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ABSTRACT
We use baryon acoustic oscillation and redshift space distortion from the completed
Baryon Oscillation Spectroscopic Survey, corresponding to data release 12 of the Sloan
Digital Sky Survey, combined sample analysis in combination with cosmic microwave
background, supernova and redshift space distortion measurements from additional
spectroscopic surveys to test deviations from general relativity. We present constraints
on several phenomenological models of modified gravity: First, we parametrise the
growth of structure using the growth index γ, finding γ = 0.566 ± 0.058 (68% C.L.).
Second, we modify the relation of the two Newtonian potentials by introducing two
additional parameters, GM and GL. In this approach, GM refers to modifications
of the growth of structure whereas GL to modification of the lensing potential. We
consider a power law to model the redshift dependency of GM and GL as well as
binning in redshift space, introducing four additional degrees of freedom, GM (z < 0.5),
GM (z > 0.5), GL(z < 0.5), GL(z > 0.5). At 68% C.L. we measure GM = 0.980±0.096
and GL = 1.082 ± 0.060 for a linear model, GM = 1.01 ± 0.36 and GL = 1.31 ± 0.19
for a cubic model as well as GM (z < 0.5) = 1.26± 0.32, GM (z > 0.5) = 0.986± 0.022,
GL(z < 0.5) = 1.067± 0.058 and GL(z > 0.5) = 1.037± 0.029. Thirdly, we investigate
general scalar tensor theories of gravity, finding the model to be mostly unconstrained
by current data. Assuming a one-parameter f(R) model we can constrain B0 < 7.7 ×
10−5 (95% C.L). For all models we considered we find good agreement with general
relativity.

Key words: gravitation – cosmology: observations – cosmology: theory – large scale
structure of the universe – dark energy – cosmological parameters

1 INTRODUCTION

For the last decade, increasingly accurate cosmological ob-
servations, including the latest Planck datasets (Planck Col-
laboration et al. 2016a) have reinforced a simple cosmo-
logical model in which General Relativity (GR) describes
all gravitational interactions, about 70 per cent of the Uni-

? E-mail: eva-maria.mueller@port.ac.uk

verse’s current energy density is in form of a Cosmological
Constant, and the remaining 30 per cent is dominated by
non-relativistic “dark matter” (Weinberg et al. 2013, e.g.).
While it is clear that the acceleration mimics the cosmolog-
ical constant in general effect, the exact physics is unclear,
and both new energy-density components and modifications
to GR, remain possibilities (Copeland et al. 2006; Koyama
2016).

Observational effects of a dynamic energy-density com-
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ponent and Modified Gravity (MG) are partially degener-
ate and careful data analysis should take into account both
possibilities. However, in general, observations of both cos-
mological geometry and structure growth can distinguish be-
tween these options as, in most modified gravity models, the
growth of structure is altered compared to general relativity.
Purely geometrical measurements, such as those from super-
novae (SN) and baryon acoustic oscillation (BAO) cannot
distinguish between these scenarios (Huterer et al. 2015).

The breakdown of GR opens up a plethora of possible
extensions, and no unique physical direction for the modi-
fication has yet been favoured. Consequently, recent analy-
ses have focussed on generic phenomenological descriptions,
dependent on a small number of parameters (Daniel & Lin-
der 2013; Asaba et al. 2013; Bean & Tangmatitham 2010;
Zhao et al. 2012; Dossett et al. 2011; Silvestri et al. 2013).
These provide a mechanism to test for particular types of
behaviour, which, if detected, would provide insight into the
type of new physics required. Alternatively we can think of
these phenomenological models as providing complementary
tests of GR.

Galaxy redshift surveys provide a number of ways of
obtaining cosmological information by exploiting different
physical mechanisms that encode information in the ob-
served distribution of galaxies. One of the cleanest measure-
ments is that of the Baryon Acoustic Oscillation peak, ob-
served within the clustering along (in ∆z) and across (in ∆θ)
the line-of-sight. This large-scale signal is difficult to distort
by galaxy formation processes, and allows robust measure-
ments of the Hubble parameter H and the angular diameter
distance DA combined with the comoving sound horizon rs,
which governs the primordial BAO position.

Galaxy surveys also allow measurements of the growth
of structure via Redshift-Space Distortions (RSD): the ap-
parent clustering along the line of sight receives a boost when
redshifts are translated into distances assuming all of the
signal results from the Hubble expansion, with amplitude
proportional to the amplitude of correlations in the peculiar
velocity field. The amplitude of the additive clustering sig-
nal is commonly parameterised by f(z)σ8(z), where f(z) is
the growth rate, and σ8(z) is the the linear-theory rms mass
fluctuations in spheres of radius 8h−1Mpc (Song & Perci-
val 2009). Thus RSD provide a measurement of the rate of
growth of cosmological structure, which depends strongly
on the large-scale strength of gravity. A review of BAO and
RSD measurements is provided in Alam et al. (2016a).

