CCm, df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
CCp=qt . s c a l e d ( v e c t o r [ 7 ] + pt . s c a l e d (CC, df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
Bm=qt . s c a l e d ( v e c t o r [ 8 ] + pt . s c a l e d ( CCp , df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
B=qt . s c a l e d ( v e c t o r [ 9 ] + pt . s c a l e d (Bm, df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
Bp=qt . s c a l e d ( v e c t o r [ 1 0 ] + pt . s c a l e d (B , df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
BBm=qt . s c a l e d ( v e c t o r [ 1 1 ] + pt . s c a l e d ( Bp , df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
BB=qt . s c a l e d ( v e c t o r [ 1 2 ] + pt . s c a l e d (BBm, df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
BBp=qt . s c a l e d ( v e c t o r [ 1 3 ] + pt . s c a l e d (BB, df=d , mean = m, sd = s , lower . t a i l = TRUE,
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l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
BBBm=qt . s c a l e d ( v e c t o r [ 1 4 ] + pt . s c a l e d ( BBp , df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
BBB=qt . s c a l e d ( v e c t o r [ 1 5 ] + pt . s c a l e d (BBBm, df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
BBBp=qt . s c a l e d ( v e c t o r [ 1 6 ] + pt . s c a l e d (BBB, df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
Am=qt . s c a l e d ( v e c t o r [ 1 7 ] + pt . s c a l e d (BBBp , df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
A=qt . s c a l e d ( v e c t o r [ 1 8 ] + pt . s c a l e d (Am, df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
Ap=qt . s c a l e d ( v e c t o r [ 1 9 ] + pt . s c a l e d (A, df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
AAm=qt . s c a l e d ( v e c t o r [ 2 0 ] + pt . s c a l e d ( Ap , df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
AA=qt . s c a l e d ( v e c t o r [ 2 1 ] + pt . s c a l e d (AAm, df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
AAp=qt . s c a l e d ( v e c t o r [ 2 2 ] + pt . s c a l e d (AA, df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
AAA=qt . s c a l e d ( v e c t o r [ 2 3 ] + pt . s c a l e d (AAp, df=d , mean = m, sd = s , lower . t a i l = TRUE,
l o g . p = FALSE ) , df=d , mean = m, sd = s , lower . t a i l = TRUE, l o g . p = FALSE)
t<−c ( Def ,Cm, C , Cp ,CCm, CC, CCp ,Bm, B , Bp ,BBm, BB, BBp ,BBBm, BBB, BBBp ,Am, A, Ap ,AAm,AA, AAp,AAA)
}
t h r e s h o l d s L <− t h r ( 6 . 5 3 0 4 6 9 4 2 , 0 . 0 1 9 5 4 1 8 4 , 0 . 8 3 2 7 7 4 9 4 , d a t a 2 $BBB)
t h r e s h o l d s G <− t h r (7 .653713749 , −0 .008275583 ,0 .861420330 , d a t a 2 $BBBm)
t h r e s h o l d s N <− t h r ( 6 . 5 7 5 8 8 2 2 3 , 0 . 0 3 2 9 5 0 6 6 , 0 . 8 2 9 0 8 8 0 9 , d a t a 2 $BBBm)

