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Cosmic spatial curvature is a fundamental geometric quantity of the Universe. We investigate
a model independent, geometric approach to measure spatial curvature directly from observations,
without any derivatives of data. This employs strong lensing time delays and supernova distance
measurements to measure the curvature itself, rather than just testing consistency with flatness.
We define two curvature estimators, with differing error propagation characteristics, that can cross-
check each other, and also show how they can be used to map the curvature in redshift slices, to
test constancy of curvature as required by the Robertson-Walker metric. Simulating realizations of
redshift distributions and distance measurements of lenses and sources, we estimate uncertainties on
the curvature enabled by next generation measurements. The results indicate that the model inde-
pendent methods, using only geometry without assuming forms for the energy density constituents,
can determine the curvature at the ∼ 6× 10−3 level.

I. INTRODUCTION

Spatial curvature is one of the two fundamental quan-
tities defining the Robertson-Walker (RW) metric of a
homogeneous and isotropic spacetime. Unlike spacetime
curvature, which depends on the second derivative of the
scale factor a(t) entering the metric, spatial curvature k
is a purely geometric quantity. The most popular the-
ories of early universe inflation predict spatial flatness
k = 0, so any detection of nonzero spatial curvature
(hereafter just called curvature) would have significant
impact on our understanding of the early universe and
cosmic evolution. Moreover, if measurements of k from
observations at different redshift (or in different direc-
tions) significantly disagreed with each other, then this
could call into doubt the Robertson-Walker metric and
cosmic homogeneity and isotropy.

Many consistency tests or“alarms” for spatial flatness
have been proposed (e.g. [1–6]), but here we focus on
methods that actually deliver estimates of the curvature
parameter k or Ωk = −k/(a0H0)

2, where a0H0 is the
present expansion rate (see, for example, [7, 8]). Fur-
thermore, we aim to have the curvature derived directly
from the observations, without any derivatives taken of
noisy data. Finally, we want to proceed in as model inde-
pendent manner as possible, without using any dynamics
from the Friedmann equations. Recall that spatial cur-
vature is a geometric quantity, and so we can in principle
test it by purely kinematic means, without imposing any
equations of motion. That is, we never need to know the
expansion factor a(t) or the Hubble parameter H(a).

These three principles ensure that any signals found
of nonzero flatness, and in particular its evolution, arise
from fundamental origins and not simply a misestimate
of the matter density or numerical inaccuracy of differ-
entiation of noisy data, say. Rather they will be as pure
tests as we can enable of spatial curvature and of ho-

mogeneity and isotropy. For some other approaches to
determining curvature see [9–12].

In Sec. II we review the relation of curvature to dis-
tance measurements and derive an expression for Ωk di-
rectly in terms of observables. In addition we derive a
redshift dependent curvature function, the K test, that
must hold for the RW metric. We model distance uncer-
tainties and carry out their error propagation to curva-
ture in Sec. III. In Sec. IV we discuss observational con-
straints from various realizations of future survey data.
We summarize and conclude in Sec. V.

II. CURVATURE AND DISTANCES

Triangulating a surface to measure its topography
has an exceedingly long history. The generalization to
nonEuclidean spaces showed that angle deficits and area
deficits had an intimate relation to curvature. However,
a single triangle generally requires measurement of angles
as well as distances to test curvature, and this is not nec-
essarily practical for cosmological observations (except
for the angle at the observer).