In this paper, we use the latest BAO and RSD mea-
surements from the Baryon Oscillation Spectroscopic Survey
(BOSS; Dawson et al. 2013), conducted as part of the Sloan
Digital Sky Survey III (SDSS-III; Eisenstein et al. 2011), to
test for evidence requiring modifications to GR. The dataset
used is described in Alam et al. (2016a), and results from the
combination of a number of different measurements of BAO
and RSD determined using different methods. In particu-
lar, the measurements are a combination of the BAO mea-
surements of Ross et al. (2016) and Beutler et al. (2016a)
and the fits to the full clustering signal including RSD of
Beutler et al. (2016b), Sánchez et al. (2017b), Grieb et al.
(2016) and Satpathy et al. (2016). These measurements are
optimally combined using the method described in Sánchez
et al. (2017a), and are provided as correlated measurements
of fσ8, DA/rs and Hrs at three different redshifts, z = 0.38,

z = 0.51 and z = 0.61, which we use along with the 9 × 9
covariance matrix for these measurements. The RSD mea-
surements are obtained under the assumption of a standard
LCDM universe, which could potentially bias the results on
more general theories of gravity. Barreira et al. (2016) find,
however, that within the context of MG models with scale-
independent growth the constraints on fσ8 are robust to
these assumptions by applying the same analysis pipeline as
was used in Sánchez et al. (2017b) and Grieb et al. (2016)
to mock catalogues of LCDM as well as the normal branch
of DGP cosmologies. For models with a scale-dependent
growth a pipeline which fully incorporated the MG model is
preferable but beyond the scope of this paper.

Our paper is presented as follows: In Section 2 we dis-
cuss the theoretical framework and common parametrisa-
tions of MG models. We focus on phenomenological descrip-
tions of MG to connect fundamental theories to observations
and to put general constraints on deviations from GR. A
summary of the data sets used in this analysis can be found
in Section 3. In Section 4 we present the results of perform-
ing a Monte-Carlo Markov Chain (MCMC) analysis.

2 PARAMETRISING MODIFICATIONS TO GR

In most theories of modified gravity the growth of structure
is altered from GR, however, there is no unique description
of the effect. Therefore we choose to parametrise deviation
from GR in a phenomenological, model independent way.
The following section summaries the parametrisations con-
sidered in this study.

2.1 Growth index

A minimal approach to model deviations from GR is to
introduce one additional parameter to the ΛCDM model,
parametrising the growth rate through the gravitational
growth index γ (Linder 2005; Linder & Cahn 2007) as

f(a) = Ωm(a)γ (1)

with the scale factor a, Ωm(a) = ρm(a)/[3M2
pH

2(a)] where
ρm is the matter background density, Mp the Planck mass,
and H(a) the Hubble expansion parameter. We also account
for the contribution of γ on RMS matter fluctuations today
by rescaling σ8 as

σ8,γ(z) = σ8(0)
Dγ(z)

DGR(0)

DGR(zhi)

Dγ(zhi)
(2)

with the growth factor calculated as

Dγ(a) = exp

[
−
∫ 1

a

da′f(a′)/a′
]

(3)

and assuming zhi = 50, well in the matter dominated era.
In GR we expect the growth index to be approximately

constant with γ ≈ 0.55. In this framework, the effect on the
background expansion is treated separately from the growth
of structure behaviour as an attempt to disentangle dark
energy and modified gravity and to investigate the physical
nature of extensions to the standard cosmological model. Its
simplicity as well as its potential to differentiate between dif-
ferent models makes the growth index parametrisation an ef-
fective way to test deviations from GR against observations.

MNRAS 000, 1–11 (2016)



Constraining modified gravity with BOSS 3

However, potential scale dependent behaviour of modified
gravity is not captured in this model.

Note, that the growth index can also be expressed in
terms of modifications to the two Newtonian potentials. We
will discuss this further in the next section.

2.2 GL and GM Parametrisation

In the Newtonian gauge perturbations to the metric can be
described by the two gravitational potentials, φ and ψ,

ds2 = a2[−(1 + 2ψ)dτ2 + (1− 2φ)dx2] (4)

where a is the scale factor, τ the conformal time and x the
spatial coordinate. Instead of phenomenologically modelling
the growth of structure via the growth index, one can di-
rectly alter the evolution of the two gravitational potentials,
φ and ψ, to account for potential modifications to GR. We
can modify the Poisson equations

∇2ψ = 4πGa2ρ∆×GM (5)

∇2(ψ + φ) = 8πGa2ρ∆×GL (6)

introducing the dimensionless parameters GM and GL. Here
we have omitted the contribution of the anisotropic stress
terms for simplicity since we are mainly interested in mod-
ifications to GR that arise in the matter dominated era.
The standard GR perturbation equations are recovered for
GM=GL=1. GM (short for Gmatter) parametrises modifica-
tions to the growth of structure ρ∆ through the ∇2ψ equa-
tion, whereas GL alters the lensing of light, ∇2(ψ+φ). This
parametrisation of modified gravity has the advantage of
allowing direct constraints on the fundamental, linearised
perturbation equations as well as connecting to the cosmo-
logical observables while minimising degeneracies between
the MG parameters. Note that, in the literature GM and
GL is also referred to as µ and Σ, e.g. see Daniel & Lin-
der (2013); Daniel et al. (2010); Simpson et al. (2013); Zhao
et al. (2012); Song et al. (2011).