t h r e s h o l d s L
t h r e s h o l d s G
t h r e s h o l d s N

th rno rm<−f u n c t i o n (m, s , v e c t o r ){
Def = qnorm ( v e c t o r [ 1 ] , mean = m, sd = s )
Cm = qnorm ( v e c t o r [ 2 ] + v e c t o r [ 1 ] , mean = m, sd = s )
C = qnorm ( v e c t o r [ 3 ] + pnorm (Cm, mean = m, sd=s ) , mean = m, sd = s )
Cp = qnorm ( v e c t o r [ 4 ] + pnorm (C , mean = m, sd=s ) , mean = m, sd = s )
CCm = qnorm ( v e c t o r [ 5 ] + pnorm ( Cp , mean = m, sd=s ) , mean = m, sd = s )
CC = qnorm ( v e c t o r [ 6 ] + pnorm (CCm, mean = m, sd=s ) , mean = m, sd = s )
CCp = qnorm ( v e c t o r [ 7 ] + pnorm (CC, mean = m, sd=s ) , mean = m, sd = s )
Bm = qnorm ( v e c t o r [ 8 ] + pnorm ( CCp , mean = m, sd=s ) , mean = m, sd = s )
B = qnorm ( v e c t o r [ 9 ] + pnorm (Bm, mean = m, sd=s ) , mean = m, sd = s )
Bp = qnorm ( v e c t o r [ 1 0 ] + pnorm (B , mean = m, sd=s ) , mean = m, sd = s )
BBm = qnorm ( v e c t o r [ 1 1 ] + pnorm ( Bp , mean = m, sd=s ) , mean = m, sd = s )
BB = qnorm ( v e c t o r [ 1 2 ] + pnorm (BBm, mean = m, sd=s ) , mean = m, sd = s )
BBp = qnorm ( v e c t o r [ 1 3 ] + pnorm (BB, mean = m, sd=s ) , mean = m, sd = s )
BBBm = qnorm ( v e c t o r [ 1 4 ] + pnorm ( BBp , mean = m, sd=s ) , mean = m, sd = s )
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BBB = qnorm ( v e c t o r [ 1 5 ] + pnorm (BBBm, mean = m, sd=s ) , mean = m, sd = s )
BBBp = qnorm ( v e c t o r [ 1 6 ] + pnorm (BBB, mean = m, sd=s ) , mean = m, sd = s )
Am = qnorm ( v e c t o r [ 1 7 ] + pnorm (BBBp , mean = m, sd=s ) , mean = m, sd = s )
A = qnorm ( v e c t o r [ 1 8 ] + pnorm (Am, mean = m, sd=s ) , mean = m, sd = s )
Ap = qnorm ( v e c t o r [ 1 9 ] + pnorm (A, mean = m, sd=s ) , mean = m, sd = s )
AAm = qnorm ( v e c t o r [ 2 0 ] + pnorm ( Ap , mean = m, sd=s ) , mean = m, sd = s )
AA = qnorm ( v e c t o r [ 2 1 ] + pnorm (AAm, mean = m, sd=s ) , mean = m, sd = s )
AAp = qnorm ( v e c t o r [ 2 2 ] + pnorm (AA, mean = m, sd=s ) , mean = m, sd = s )
n<−c ( Def ,Cm, C , Cp ,CCm, CC, CCp ,Bm, B , Bp ,BBm, BB, BBp ,BBBm, BBB, BBBp ,Am, A, Ap ,AAm,AA, AAp)

}
n t h r e s h o l d s L <− t h rno rm ( 0 . 0 0 2 4 5 9 0 4 4 , 1 . 0 0 0 8 5 1 3 4 7 , d a t a 2 $BBB)
n t h r e s h o l d s G <− t h rno rm ( −0 .01254965 ,1 .00089028 , d a t a 2 $BBBm)
n t h r e s h o l d s N <− t h rno rm ( 0 . 0 1 3 4 9 3 3 8 , 1 .00410348 , d a t a 2 $BBBm)

n t h r e s h o l d s L
n t h r e s h o l d s G
n t h r e s h o l d s N

# O b t a i n i n g u n i f o r m d i s t r i b u t i o n s by means o f t d i s t r i b u t i o n s found e a r l i e r
uL<−pt . s c a l e d ( L . r e s , df =6.53046942 , mean = 0 .01954184 , sd = 0 .83277494 , ncp =0 ,
lower . t a i l = TRUE, l o g . p = FALSE)
uG<−pt . s c a l e d (G. r e s , df =7.653713749 , mean = −0.008275583 , sd = 0 .861420330 , ncp =0 ,
lower . t a i l = TRUE, l o g . p = FALSE)
uN<−pt . s c a l e d (N. r e s , df =6.57588223 , mean = 0 .03295066 , sd = 0 .82908809 , ncp =0 ,
lower . t a i l = TRUE, l o g . p = FALSE)