Weinberg [13] applied a volume measure formed from
distances (distances only, no angles) between four points
in Tolkien’s Middle Earth, where a flat surface would
have zero volume in the three space. This demonstrates
a test of flatness (of a 2D surface) and a measurement of
curvature. (In fact, for the distances given Middle Earth
is not flat but has positive curvature with a measurable
radius of curvature.)
The same can be applied in cosmology, where distances

between two points can be measured either directly, if one
point is at the observer, or through gravitational lensing
if the two points lie along the same light ray reaching
the observer. Unfortunately, “cross” distances, i.e. those
between two lines of sight, cannot be measured geomet-
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rically easily (though they can statistically), and so the
Middle Earth analogy fails. However, the expansion of
the universe brings additional information so that a single
triangle, associated with lens and source redshifts such
that the light reaches the observer, can in fact measure
curvature.
By measuring the distance to a gravitationally lensed

source, rs, to the object doing the lensing, rl, and the
distance between the two along the null geodesic followed
by the light ray, rls, the curvature can be measured. In
particular,

rls = rs

√

1 + Ωkr2l − rl
√

1 + Ωkr2s , (1)

where all r are conformal distances. This follows from the
properties of null geodesics in Robertson-Walker space-
time and does not depend at all on the Friedmann equa-
tions.
The quantity Ωk is what we seek to determine. Here

Ωk =
−k

a2
0
H2

0

, (2)

where H0 is the Hubble constant and a0 is the present
scale factor of the universe. Recall that one cannot de-
fine k = ±1 and a0 = 1 simultaneously – one can only
normalize one or the other.
The distances rl and rs relative to the observer can be

measured through geometric probes such as Type Ia su-
pernova distances or baryon acoustic oscillations (BAO).
The distance rls between lens and source can be found
through strong gravitational lensing; here we focus on
the use of time delays between multiple images from a
variable source as it is closer to a geometric probe. One
could also use measurements of the image separation, and
hence Einstein radius, though this may be more sensitive
to lens modeling and dynamical measurements of the lens
velocity dispersion.
The time delay distance is here defined as

D∆t =
rlrs
rls

, (3)

where we omit the conventional prefactor of 1 + zl since
that can itself be directly and accurately measured.
Putting together Eqs. (1) and (3) we can solve for the

curvature in terms of observables1,

Ωk =
D2

∆t

4

(

1

r2l
− 1

r2s
− 1

D2
∆t

)2

− 1

r2s

=
1

4





1

D2
∆t

− 2

(

1

r2l
+

1

r2s

)

+D2

∆t

(

1

r2l
− 1

r2s

)2


(4)

1 Ref. [5] gives an equivalent expression, but not strictly in terms
of observables.

This will be the central equation in our analysis.
Note that we have written all distances in terms of the

dimensionless quantities ri. For supernova and BAO dis-
tances, this is not unreasonable as they are measured rel-
ative to low and high redshift anchors respectively. Time
delay distances however are dimensional quantities. If
desired we can instead write all distance as dimensionful,
i.e. di = H−1

0
ri, and then the left hand side quantity of

Eq. (4) we determine is really ΩkH
2
0 , or more familiarly

Ωkh
2 where h is the reduced Hubble constant.

Motivated by a first order expansion of Eq. (1) for small
curvature (cf. [7]) we could also establish a “K test”. This
appears as

K(zl, zs) ≡
1

D∆t
− 1

rl
+

1

rs
(5)

≈ −1

2
Ωk(rs − rl) +O(Ω2

k) .

We emphasize that in this article we use the full form
of the first line to test curvature, not just the first or-
der expansion. The K test is useful to check: 1) Is this
combination of distances consistent with Ωk = 0?, and
2) If not, is its redshift dependence consistent with the
Robertson-Walker prediction of Eq. (6)? We will inves-
tigate the use of both the full expression for Ωk and the
K test.