Alternatively, one could also use the ratio of the two
potentials, referred to as the gravitational slip,

γslip =
φ

ψ
(7)

instead ofGL to parametrise the modified Poisson equations.
Measurements of GM and GL can be related back to

specific MG theories as well as yielding implications for
broad classes of theories. Pogosian & Silvestri (2016) show
that, for instance, Horndeski models seem to strongly favour
deviations of GM and GL from unity to have the same sign.
In general, both MG parameters can be function of scale and
redshift, GM (k, z) and GL(k, z). However, in this paper, we
only consider redshift dependent behaviour, keeping both
MG k-independent because of the current lack of a large set
of scale dependent BOSS DR12 RSD measurements (but
see (Johnson et al. 2014, 2016; Blake et al. 2016) for other
surveys). We model our ignorance of the exact redshift evo-
lution of GM and GL in two ways: First, we assume a simple
power law relation for both parameters

GX = 1 + (G
(s)
X − 1)as (8)

with X = {M,L}, considering a constant redshift evolution
(s=0), as well as a linear (s=1) and cubic (s=3) model. Here

the subscript (s) in G
(s)
X indicates the corresponding model.

While these parametrisations are not expected to reflect
the actual evolution in many models, they can be viewed as
providing a possible indication of deviations from general
relativity. Note however that using a power law time de-
pendence does not necessarily weight high and low redshift
data correctly, and could bias the results (Zhao et al. 2012).
Therefore we also consider other parametrisations below. If a
signal is seen, then a wide variety of models or more detailed
parametrisations should be employed.

Second, we bin GM and GL in two redshift bins, z <
0.5 and z > 0.5, adding four additional parameters to the
standard ΛCDM model,

PMG = {GX(z < 0.5), GX(z > 0.5)} (9)

with X = {M,L}.
We modify the publicly available MGCAMB code (Ho-

jjati et al. 2011; Zhao et al. 2009), which itself is a modifi-
cation of the Code for Anisotropies in the Microwave Back-
ground (CAMB) (Lewis et al. 2000), to include these mod-
els. We assume deviation of GR arises during the matter
dominated era, transitioning from the standard GR pertur-
bation equation to the modified Einstein equation, as given
by Eq. (5) and Eq. (6), starting at redshift zMG < 50.

In the latter model, however, sharp transitions of GM
and GL between the two redshift bins can cause numerical
instability which leads to artificial constraints on GL from
growth rate observations. We therefore smooth the transi-
tion between the bins using an arctan function of width
∆z = 0.002. Note, that since MGCAMB evolves the per-
turbation equation using the µ - γslip parametrisation we
apply the smoothing to µ and γslip with µ = GM and
γslip = 2GL/GM − 1 in each bin respectively.

TheGM -GL formalism can also be related to the growth
index γ (see Section 2.1). At sub-horizon scales γ can be
expressed in terms of GM following (32) of Pogosian et al.
(2010)

GM =
2

3
Ωγ−1
m

[
Ωγm + 2 +

H ′

H
+ γ

Ω′m
Ωm

+ γ′ln(Ωm)

]
(10)

where primes indicate derivatives with respect to lna. The
GM -GL formalism has the advantage of easily including ob-
servational constraints from CMB lensing, weak lensing or
the ISW effect which are ignored when using the imple-
mentation outlined in Section 2.1 which only accounts for
direct growth rate measurements. Since the growth index
only determines GM , leaving GL or alternatively the grav-
itational slip φslip undefined, in order to fully apply this
formalism, one needs to impose an additional theoretical
prior on the model by fixing GL to unity (see e.g. Simp-
son et al. 2013). Alternatively, one can fix the gravitational
slip, γslip = 1, as implemented in MGCAMB (Hojjati et al.
2011). Beware, that these two approaches are essentially dif-
ferent parametrisations with different underlying theoretical
assumptions and different observational effects. Therefore,
we will refer to the growth rate parametrisation fixing γslip

as {γ | slip}, and the parametrisation fixing GL as {γ | GL}.
For more details on the relation between the different

parametrisations in this framework see, for instance, Daniel
et al. (2010).

MNRAS 000, 1–11 (2016)
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2.3 Scalar-tensor theories

Alternatively to a purely phenomenological description, one
can start by considering first principals and a more general
form of the Lagrangian to include a wide range of modified
gravity models. Using symmetries, self-consistency condi-
tions and stability requirements the Lagrangian can be sim-
plified and a general expression for the perturbation equa-
tion can be derived.