# Pair−co pu la c o n s t r u c t i o n . For r e p r o d u c i b i l i t y randomly g e n e r a t e d v a l u e s from j o i n t
d i s t r i b u t i o n were saved i n f i l e s i m u l a t e d v a l u e s
l i b r a r y ( c o p u l a )
l i b r a r y ( VineCopula )
l i b r a r y ( CDVineCopu laCond i t iona l )
l i b r a r y ( s c a t t e r p l o t 3 d )

l e n g t h ( uL )
l e n g t h ( uG )
l e n g t h ( uN )

marg ins <− cbind ( uL , uG , uN )
RVM <− CDVineCondFit ( margins , Nx=1 , t r e e c r i t =”BIC” , t y p e =” 1 ” , s e l e c t i o n c r i t =”BIC” )
summary (RVM)
#d=dim (RVM$ Ma tr i x ) [ 1 ]
# cond1 <− margins [ ,RVM$ Ma tr i x [ ( d +1)−1 ,( d+1)−1]]

#Sim <− CDVineCondSim (RVM, cond1 )
#Sim <− da ta . f rame ( Sim )
# o v e r p l o t ( Sim , marg ins )
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Sim <− read . t a b l e ( ” S i m u l a t e d v a l u e s . t x t ” , h e a d e r =TRUE, sep =” , ” )
p l o t ( Sim )
par ( mfrow = c ( 1 , 1 ) )
s c a t t e r p l o t 3 d ( Sim )

# T r a n s f o r m i n g marg ins back t o t d i s t r i b u t i o n s . Based on a s s e t r e t u r n v a l u e a s s i g n i n g
a company t h e c r e d i t r a t i n g based on t h r e s h o l d s
tL<−qt . s c a l e d ( Sim$X1 , df =6.53046942 , mean = 0 .01954184 , sd = 0 .83277494 , ncp =0 ,
lower . t a i l = TRUE, l o g . p = FALSE)
tG<−qt . s c a l e d ( Sim$X2 , df =7.653713749 , mean = −0.008275583 , sd = 0 .861420330 , ncp =0 ,
lower . t a i l = TRUE, l o g . p = FALSE)
tN<−qt . s c a l e d ( Sim$X3 , df =6.57588223 , mean = 0 .03295066 , sd = 0 .82908809 , ncp =0 ,
lower . t a i l = TRUE, l o g . p = FALSE)
tL
temp<−c ( )
temp
c r e d r a t <− f u n c t i o n ( v a l u e s , t h r e s h ){

f o r ( i i n 1 : l e n g t h ( v a l u e s ) ) {
i f ( v a l u e s [ i ]<= t h r e s h [ 1 ] ) {

temp [ i ]= ” D e f a u l t ”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 1 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 2 ] ) ) {

temp [ i ]= ”C−”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 2 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 3 ] ) ) {

temp [ i ]= ”C”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 3 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 4 ] ) ) {

temp [ i ]= ”C+”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 4 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 5 ] ) ) {

temp [ i ]= ”CC−”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 5 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 6 ] ) ) {

temp [ i ]= ”CC”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 6 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 7 ] ) ) {

temp [ i ]= ”CC+”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 7 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 8 ] ) ) {

temp [ i ]= ”B−”
}
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i f ( ( v a l u e s [ i ]> t h r e s h [ 8 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 9 ] ) ) {
temp [ i ]= ”B”

}
i f ( ( v a l u e s [ i ]> t h r e s h [ 9 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 1 0 ] ) ) {

temp [ i ]= ”B+”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 1 0 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 1 1 ] ) ) {

temp [ i ]= ”BB−”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 1 1 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 1 2 ] ) ) {

temp [ i ]= ”BB”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 1 2 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 1 3 ] ) ) {

temp [ i ]= ”BB+”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 1 3 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 1 4 ] ) ) {

temp [ i ]= ”BBB−”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 1 4 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 1 5 ] ) ) {

temp [ i ]= ”BBB”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 1 5 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 1 6 ] ) ) {

temp [ i ]= ”BBB+”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 1 6 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 1 7 ] ) ) {

temp [ i ]= ”A−”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 1 7 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 1 8 ] ) ) {

temp [ i ]= ”A”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 1 8 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 1 9 ] ) ) {