III. ESTIMATING CURVATURE

To carry out the curvature estimation we need a mea-
surement of D∆t from a strongly lensed time delay sys-
tem, and reconstructed distances at the redshifts zl and
zs, such as from a suite of supernova or BAO distances
covering these redshifts. It would be more effective if
the exact rl and rs could be measured directly but one
is unlikely to have distances at exactly the right red-
shifts, and so must use an error-controlled interpolation
procedure from data (using standardized candles – Type
Ia supernovae – or rulers – BAO) at neighboring red-
shifts. Fortunately there have been already several suc-
cessful statistical approaches proposed to reconstruct the
distance-redshift relation (or indeed expansion history of
the universe) in a model independent manner, which can
be used to estimate cosmic distances at any given inter-
mediate redshift without assuming a cosmological model,
e.g. [14–19]. Furthermore, such distances in future sur-
veys will be much more densely measured in redshift than
current data, simplifying the process.
One could possibly use a different combination of dis-

tances from the same strong lens system to get rl, say,
e.g. from the image angular separation or Einstein ra-
dius, but this would introduce lens modeling uncertain-
ties. (Double source plane lenses [20–22] offer another
method to get geometric distances, but only as ratios of
ratios.) We feel that systematic uncertainties from in-
terpolation procedures are better understood than from
the necessary lens modeling and dynamics. However, see



3

[23–25]. For a phenomenological, non-kinematic use of
time delay distances in testing curvature see [26, 27].
The uncertainty on the determination of the curvature

is given in terms of the measurement uncertainties on the
observables by

σ2

Ωk
=

1

4





(

1

r2l
− 1

r2s

)2

D2

∆t −
1

D2
∆t





2
(

σD∆t

D∆t

)2

+





1

r2l
− D2

∆t

r2l

(

1

r2l
− 1

r2s

)





2
(

σrl

rl

)2

+





1

r2s
+

D2
∆t

r2s

(

1

r2l
− 1

r2s

)





2
(

σrs

rs

)2

. (6)

All contribute at the same order of magnitude. Since
the distances are all of order unity (i.e. H−1

0
) for cos-

mological lens systems, we expect the uncertainty on the
curvature to be of order the quadrature sum of the mea-
surement uncertainties. That is, at the few hundredths
level for percent level distance estimates.
Despite the nonlinear combination of distances that

goes into the curvature estimation, the estimation has
the advantage that the covariance matrix of the mea-
surement errors should be mostly diagonal. This is a
virtue of the combination of distance measurements used
to derive the curvature: one does not expect errors from
strong lensing time delays to be covariant with super-
nova or BAO distances, and distances measured at widely
separated redshifts should be mostly uncorrelated (recall
that strong lensing tends to favor rl ≈ rs/2, so zl ≈ 0.4
and zs ≈ 0.8–1 might be typical values to use). If we
had instead used the angular diameter distance from the
Einstein radius of the lens system itself, then covariances
might tend to give more issues with systematic bias in
the determination of curvature.
One could also estimate the uncertainty in the K test.

This is

σ2

K =
1

D2
∆t

(

σD∆t

D∆t

)2

+
1

r2l

(

σrl

rl

)2

+
1

r2s

(

σrs

rs

)2

. (7)

Again, we expect the uncertainty on K to be of order
the quadrature sum of the measurement uncertainties.
Since K(zl, zs) involves one factor of (inverse) distance
rather than six, systematic bias should be even less of
a worry than for Ωk. Furthermore, note that some mea-
surements, such as BAO, actually do measure the inverse
distance rather than the distance itself. In any case, we
specifically test for bias of both estimators due to nonlin-
ear error propagation through analysis of simulated data;
see Sec. IV and Appendix A for details.

IV. OBSERVATIONAL CONSTRAINTS

Given the expression for the two curvature test quan-
tities and their uncertainties, we can estimate the signal

to noise of a curvature measurement. First, let us make
a rough estimate to guide our intuition. For strong lens-
ing systems, one has a geometric focal length factor such
that the distance to the source is approximately twice
the distance to the lens (i.e. the lens is roughly midway
between the source and observer). So we will particularly
be interested in rs ≈ 2rl (we put this on a quantitative
foundation below). For small curvature, this leads to
D∆t ≈ rs. Together, these have immediate implications
for the estimation uncertainty in the curvature tests.