Here we consider general scalar-tensor theories using the
BZ parametrisation (Bertschinger & Zukin 2008; Zhao et al.
2009),

GM =
1 + β1λ

2
1k

2as

1 + λ2
1k

2as
(11)

γslip =
1 + β2λ

2
2k

2as

1 + λ2
2k

2as
(12)

with the gravitational slip, γslip, defined as

γslip =
φ

ψ
(13)

and the dimensionless parameters β1 and β2 as well as the
redshift evolution parameter s and the length scale param-
eters λ1 and λ2.

This parametrisation can capture the effect of most
scalar-tensor theories in the quasi-static regime and can be
used to test a wide range of modified gravity theories.

A subset of this model can recover f(R) theories: As-
suming the relation

β2
1 =

λ2
2

λ2
1

= 2− β2
2
λ2

2

λ2
1

(14)

between the length scale parameters as well setting β1 = 4/3
for a fixed coupling between the scalar field and matter, and
s ≈ 4 for viable models (Zhao et al. 2009; Hojjati et al. 2012),
leaves us with a one parameter extension to GR given by

B0 ≡
2H2

0λ
2
1

c2
. (15)

3 DATA SETS

In this section we outline the observational data sets used
in our analysis, a combination of large scale structure (LSS)
measurements, cosmic microwave background (CMB) exper-
iments as well as supernovae type Ia (SN Ia) observations.

3.1 BOSS DR12

We use measurements of the post-reconstruction BAO po-
sition as a function of direction to the line-of-sight, and the
RSD amplitude, measured from the Data Release 12 (Alam
et al. 2015) of BOSS. These measurements were presented
in (Alam et al. 2016a), and were obtained by optimally com-
bining measurements made using a number of methods in-
cluding measuring the BAO feature in the correlation func-
tion (Ross et al. 2016), and power spectrum (Beutler et al.
2016a) multipoles, and RSD from fits to the shape of mul-
tipole and angular wedge moments of the correlation func-
tion (Satpathy et al. 2016; Sánchez et al. 2017b), and the
power spectrum (Beutler et al. 2016b; Grieb et al. 2016).

The methodology to derive the consensus constraints is dis-
cussed in detail in Sánchez et al. (2017a).

The galaxy catalogues used, and mitigation techniques
for their nuances are described in detail in (Reid et al. 2016),
which also presents the targeting algorithm developed to se-
lect the galaxies: the galaxies were selected from photometry
taken using the Sloan telescope (Gunn et al. 1998, 2006),
which was also used for subsequent follow-up spectroscopy
(Smee et al. 2013). All the photometry was re-processed and
released in the Data Release 8 DR8 (Aihara et al. 2011).
Details of the spectroscopic data can be found in the DR12
data release paper (Alam et al. 2015), while the spectro-
scopic data reduction pipeline and redshift determination
are discussed in Bolton et al. (2012).

3.2 CMB

We utilise the temperature CTTl , low-l polarisation CTEl as
well as lensing Cφφl spectra from the Planck 2015 results
(Planck Collaboration et al. 2016a). The constraints on mod-
ified gravity primarily come from lensing as well as the inte-
grated Sachs-Wolfe (ISW) (Sachs & Wolfe 1967; Kofman &
Starobinsky 1985). A more detailed summary about the ef-
fects of modified gravity on the CMB can be found in Planck
Collaboration et al. (2016b).

3.3 SN Ia

We use the joint light-curve analysis (JLA) of SN Ia obser-
vations by Betoule et al. (2014), a compilation of 740 SN Ia
from the SDSS-II supernovae survey (Frieman et al. 2008;
Kessler et al. 2009; Sollerman et al. 2009; Lampeitl et al.
2009; Campbell et al. 2013) as well as the Supernova Legacy
Survey (SNLS, Astier et al. 2006; Sullivan et al. 2011) data.
Even though SN Ia observations cannot constrain the growth
of structure directly, they provide strong constraints on the
cosmological background parameters and hence decrease the
overall uncertainty on all parameters.

3.4 RSD measurements

In addition to the DR12 BOSS data, we use RSD measure-
ments from three different surveys (see Table 1): the Six-
Degree Field Galaxy Survey (6dFGS, Beutler et al. 2012),
the SDSS Data Release 7 Main Galaxy Sample (MGS,
Howlett et al. 2015) and the VIMOS Public Extragalactic
Redshift Survey (VIPERS, de la Torre et al. 2013).

The 6dFGS consists of 81,971 galaxies covering 17,000
deg2 at low redshifts with zeff = 0.067. The growth rate mea-
surement of fσ8 = 0.423±0.055 of Beutler et al. (2012) was
obtained modelling the 2D galaxy correlation function. The
MGS contains 63,163 galaxies distributed over 6,813 deg2

at z < 0.2 yielding to a growth rate of fσ8 = 0.49+0.15
−0.14, by

fitting the two-point correlation function of galaxies in the
sample. VIPERS is a high redshift survey probing the LSS
of the universe at 0.5 < z < 1.2 covering 24 deg2, measur-
ing the growth rate fσ8 = 0.47 ± 0.08 using the monopole
and quadrupole moments of the redshift-space correlations
in their analysis. Table 1 summarises the RSD measurement
used in this study.