temp [ i ]= ”A+”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 1 9 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 2 0 ] ) ) {

temp [ i ]= ”AA−”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 2 0 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 2 1 ] ) ) {

temp [ i ]= ”AA”
}
i f ( ( v a l u e s [ i ]> t h r e s h [ 2 1 ] ) & ( v a l u e s [ i ]<= t h r e s h [ 2 2 ] ) ) {

temp [ i ]= ”AA+”
}
i f ( v a l u e s [ i ]> t h r e s h [ 2 2 ] ) {

temp [ i ]= ”AAA”
}

}
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temp
}
r a t i n g s L<− c r e d r a t ( tL , t h r e s h o l d s L )
r a t i n g s G<− c r e d r a t ( tG , t h r e s h o l d s G )
r a t i n g s N<− c r e d r a t ( tN , t h r e s h o l d s N )

r a t i n g s <− cbind ( r a t i n g s L , r a t i n g s G , r a t i n g s N )
r a t i n g s

#For r e p r o d u c i b i l i t y fo rward r a t e s were w r i t t e n down i n t h e f i l e f o r w a r d s .
fwd<−read . t a b l e ( ” f o r w a r d s . t x t ” , h e a d e r =TRUE, sep =” , ” )
# f u n c t i o n LUKOIL c a l c u l a t e s p r e s e n t v a l u e o f L u k o i l bond
LUKOIL <− f u n c t i o n ( f , c ){
}
PVL<− LUKOIL ( 1 0 0 0 , 4 7 . 5 )
# F u n c t i o n GN c a l c u l a t e s p r e s e n t v a l u e s o f Gazprom and N o r n i c k e l bonds , s i n c e t h e y
bo th have 3 y e a r s t i l l m a t u r i t y
GN <− f u n c t i o n ( f , c ){

PV <− c ( )
PV [ 1 ] = ( c+c / (1+ fwd$AAA[ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$AAA[ 3 ] ) * (1+ fwd$AAA[ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV [ 2 ] = ( c+c / (1+ fwd$AAp [ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$AAp [ 3 ] ) * (1+ fwd$AAp [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV [ 3 ] = ( c+c / (1+ fwd$AA[ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$AA[ 3 ] ) * (1+ fwd$AA[ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV [ 4 ] = ( c+c / (1+ fwd$AAm[ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$AAm[ 3 ] ) * (1+ fwd$AAm[ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV [ 5 ] = ( c+c / (1+ fwd$Ap [ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$Ap [ 3 ] ) * (1+ fwd$Ap [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV [ 6 ] = ( c+c / (1+ fwd$A[ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$A[ 3 ] ) * (1+ fwd$A [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV [ 7 ] = ( c+c / (1+ fwd$Am[ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$Am[ 3 ] ) * (1+ fwd$Am[ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV [ 8 ] = ( c+c / (1+ fwd$BBBp [ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$BBBp [ 3 ] ) * (1+ fwd$BBBp [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV [ 9 ] = ( c+c / (1+ fwd$BBB[ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$BBB [ 3 ] ) * (1+ fwd$BBB [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV[ 1 0 ] = ( c+c / (1+ fwd$BBBm[ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$BBBm[ 3 ] ) * (1+ fwd$BBBm [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV[ 1 1 ] = ( c+c / (1+ fwd$BBp [ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$BBp [ 3 ] ) * (1+ fwd$BBp [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV[ 1 2 ] = ( c+c / (1+ fwd$BB [ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$BB [ 3 ] ) * (1+ fwd$BB [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV[ 1 3 ] = ( c+c / (1+ fwd$BBm[ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$BBm[ 3 ] ) * (1+ fwd$BBm [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV[ 1 4 ] = ( c+c / (1+ fwd$Bp [ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$Bp [ 3 ] ) * (1+ fwd$Bp [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV[ 1 5 ] = ( c+c / (1+ fwd$B [ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$B [ 3 ] ) * (1+ fwd$B [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV[ 1 6 ] = ( c+c / (1+ fwd$Bm[ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$Bm[ 3 ] ) * (1+ fwd$Bm[ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV[ 1 7 ] = ( c+c / (1+ fwd$CCp [ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$CCp [ 3 ] ) * (1+ fwd$CCp [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV[ 1 8 ] = ( c+c / (1+ fwd$CC [ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$CC [ 3 ] ) * (1+ fwd$CC [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV[ 1 9 ] = ( c+c / (1+ fwd$CCm[ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$CCm[ 3 ] ) * (1+ fwd$CCm [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV[ 2 0 ] = ( c+c / (1+ fwd$Cp [ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$Cp [ 3 ] ) * (1+ fwd$Cp [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV[ 2 1 ] = ( c+c / (1+ fwd$C [ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$C [ 3 ] ) * (1+ fwd$C [ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV[ 2 2 ] = ( c+c / (1+ fwd$Cm[ 2 ] ) + ( c+ f ) / ( ( 1 + fwd$Cm[ 3 ] ) * (1+ fwd$Cm[ 2 ] ) ) ) / ( 1 + 0 . 0 7 3 6 )
PV