From Eq. (6) we can show that under these condi-
tions the fractional distance uncertainties contribute to
the curvature uncertainty σΩk

as

σ2

Ωk
≈ 16

D4
∆t

(

σD∆t

D∆t

)2

+
4

r4l

(

σrl

rl

)2

+
16

r4s

(

σrs

rs

)2

(8)

≈ 16

D4

[

(

σD∆t

D∆t

)2

+ 4

(

σrl

rl

)2

+

(

σrs

rs

)2
]

, (9)

where in the second line we use the rough approximation
D ≡ rs ≈ D∆t ≈ 2rl. (For zl = 0.3, zs = 0.6 the
ratios are D∆t/rs = 1.18, rs/rl = 1.85 for Ωk = 0.)
Thus, for Ωk determination we roughly care about the
quadrature sum of fractional distance uncertainties, but
the uncertainty in rl gets more weight. This is fortunate
since we expect this distance to be the best determined.

Comparing to the K test, from Eq. (7) we see that σK is
a factor of 4 smaller in each of the terms, except for a fac-
tor 2 smaller in the fractional lens distance uncertainty.
Since the lens distance uncertainty is likely to be subdom-
inant, the rough expectation is that σΩk

≈ (4/D)σK .
In Hubble units, D ≈ 1 for zs ≈ 1. Note that also
K ≈ −ΩkD/4.
Figure 1 shows the curvature quantities and uncertain-

ties as a function of Ωk for a strong lens system with
zl = 0.6 and zs = 1.2. We adopt a fractional time delay
distance precision of 3%, and lens and source distance
precisions (from, e.g., supernova or BAO distances) of
1% (e.g. [28]). We also verified that {σD∆t

,σrl ,σrs}={3%,
0.75%,1.2%}, which has the same quadrature sum, gives
substantially similar results.

The intersection point between the curvature quantity
(Ωk orK) curve and its uncertainty curve determines the
lower bound on the measurement of the curvature param-
eter for a given strong lens system. Due to the scaling
discussed above, in fact σΩk

/|Ωk| ≈ σK/|K| (which we
will abbreviate as the inverse signal to noise S/N) and
so the intersections correspond to nearly the same value
of Ωk that can be distinguished from flatness. For ex-
ample, the S/N = 1 for the Ωk quantity at Ωk = −0.15
or Ωk = +0.20, and the same holds for the K test, for
{3%, 1%, 1%} precision. Thus a single such system could
distinguish Ωk < −0.15 from Ωk = 0 at S/N > 1.

These results were for a single system, with fixed
zl = 0.6 and zs = 2zl so we next investigate the sen-
sitivity to the two redshifts, including the optimum, and
the improvement enabled by large numbers of systems



4

|K |

σK

|Ωk|

σΩk

-0.2 -0.1 0.0 0.1 0.2
0.00

0.05

0.10

0.15

0.20

0.25

Ωk

FIG. 1. Absolute values and uncertainties of the two cur-
vature quantities Ωk and K(zl, zs) plotted vs Ωk. The ratio
of the value to the uncertainty is unity where the respective
curves cross. The uncertainties are for a single lens system
at zl = 0.6, zs = 1.2 with fractional distance uncertainties on
D∆t, rl, and rs of {3%, 1%, 1%} respectively.

delivered by next generation strong lensing, supernova,
and BAO surveys.

Considering the redshift distribution, we expect that
the raw sensitivity should improve for large rs (i.e. D)
since this lowers the uncertainty at fixed σD/D. How-
ever, systems at high redshift would likely be less well
constrained observationally and so σD/D would in fact
increase. The interplay with the observational accuracy
depends on the specific type of measurement, e.g. BAO
or supernovae, what type of BAO (e.g. galaxies, quasars,
etc.), and survey strategy and specifics and is beyond
the scope of this investigation. Instead we will present
results fairly generally, taking as a baseline a conservative
approach of medium redshifts (zl . 0.6) and discussing
the impact of higher redshift observations if they can be
accomplished with good accuracy (perhaps in “golden”
systems).