MNRAS 000, 1–11 (2016)
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Table 1. Summary of the growth rate measurements used in this
survey in addition to the DR12 BAO + RSD joint analysis.

fσ8 zeff survey reference

0.423 ± 0.055 0.067 6dFGS Beutler et al. (2012)

0.49+0.15
−0.14 0.15 MGS Howlett et al. (2015)

0.47 ± 0.08 0.8 VIPERS de la Torre et al. (2013)

We do not use the BAO measurements of 6dFGS Beut-
ler et al. (2011) and MGS since these are likely correlated
with the RSD measurement of the corresponding survey.
Without a joint analysis of RSD and BAO measurements, or
further assessment of the correlation, treating both measure-
ments as independent could potentially lead to biased cos-
mological constraints. Therefore we only include the RSD
measurements to get the best possible constraints on the
growth of structure.

Similarly, due to the slight overlap with BOSS, we do
not include the WiggleZ (Blake et al. 2011) and Data Release
7 LRG (Samushia et al. 2012) measurements, since both have
much less precision than DR12.

4 CONSTRAINTS ON MODIFIED GRAVITY

In this section we perform a Monte-Carlo Markov Chain
(MCMC) analysis using the publicly available CosmoMC
(Lewis & Bridle 2002; Hojjati et al. 2011) with our modifi-
cations to the code implemented as discussed in Section 2.
We run eight chains for each model until a convergence of
R− 1 < 0.03 is reached according to the Gelman-Rubin cri-
terion (Gelman & Rubin 1992). We assume a ΛCDM back-
ground with the MG parameters only affecting the perturba-
tion equations. Therefore we vary the following cosmological
parameters,

P = {wcdm, wb, 100θMC, τ, ns, ln(1010As),XMG} (16)

with the cold dark matter energy density wcdm = Ωcdmh
2,

baryon energy density wb = Ωbh
2, the approximate sound

horizon at last scattering θMC as used by CosmoMC, reion-
ization optical depth τ , scalar spectral index ns, amplitude
of the primordial curvature perturbations As and the mod-
ified gravity parameters XMG for a given model. We fix the
sum of the neutrino mass to 60 meV and assume an effective
number of relativistic species Neff = 3.046.

4.1 Growth index

Fig. 1 shows the DR12 BAO + RSD consensus constraints
in combination with other data sets (see Section 3) in the
σ8 − γ plane, adding the growth index γ as a 1-parameter,
modified gravity extension to the base ΛCDM. We find ex-
cellent agreement with GR measuring γ = 0.558 ± 0.086
at 68% C.L. from the DR12 consensus measurements in-
cluding Planck temperature compared to the 6-parameter
base ΛCDM model. The improvement of the fit when vary-
ing γ is marginal with ∆χ2 = 0.1 compared to ΛCDM, al-
beit with higher complexity of the model. The constraints
tighten when adding in further data sets yielding to a 10%

0.780 0.795 0.810 0.825 0.840
σ8

0.30

0.45

0.60

0.75

0.90

γ

DR12 + Planck TT+lowP+lens

DR12 + Planck TT+lowP+lens + SN + RSD

Figure 1. 68% and 95% constraints on the modified gravity pa-
rameter γ and σ8 in the base γΛCDM model, using the DR12

BAO+RSD combined analysis and Planck temperature, low-` po-

larisation and lensing (red contours), and including RSD measure-
ment from additional LSS surveys as well as SN data as described

in Section 3 (blue contours). The dashed line shows the GR pre-

diction for the growth index, γ ≈ 6/11 (Linder 2005).

measurement uncertainty on the modified gravity parame-
ter, γ = 0.566± 0.058, from DR12 BAO + RSD, CMB, SN
and other RSD measurements.

Our results are in good agreement with Sánchez et al.
(2017b) who found γ = 0.609±0.079 combining BOSS DR12
configuration space wedges measurements with Planck data
as well as with Grieb et al. (2016) who quote γ = 0.52±0.10
using Fourier wedges. γ = 0.52 ± 0.10 using Fourier space
wedges. We can improve upon previous studies, i.e. Beutler
et al. (2014) , by 30-40%.

As outlined in Section 2, there is a subtlety in how the γ
formalism is applied when including effects of CMB lensing,
weak lensing or the ISW effect. Instead of just parametrising
the growth of structure (see Section 2.1), one can approxi-
mate the Newtonian potential ψ in terms of γ and evolve
the modified perturbation equation as implemented MG-
CAMB, fixing either the ratio of the two potentials to unity,
γslip = 1 or fixing GL = 1; we denoted the former as the
{γ | slip} formalism and the latter {γ | GL}. We measure
γ = 0.513 ± 0.027 at 68 % C.L in the {γ | slip} parametri-
sation including effects of CMB lensing and the ISW effect.
Using the {γ | GL} formalism we find γ = 0.529±0.067 at 68
% C.L . We find differences in the observational constraints
because of the underlying theoretical assumption since the
{γ | GL} implementation leaves the gravitational lensing
potential unchanged. Our measurement when including ef-
fects of CMB lensing, weak lensing or the ISW effect of the
growth index is in good agreement with previous studies.
For instance, Alam et al. (2016b) found γ = 0.477 ± 0.096
at 68% C.L. for {γ | slip} using CMASS DR11 and Planck
2013 angular power spectrum data and γ = 0.612 ± 0.072
using data from the Planck satellite in combination with six
LSS surveys; Johnson et al. (2016) quote γ = 0.665±0.0669
at 68% C.L. using the {γ | GL} parametrisation for a combi-
nation of multipole measurements from WiggleZ and BOSS,