}
PVG<− GN( 1 0 0 0 , 4 9 . 5 )
PVG
PVN<−GN( 1 0 0 0 , 6 6 . 2 5 )
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PVN

PV<−cbind (PVL , PVG,PVN)
PV

# w r i t e . t a b l e ( PV , f i l e = ” R e v a l u a t i o n . t x t ” , sep = ” ,”)
PV<−read . t a b l e ( ” R e v a l u a t i o n . t x t ” , h e a d e r =TRUE, sep =” , ” )
PVL<−PV$PVL
PVG<−PV$PVG
PVN<−PV$PVN
PV

# v a l ue L<−c ( )
# valueG<−c ( )
# valueN<−c ( )
# r a t i n g s L [ 1 ]
# f o r ( i i n 1 : l e n g t h ( r a t i n g s L ) ) {

i f ( r a t i n g s L [ i ]== ”AAA” ){
va lueL [ i ]=PVL [ 1 ]

}
i f ( r a t i n g s L [ i ]== ”AA+” ){

va lueL [ i ]=PVL [ 2 ]
}
i f ( r a t i n g s L [ i ]== ”AA” ){

va lueL [ i ]=PVL [ 3 ]
}
i f ( r a t i n g s L [ i ]== ”AA−” ){

va lueL [ i ]=PVL [ 4 ]
}
i f ( r a t i n g s L [ i ]== ”A+” ){

va lueL [ i ]=PVL [ 5 ]
}
i f ( r a t i n g s L [ i ]== ”A” ){

va lueL [ i ]=PVL [ 6 ]
}
i f ( r a t i n g s L [ i ]== ”A−” ){

va lueL [ i ]=PVL [ 7 ]
}
i f ( r a t i n g s L [ i ]== ”BBB+” ){

va lueL [ i ]=PVL [ 8 ]
}
i f ( r a t i n g s L [ i ]== ”BBB” ){

va lueL [ i ]=PVL [ 9 ]
}
i f ( r a t i n g s L [ i ]== ”BBB−” ){

va lueL [ i ]=PVL[ 1 0 ]
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}
i f ( r a t i n g s L [ i ]== ”BB+” ){