Figure 2 plots the S/N in the determination of curva-
ture Ωk and the K test as a function of the two redshifts
zl and zs, for the case with Ωk = −0.05. As expected
from the previous discussion, the two tests are substan-
tially similar. The highest S/N occurs for the highest zs,
under the assumption of constant fractional precision.
We see that the optimum for a given zs indeed occurs at
zl ≈ zs/2. (This gives rl slightly greater than rl ≈ rs/2
since by Eq. 8 we want somewhat higher D∆t and rl to
reduce the error on Ωk.)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

zs

z
l

0.05

0.1

0.2

0.3

0.4

0.5

S/NΩk
=|Ωk|/σΩk

S/NK=K/σK

FIG. 2. Isocontours of S/NΩk
= |Ωk| /σΩk

and S/NK =
K/σK are plotted in the zs-zl plane, for fixed Ωk = −0.05
and {3%, 1%, 1%} fractional distance precision.

Our canonical zl = 0.6, zs = 1.2 gives a S/N ≈ 0.3, so
some 10 systems would be required to get S/N = 1 for
distinguishing Ωk = −0.05 from 0. Pushing to zl = 0.9,
zs = 1.8 could raise the S/N to 0.5, but at the price of
longer and more difficult observations to reach the same
fractional distance precision.

The redshift dependence of the uncertainty in Ωk and
K estimations is presented in more detail in Fig. 3, for the
moment fixing zs = 2zl since this gives close to the opti-
mum. As expected the uncertainties decrease for higher
zl (and hence higher zs, going roughly as (1 + zl)

−4.3 for
σΩk

and (1 + zl)
−2.7 for K. While Ωk is of course con-

stant with redshift, K increases so σK/K and σΩk
/Ωk

keep nearly in step over the redshift range of interest.
Furthermore, the statistical uncertainties decrease as the
square root of the number of systems n, so the S/N im-
proves as 1/

√
n. We also plot the systematic bias δK

and δΩk due to the nonlinearity of the error propaga-
tion; these are negligible in comparison to the statistical
uncertainties for n < 104 and can be controlled further
as we discuss below and in Appendix A.

Next we consider ensembles of measurements over a
range of redshifts such as would be delivered by next
generation surveys. Set A has zl ∈ [0.3, 0.6], represent-
ing a medium depth survey, and Set B has zl ∈ [0.3, 0.9],
for a deep survey, both with a source distribution zs =
[1.5 zl, 2.5 zl]. While there is more volume at higher zl,
the measurements are more difficult; we do not compute
a lens redshift distribution, which would depend on sur-
vey specifics such as magnitude depth, cadence, etc., but
rather sample zl randomly from a uniform distribution
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0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.02

0.00

0.02

0.04

0.06

zl

FIG. 3. Standard deviations σK/
√
100 and σΩk

/
√
100 (cor-

responding to 100 systems) and biases δK = 〈K〉−Ktrue and
δΩk = 〈Ωk〉 − Ωk,true are plotted versus zl. The averages are
weighted as discussed in the text.

in the given ranges. The source redshift zs is then sam-
pled uniformly from its corresponding range. We study
results for 100, 400, and 800 systems, to check statistical
scaling.
An instantiation of the sets with 100 systems each is

shown in Figure 4. For the distances, we sample from
normal distributions to incorporate observational uncer-
tainties. For every redshift pair of zl and zs, from either
Set A or B, we compute D∆t, rl, rs distances and mul-
tiply each by a random number drawn from the normal
distribution with unit mean and standard deviation set to
measurement fractional precisions {3%, 1%, 3%} respec-
tively. This gives realizations of all the simulated data,
from which can then be computed the Ωk and K quan-
tities.
We are particularly interested in the discriminatory

power of the estimated quantities to make a statistically
significant detection of curvature compared to flatness.
This can be thought of in terms of a “signal to noise”
ratio, defined as S/NX = 〈X〉/〈σX〉, where X is either
Ωk or K. The ensemble standard deviation is propagated
from independent individual measurements by

〈σK〉 = 1
√

∑

1

σ2

Ki

. (10)

For each particular value of Ωk, there is an associated
S/NX derived from the ensemble of data. This allows
us to investigate several important characteristics: 1) for
what range of Ωk can we disfavor flatness? 2) which test
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z
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FIG. 4. Sets A and B of N=100 uniformly distributed (zl, zs)
pairs with zl ∈ [0.3, 0.6] and zl ∈ [0.3, 0.9] respectively, and
zs = (2± 0.5)zl for each set.