MNRAS 000, 1–11 (2016)
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1.00

1.04

1.08

G
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)
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DR12

Planck lens

DR12 + Planck TT+lowP+lens

DR12 + Planck TT+lowP+lens + SN + RSD

Figure 2. Joint 68% (dark shaded) and 95% (light shaded)

C.L. for the modified gravity parameters G
(0)
M and G

(0)
L assum-

ing a constant model, as defined in Section 2.2, for the different
data sets: DR12 (green contours), Planck lensing (grey contours),

DR12 + Planck temperature, low-` polarisation and lensing (red

contours) and DR12 + Planck temperature,low-` polarisation and
lensing + SN + RSD (blue contours) (for detail on the data sets

see Section 3). Here we have fixed all other cosmological param-

eters to their Planck best fit value to highlight the degeneracies
between the two modified gravity parameters; this figure should

not be viewed as giving cosmological confidence regions. GM is
mainly constrained by LSS RSD measurements whereas the un-

certainty on GL is given by lensing measurements.

.

velocity power measurements from the 6dF survey as well
as additional BAO, SN, CMB and ISW measurements.

4.2 GM -GL parametrisation

Fig. 2 shows the 68% and 95% confidence regions of GM
and GL assuming a constant model (s=0) for different data
sets. Here we have fixed the other cosmological parameters
to highlight the degeneracy between the modified gravity
parameters of the different cosmological probes. The DR12
combined sample BAO and RSD measurement can constrain
GM , whereas the uncertainty on GL is determined by CMB
lensing in accordance to their definition (see Section 2.2).
The combination of both growth of structure and lensing
measurements, yields tight constraints on MG. The results
of our MCMC analysis now marginalising over the ΛCDM
cosmological parameters are displayed in Fig. 3 and sum-
marised in Table 2. Note that the 95% C.L. tension with
GR seen in Fig. 2 with fixed cosmology goes away when
doing the proper marginalisation over cosmology. We find
excellent agreement with GR for all models and data sets
considered, finding both parameters to be unity within 1σ.
The errors increase with a stronger redshift dependency
since deviations from GR have a smaller impact at high red-
shift, i.e. G

(s)
X contributes less to the overall GX defined as

GX = 1 + (G
(s)
X − 1)as. Therefore, the constant model is the

best constrained with the smallest uncertainty and the cu-
bic model the least constrained with large errors. Note how
assuming a particular redshift dependence can shift the con-

Table 2. Summary of the 68% C.L. constraints on GM and GL,

marginalised over the ΛCDM parameters, from the MCMC anal-
ysis for a constant, linear and cubic model corresponding to the

blue contours of Fig. 3.

model G
(s)
M G

(s)
L

s = 0: constant 0.991 ± 0.022 1.030 ± 0.030
s = 1: linear 0.980 ± 0.096 1.082 ± 0.060

s = 3: cubic 1.01 ± 0.36 1.31 ± 0.19

tours. Including additional RSD measurements to the DR12
data set can improve the constraints, in particular for the
cubic model, since additional measurements constrain the
growth of structure over a larger redshift range. The χ2 for
all three models is comparable, showing no preference for a
particular redshift evolution, with ∆χ2 < 0.1 compared to
ΛCDM.

Secondly, we consider a model with the MG parameters
binned in redshift space. Fig. 4 displays the constraints on
GM (z) and GL(z) for two redshifts, z < 0.5 and z > 0.5, ex-
tending the standard ΛCDM model by a total of four extra
parameters. The red contours show the uncertainty derived
from the DR12 in combination with Planck temperature
(TT), low-` polarisation (lowP) and lensing data whereas
the blue contours include additional SN and RSD measure-
ments as described in Section 3.3 and Section 3.3. The errors
on GM (z) are improved significantly by adding in additional
growth rate measurements at multiple redshifts since GM
alters the growth of structure. The improvements on GL,
however, are smaller because the constraints on GL(z) are
dominated by CMB lensing and the ISW effect. Using all
datasets the 68% CL results are

GM (z < 0.5) = 1.26± 0.32,

GM (z > 0.5) = 0.986± 0.022,

GL(z < 0.5) = 1.067+0.050
−0.064,

GL(z > 0.5) = 1.037± 0.029, (17)

in very good agreement with GR at the 68% CL. We find
no significant improvement of the fit to the data compared
to ΛCDM with ∆χ2 = 0.25.