va lueL [ i ]=PVL[ 1 1 ]
}
i f ( r a t i n g s L [ i ]== ”BB” ){

va lueL [ i ]=PVL[ 1 2 ]
}
i f ( r a t i n g s L [ i ]== ”BB−” ){

va lueL [ i ]=PVL[ 1 3 ]
}
i f ( r a t i n g s L [ i ]== ”B+” ){

va lueL [ i ]=PVL[ 1 4 ]
}
i f ( r a t i n g s L [ i ]== ”B” ){

va lueL [ i ]=PVL[ 1 5 ]
}
i f ( r a t i n g s L [ i ]== ”B−” ){

va lueL [ i ]=PVL[ 1 6 ]
}
i f ( r a t i n g s L [ i ]== ”CC+” ){

va lueL [ i ]=PVL[ 1 7 ]
}
i f ( r a t i n g s L [ i ]== ”CC” ){

va lueL [ i ]=PVL[ 1 8 ]
}
i f ( r a t i n g s L [ i ]== ”CC−” ){

va lueL [ i ]=PVL[ 1 9 ]
}
i f ( r a t i n g s L [ i ]== ”C+” ){

va lueL [ i ]=PVL[ 2 0 ]
}
i f ( r a t i n g s L [ i ]== ”C” ){

va lueL [ i ]=PVL[ 2 1 ]
}
i f ( r a t i n g s L [ i ]== ”C−” ){

va lueL [ i ]=PVL[ 2 2 ]
}
i f ( r a t i n g s L [ i ]== ” D e f a u l t ” ){

va lueL [ i ]=1000 * rbeta ( 1 , 0 . 4 7 9 , 0 . 1 2 7 )
}
i f ( r a t i n g s G [ i ]== ”AAA” ){

valueG [ i ]=PVG[ 1 ]
}
i f ( r a t i n g s G [ i ]== ”AA+” ){

valueG [ i ]=PVG[ 2 ]
}
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i f ( r a t i n g s G [ i ]== ”AA” ){
valueG [ i ]=PVG[ 3 ]

}
i f ( r a t i n g s G [ i ]== ”AA−” ){

valueG [ i ]=PVG[ 4 ]
}
i f ( r a t i n g s G [ i ]== ”A+” ){

valueG [ i ]=PVG[ 5 ]
}
i f ( r a t i n g s G [ i ]== ”A” ){

valueG [ i ]=PVG[ 6 ]
}
i f ( r a t i n g s G [ i ]== ”A−” ){

valueG [ i ]=PVG[ 7 ]
}
i f ( r a t i n g s G [ i ]== ”BBB+” ){

valueG [ i ]=PVG[ 8 ]
}
i f ( r a t i n g s G [ i ]== ”BBB” ){

valueG [ i ]=PVG[ 9 ]
}
i f ( r a t i n g s G [ i ]== ”BBB−” ){

valueG [ i ]=PVG[ 1 0 ]
}
i f ( r a t i n g s G [ i ]== ”BB+” ){

valueG [ i ]=PVG[ 1 1 ]
}
i f ( r a t i n g s G [ i ]== ”BB” ){

valueG [ i ]=PVG[ 1 2 ]
}
i f ( r a t i n g s G [ i ]== ”BB−” ){

valueG [ i ]=PVG[ 1 3 ]
}
i f ( r a t i n g s G [ i ]== ”B+” ){

valueG [ i ]=PVG[ 1 4 ]
}
i f ( r a t i n g s G [ i ]== ”B” ){

valueG [ i ]=PVG[ 1 5 ]
}
i f ( r a t i n g s G [ i ]== ”B−” ){

valueG [ i ]=PVG[ 1 6 ]
}
i f ( r a t i n g s G [ i ]== ”CC+” ){

valueG [ i ]=PVG[ 1 7 ]
}
i f ( r a t i n g s G [ i ]== ”CC” ){
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valueG [ i ]=PVG[ 1 8 ]
}
i f ( r a t i n g s G [ i ]== ”CC−” ){

valueG [ i ]=PVG[ 1 9 ]
}
i f ( r a t i n g s G [ i ]== ”C+” ){

valueG [ i ]=PVG[ 2 0 ]
}
i f ( r a t i n g s G [ i ]== ”C” ){

valueG [ i ]=PVG[ 2 1 ]
}
i f ( r a t i n g s G [ i ]== ”C−” ){

valueG [ i ]=PVG[ 2 2 ]
}
i f ( r a t i n g s G [ i ]== ” D e f a u l t ” ){

valueG [ i ]=1000 * rbeta ( 1 , 0 . 4 7 9 , 0 . 1 2 7 )
}
i f ( r a t i n g s N [ i ]== ”AAA” ){