– estimation of Ωk or the K test – is more incisive?, and 3)
how does the estimation scale with data set, i.e. redshift
range, number density, and total number?
Figures 5 and 6 show the results. First, note that for

small values of Ωk the S/N is rather linear with |Ωk|, and
fairly insensitive to whether Ωk < 0 or Ωk > 0. Of course,
S/N = 0 for the flat universe since by definition there
is no signal of deviation from flatness. Second, the Ωk

estimation and the K test give nearly the same results, as
motivated earlier, so we are free to use either (and they do
have different error propagation so consistency of results
is a good crosscheck). Third, in the most pessimistic of
our scenarios (Set A with 100 systems), the data achieves
S/N > 1 for |Ωk| > 0.025 and in the most optimistic of
our basic scenarios (Set B with 400 systems), S/N > 1
for |Ωk| > 0.008.
As for scaling, the S/N goes as the square root of the

total number of data points, but we also see that red-
shift range plays a strong role. For the same number of
systems, Set B provides a ∼ 50% increase over Set A in
S/N despite having half the number density of systems.
More quantitative detail appears below.
One of the virtues of the K test is that it has a par-

ticular predicted redshift dependence, given by Eq. (6).
To explore this, we can subdivide the data into redshift
bins, e.g. of width ∆z = 0.1. For a relatively small data
sample this can give large scatter within a bin. While the
statistical dispersion is simply the price paid for a mod-
est data sample, one must also pay careful attention to
the bias induced by nonlinearity of the error propagation
from fluctuations to large uncertainties. We therefore
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FIG. 5. Signal-to-noise ratios S/NK =
∣

∣〈K〉
∣

∣ /〈σK〉 and

S/NΩk
=

∣

∣〈Ωk〉
∣

∣ /〈σΩk
〉 versus curvature parameter Ωk for

the data realization of Set A, with 100 or 400 systems total.
The light grey horizontal line indicates S/N=1, and hence the
intersection with it gives the constraint on Ωk.

introduce weighting that gives priority to measurements
with small uncertainties and reduces the impact of data
with large uncertainties.
The most straightforward implementation is inverse

variance weighting. We apply this to the K test data,
since this is predominantly what we want to subdivide.
Defining

〈K〉 =

∑ Ki

σ2

Ki
∑

1

σ2

Ki

, (11)

where i runs over each data point within the desired sub-
sample (i.e. redshift bin), we find that this greatly ame-
liorates bias, keeping it much less than the statistical
dispersion. We discuss this in detail in Appendix A.
Figure 7 plots the individual redshift bin measure-

ments, with error bars, for a data realization of the opti-
mistic survey of Set B, with 800 systems total. We choose
to plot the optimistic case so that the eye can readily
discern that the S/N > 1. For less optimistic cases with
S/N ≈ 1, the eye cannot recognize the pattern in the
scatter as easily. In the case plotted, we can see the clear
trend of increased deviation ofK from zero with redshift,
and that it is consistent with the curve expected (Eq. 6)
from Ωk = −0.02 (the actual input to the realization). In
a ∆χ2 sense, the simulated data discriminates from zero
curvature at about 3.5σ, i.e. the estimation of curvature
has uncertainty σΩk

≈ 0.006.

S/NK , N=100

S/NK , N=400

S/NΩk
, N=100

S/NΩk
, N=400

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ωk

Set B

FIG. 6. As Fig. 5, for data realization Set B.