Our results are consistent with previous studies with
slight differences arising due to the usage of different data
sets: Johnson et al. (2016) derive constrains on GM and
GL, binned in both redshift and scale, using multiple mea-
surements from the WiggleZ and BOSS DR11 CMASS and
velocity power measurements from the 6dF survey in combi-
nation with CMB and SN data, confirming GR at 95% C.L..
Song et al. (2011) adopt a linear and cubic model for GM
and GL with a combination of peculiar velocity and weak
lensing measurements finding consistency with GR. For fur-
ther studies see for instance Daniel et al. (2010); Simpson
et al. (2013); Planck Collaboration et al. (2016b).

4.3 Scalar-tensor theories

Fig. 5 shows the likelihood constraints on the parameters
of the BZ model, including a prior on s given in Tab. 3.
As s tends to infinity, we see from Eq. (12) that the terms
that depend on β1 and β2 become negligible, except at very
low redshifts. Consequently in this limit, β1 and β2 can take
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Figure 3. 68% and 95% confidence region of the modified gravity parameters GM and GL parametrised as GX = 1 + (G
(s)
X − 1)as,

assuming a constant redshift evolution with s = 0 [left panel], linear with s = 1 [middle panel] and cubic with s = 3 [right panel]. Note
the very different scales. A stronger redshift dependency loosens up the constraints since the effect of modified gravity is diminished at

high redshift, leaving the cubic model to be the least constrained scenario. In the constant model, however, deviations from GR start
growing at high redshifts yielding tight constraints. The dashed grey lines show the GR prediction of the modified gravity parameters

GM=GL=1.

Table 3. Summary of the priors on the Scalar-Tensor theory
parametrisation. All priors are linear.

Model Parameter Prior range

BZ β1 0 - 3

β2 0 - 3

λ2
1 (0 - 2) × 106 Mpc2

λ2
2 (0 - 2) × 106 Mpc2

s 0 - 10
f(R) B0 0 - 0.01

any value without changing the model. If the data allows
this limit, then we see that the β1 and β2 constraints are
degenerate with the upper limit placed on s by the prior. In
effect we would only find meaningful constraints on β1 and
β2 if we also measure s. Fig. 5 shows that this is not the case
for the data sets under consideration, and consequently, the
constraints on β1 and β2 shown in the left panel of Fig. 5
are purely determined by the upper limit of the prior on s.
Consequently, we do not quote any parameter measurements
for this model. The constraints on β1 and β2 for different
priors on s can be found in Fig. 6. Decreasing the prior range
on s reduces the uncertainty on β1 and β2 significantly.

Fig. 7 shows the constraints on B0 in the one param-
eter f(R) model as defined in Sec. 2.3. We find an upper
limit of B0 < 7.7× 10−5 at 95% C.L including all data sets
considered in this study. Neither model is favoured by the
data compared to ΛCDM in our analysis. Note, that we ap-
plied a linear prior on B0 to sample its distribution function.
Alternatively, one could assume a logarithmic prior on B0

instead, to give equal weight to large and small scales. The
caveat of this approach, however, is that the range of logB0

is unknown a priori, introducing a dependence of the con-
straints on the lower limit of the prior. Since for all values
of logB0 < −6, f(R) mimics LCDM, we adopt a prior on
logB0 of [-6,-2] as in Song et al. (2015). We find an upper
limit of logB0 < −4.54 at 95 % C.L..

Another caveat in our analysis is that the BZ as well as

f(R) parametrisation is k-dependent whereas all RSD obser-
vations measure fσ8(z) at an effective scale of k ≈ 0.15−0.2
h/Mpc. Calculating fσ8(z) averaged over all scales as imple-
mented in CosmoMC could potentially bias the results. The
authors of (Alam et al. 2016b), find that using the growth
rate calculated at k = 0.2 h/Mpc instead of averaged over k
reduced the error on B0 by 30-40%. In general, a RSD mea-
surement binned in redshift as well as scale f(z, k) would be
necessary to improve upon the errors on the BZ parameters
and to detect a scale dependent deviation from gravity. We
leave this analysis for future work.

5 CONCLUSIONS

In this paper, we have used recent galaxy clustering measure-
ments made from the BOSS DR12 data to test for evidence
supporting models that modify gravity beyond GR. We con-
sider a number of extensions to the ΛCDM+GR model in-
spired by modifications to GR, and test whether these ex-
tensions are supported by the data. One of the simplest such
model is the γ parametrisation of the growth rate, which we
introduced in Section 2.1. In fact, we highlighted a subtlety
in the common implementation of this model, in that people
often combine γ with additional assumptions, and we high-
light two of these, which we call {γ | slip} and {γ | GL}, and
we compare constraints from all three in Section 4.1. When
comparing measurements made in different analyses, or in
implementations in packages such as MGCAMB, which uses
the {γ | slip} assumption, it is important to understand
which model is being used. Moving beyond γ, we have in-
troduced, in Section 2.2, dimensionless parameters GM and
GL into the Einstein equations allowing non-GR evolution
of the gravitational potentials φ and ψ. Finally, we consider
a 5-parameter BZ parameterisation of deviations from GR
as well as a one parameter f(R) model, introduced in Sec-
tion 2.3.