valueN [ i ]=PVN[ 1 ]
}
i f ( r a t i n g s N [ i ]== ”AA+” ){

valueN [ i ]=PVN[ 2 ]
}
i f ( r a t i n g s N [ i ]== ”AA” ){

valueN [ i ]=PVN[ 3 ]
}
i f ( r a t i n g s N [ i ]== ”AA−” ){

valueN [ i ]=PVN[ 4 ]
}
i f ( r a t i n g s N [ i ]== ”A+” ){

valueN [ i ]=PVN[ 5 ]
}
i f ( r a t i n g s N [ i ]== ”A” ){

valueN [ i ]=PVN[ 6 ]
}
i f ( r a t i n g s N [ i ]== ”A−” ){

valueN [ i ]=PVN[ 7 ]
}
i f ( r a t i n g s N [ i ]== ”BBB+” ){

valueN [ i ]=PVN[ 8 ]
}
i f ( r a t i n g s N [ i ]== ”BBB” ){

valueN [ i ]=PVN[ 9 ]
}
i f ( r a t i n g s N [ i ]== ”BBB−” ){

valueN [ i ]=PVN[ 1 0 ]
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}
i f ( r a t i n g s N [ i ]== ”BB+” ){

valueN [ i ]=PVN[ 1 1 ]
}
i f ( r a t i n g s N [ i ]== ”BB” ){

valueN [ i ]=PVN[ 1 2 ]
}
i f ( r a t i n g s N [ i ]== ”BB−” ){

valueN [ i ]=PVN[ 1 3 ]
}
i f ( r a t i n g s N [ i ]== ”B+” ){

valueN [ i ]=PVN[ 1 4 ]
}
i f ( r a t i n g s N [ i ]== ”B” ){

valueN [ i ]=PVN[ 1 5 ]
}
i f ( r a t i n g s N [ i ]== ”B−” ){

valueN [ i ]=PVN[ 1 6 ]
}
i f ( r a t i n g s N [ i ]== ”CC+” ){

valueN [ i ]=PVN[ 1 7 ]
}
i f ( r a t i n g s N [ i ]== ”CC” ){

valueN [ i ]=PVN[ 1 8 ]
}
i f ( r a t i n g s N [ i ]== ”CC−” ){

valueN [ i ]=PVN[ 1 9 ]
}
i f ( r a t i n g s N [ i ]== ”C+” ){

valueN [ i ]=PVN[ 2 0 ]
}
i f ( r a t i n g s N [ i ]== ”C” ){

valueN [ i ]=PVN[ 2 1 ]
}
i f ( r a t i n g s N [ i ]== ”C−” ){

valueN [ i ]=PVN[ 2 2 ]
}
i f ( r a t i n g s N [ i ]== ” D e f a u l t ” ){

valueN [ i ]=1000 * rbeta ( 1 , 0 . 4 7 9 , 0 . 1 2 7 )
}

}
# v a l u e s<−c b i n d ( valueL , valueG , valueN )
# v a l u e s
# w r i t e . t a b l e ( v a l u e s , f i l e = ” v a l u e s . t x t ” , sep = ” ,”)
v a l u e s <− read . t a b l e ( ” v a l u e s . t x t ” , h e a d e r =TRUE, sep =” , ” )
va lueL<−v a l u e s $ va lueL

37



valueG<−v a l u e s $ valueG
valueN<−v a l u e s $ valueN

# P o r t f l i o v a l u e s are c a l c u l a t e d
p o r t v a l<−c ( )
f o r ( i i n 1 : l e n g t h ( va lueL ) ) {

p o r t v a l [ i ]= va lueL [ i ]+ valueG [ i ]+ valueN [ i ]
}
p o r t v a l
h i s t ( p o r t v a l , n c l a s s =40 , f r e q =FALSE , main= ’ P o s s i b l e P o r t f o l i o v a l u e s h i s t o g r a m ’ )

#VaR p e r c e n t i l e i s c a l c u l a t e d

s o r t e d p o r t v a l<−s o r t ( p o r t v a l , d e c r e a s i n g = FALSE)
s o r t e d p o r t v a l

VaR95= s o r t e d p o r t v a l [ (1 −0 .95 ) * l e n g t h ( s o r t e d p o r t v a l ) ]
VaR99= s o r t e d p o r t v a l [ (1 −0 .99 ) * l e n g t h ( s o r t e d p o r t v a l ) ]
VaR90= s o r t e d p o r t v a l [ ( 1 −0 . 9 ) * l e n g t h ( s o r t e d p o r t v a l ) ]
VaR95
VaR99
VaR90
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