The trend for other data set realizations is fit fairly
well by

∆χ2 ≈ C (n/800)−1 , (12)

for discrimination of Ωk = −0.02 from flatness by n sys-
tems, where C ≈ 12 for Set B data (long redshift range)
and C ≈ 6 for Set A data (short redshift range). This
corresponds to

σΩk
≈ D (n/800)−1/2 , (13)

where D ≈ 0.006 (0.009) for Set B (A) respectively. Note
the extended redshift range (at constant fractional pre-
cision) is worth a factor ∼ 2.4 in number, i.e. Set B with
330 systems has approximately the same leverage as Set
A with 800 systems.
The curvature Ωk has no redshift dependence and so

direct estimation from Eq. (4) does not require any subdi-
vision with redshift. Analyzing the simulated data set Set
B with 800 systems total (generated with Ωk = −0.02) as
a whole gives ∆χ2 = −15 with respect to zero curvature,
a clear signature at the ∼ 3.9σ level. For this approach,
the values of C and D in Eqs. (12) and (13) are 15 and
0.005 for Set B and 7.5 and 0.007 for Set A.
We note that σΩk

has only a weak dependence on the
value of Ωk, with σΩk

for 800 systems changing by ∼
10−4 for a change in Ωk of 0.02 (and σK is even more
insensitive).
In addition to the ensemble evaluation of curvature, we

might also like to examine the curvature estimation with
redshift, to assure ourselves of its constancy and check
for systematics. Performing the same redshift binning as
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-0.5
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1
0
2
K

800 systems

K( k
=-0

.02
)

FIG. 7. The K test gives a specific redshift dependence
in the presence of curvature. The solid curve is the the-
oretical prediction for K(zl, zs) versus zl from Eq. (6), for
Ωk = −0.02. Points show the results of our simulated mea-
surements 〈K〉 ± σK in bins of zl for Set B with 800 systems
total. Deviations from K = 0 point to the existence of cur-
vature, and the redshift dependence both estimates Ωk and
helps separate the signal from systematics.

described above, and weighting the estimation of Ωk as
described in Sec. A to control bias due to nonlinear error
propagation, we present the results in Fig. 8. The results
have very similar ∆χ2 to the unbinned case, and so again
have strong discrimination for the true input model over
zero curvature.

V. CONCLUSION

We sought a robust method of estimating cosmic spa-
tial curvature with three key aspects: 1) it provides an
accurate estimate rather than simply a consistency test
or alarm, 2) it derives directly from the observations,
without taking derivatives or extrapolations of data, and
3) it is as model independent and purely geometric as
possible. Two quantities, the direct curvature estimate
Ωk and the K test, satisfied these criteria, using strong
gravitational lensing time delay distances and supernova
or BAO distances.
Each method could provide a crosscheck of the other,

with different error propagation. Furthermore, the K test
involves a redshift dependence for the influence of curva-
ture, allowing not only a fit but a verification that the
proper functional dependence is satisfied. We examined
the error propagation in some detail, demonstrating that
not only was bias negligible compared to statistical scat-

○

○

○

○

○ ○

0.0 0.2 0.4 0.6 0.8 1.0

-0.04

-0.02

0.00

0.02

0.04

zl

Ω
k

800 systems

FIG. 8. The curvature test in redshift bins has leverage on
both estimation of the value of the curvature, and a check
on its constancy. The solid curve shows the input value Ωk =
−0.02. Points show the results of our simulated measurements
〈Ωk〉 ± σΩk

in bins of zl for Set B with 800 systems total.