The BOSS DR12 measurements, along with those from
the CMB are considered the most robust as they rely on
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Figure 4. 68% (dark shaded) and 95% (light shaded) C.L. on the modified gravity parameters GM -GL considering two redshift bins,
z < 0.5 and z > 0.5 for different data sets: DR12 + Planck (red contours) and DR12+Planck+SN+RSD (blue contours). Including further

LSS measurements to the DR12 sample can significantly improve the constraints on GM as the growth of structure is measured over a

larger redshift range, especially to lower redshifts. However, the uncertainty on GL is dominated by CMB lensing and ISW measurements
and therefore doesn’t improve upon including additional RSD measurements. Dashed grey lines show the GR prediction, GM=GL=1.

simple physical processes and minimal additional modelling.
The comparison between BOSS BAO and RSD measure-
ments compares expansion and structure-growth, which is
particularly powerful for making such measurements and
testing GR, and the BOSS DR12 measurements are the most
accurate to date. To extend the redshift range covered, we
combine the BOSS measurements with BAO and RSD from
the 6dFGS, VIPERS and the SDSS Main Galaxy Sample,

chosen because they do not spatially overlap with BOSS.
As well as the large-scale structure data, we include Planck
CMB measurements, excluding polarisation data because of
potential calibration issues, and the JLA supernovae data.
These data sets were introduced in Section 3.

Results from the fits to data are presented in Section 4.
For the γ parameterisation, we see significant changes in the
confidence intervals depending on the exact implementation:
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assumptions on s using DR12+Planck+SN+RSD data; grey con-
tours assuming a prior range for s of s = [0, 10], orange contours

refer to s = [0, 6], red to s = [0, 3] while the green contours are

for a model with s fixed to 3, and blue for s = 1.

γ, {γ | slip} or {γ | GL}, but all are consistent with GR. For
the parameterisations with more free parameters we again
see that the ΛCDM+GR model is an acceptable fit, showing
no evidence requiring modified gravity.

Even though we have found no evidence requiring modi-
fications to GR in the data sets analysed, there are a number
of observations in mild tension with the simple ΛCDM+GR
cosmological model. Given the free parameters within the
ΛCDM+GR framework, these tensions generally show up
when ΛCDM parameter measurements, made using differ-
ent data, are compared. One source of tension is shown when
the lensing measurements of the amplitude of matter cluster-
ing from CFHTLS (Heymans et al. 2012) and KiDS (Hilde-
brandt et al. 2016) are compared to those made with Planck
CMB measurements including CMB-lensing, with the KiDS
data showing a 2.3σ tension with the Planck 2015 results
(Hildebrandt et al. 2016). There are also data sets where

0.28 0.29 0.30 0.31 0.32 0.33
Ωm

0.0
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×10−4
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Figure 7. 2D contours of the f(R) parameter B0. The red

contours refers to the DR12 combined analysis + Planck mea-

surements (B0 < 2.0 × 10−4 at 95% C.L.) whereas the blue
contours include SN as well as additional RSD measurements

(B0 < 7.7 × 10−5 at 95% C.L.)

there is mild tension between measurements using the same
probes: e.g. between the Planck 2015 results and those from
combining WMAP, SPT, and ACT (Hinshaw et al. 2013;
Story et al. 2013; Sievers et al. 2013; Calabrese et al. 2013).
In addition, several high-precision direct measurements of
H0 measure values about 10 per cent higher than those in-
ferred from combinations of Planck and BOSS BAO data
(Riess et al. 2011; Freedman et al. 2012; Riess et al. 2016;
Alam et al. 2016a). The DR12 analysis of Gil-Maŕın et al.
(2016) presents a 2.5σ tension with the ΛCDM+GR model
driven by measurements of the redshift-space bispectrum.
While this level of tension is potentially interesting, it relies
on modelling the redshift-space bispectrum, an less estab-
lished field compared with modelling BAO and RSD mea-
surements. In our analysis we have included measurements
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from 2-point clustering only, finding good consistency with
the ΛCDM+GR model. None of these ’discrepancies’ is at
the level of providing strong evidence for a breakdown of the
simple ΛCDM+GR model, and under-estimated systematic
and/or statistical errors in one of more measurements can-
not be ruled out at this stage.

The recently reported tension of fσ8 measurements
from RSD measurements being lower than ΛCDM+GR ex-
pectations (Macaulay et al. 2013) has been alleviated by the
recent BOSS DR12 results, which are within 1σ of the ex-
pectation (Alam et al. 2016a). Our work using these data
and other to look for evidence of modified GR further sup-
ports the view that there is no remaining tension in the RSD
measurements.
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