ter, but could be further reduced by appropriate weight-
ing or Monte Carlo simulation. The two estimators give
similar constraining power, or signal to noise, for data in
the range zl . 1.
Carrying out an optimization study, we found that sys-

tems with source redshift zs ≈ 2zl had the most leverage,
close to the natural kernel for strong lensing systems.
After an individual redshift analysis to build intuition,
we then simulated data sets of various size and redshift
range, corresponding to nearer term and next generation
distance surveys. We presented analysis of the scaling
of the curvature constraints with survey number, num-
ber density, and redshift range, finding that the range
was the most important, slightly more so than number.
For example, Set B had twice the redshift range of Set
A and only needed ∼ 40% the number of systems to
achieve the same constraining power. However, this as-
sumed the measurement precision could be maintained
to higher redshift.
Figures 7 and 8 present illustrations of how applying

such curvature analysis to next generation surveys might
appear. The K test naturally gives not only a signal of
deviations from the zero result of a spatially flat universe
but an accurate measurement of the curvature value and
a quantitative test of the predicted redshift dependence.
The curvature estimator can either apply to the data
as a whole, or also divided into redshift slices, allowing
a direct check of its predicted constancy with redshift.
Again, recall the predictions are model independent, re-
lying only on the Robertson-Walker metric.
One can of course estimate the curvature parameter
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in a model dependent manner, relying on the Friedmann
equations for example. This will generically give tighter
constraints, but can be sensitive to the assumed model.
For example, misestimation of the dark energy equa-
tion of state or the number of effective neutrino species
may lead to biases comparable to the desired precision.
For our model independent approach, practical applica-
tion will require careful attention to nuisance parame-
ters in the distance determinations, covariance of mea-
surements, etc. We did not consider Hubble parameter
measurements, both because of systematics issues and
because even if model independent they are point mea-
sures rather than the sort of triangulation we look for in
probing the spatial geometry.
Spatial curvature is a fundamental aspect of the uni-

verse, and could hold deep clues to inflation and cosmic
origins. Estimators formed from the symmetry proper-
ties of the Robertson-Walker metric in a model inde-
pendent manner directly test homogeneity and isotropy.
Such methods as we discussed here can be an important
complement to other cosmological techniques in explor-
ing the nature of our universe.
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Appendix A: Dealing with Bias

Like all nonlinear functions of the measurements, for-
mally the K test and estimate for Ωk are biased due to
the nonlinear propagation of measurement uncertainties.
However, this is of little real concern in the present case.
For next generation data sets of less than 1000 strong lens
systems (i.e. measurements of D∆t), the scatter domi-
nates over the bias. If we look beyond this, there are two
straightforward methods for dealing with bias: weighting
and Monte Carlo simulation.
The quantityK in the K test involves inverse distances.

Sometimes this is actually what is measured, as for BAO
transverse angular scales. But if the measurement un-
certainties are Gaussian distributed in the distance itself,
with mean D0 and standard deviation σD, then the mean
of the inverse distance is 〈1/D〉 = (1/D0)[1+ (σD/D0)

2].
Hence there is a bias of fractional magnitude (σD/D0)

2.
However, we also see the way around this, by weighting

the quantity to be averaged such that it appears more lin-

ear. This can be accomplished by multiplying K ∼ 1/D
by 1/σ2

K , where the latter is similar to D2/(σD/D)2.
That is, we expect inverse variance weighting to “de-
bias” K. For the Ωk estimation the situation is more
complicated since there are multiple powers of multiple
distances. For example, if the first terms in Eqs. (4)
and (6) dominate, then the D portion is linearized by

weighting by 1/σ
1/2
Ωk

. Other terms will prefer different
weighting. In the end, while informed by such heuristic
arguments we rely on purely empirical analysis to deter-
mine what weighting is most successful in debiasing K
and Ωk, testing for several redshifts and inputs Ωk.
We conclude that inverse variance weighting works well

for K and 1/σ0.35
Ωk

for Ωk. Figure 9 and Figure 10 demon-
strate the results. The true, input behavior is recovered
to excellent approximation. Note for example that the
leftmost K point, corresponding to zl = 0.3, has a sys-
tematic bias at the 2 × 10−4 level, while the statistical
dispersion is larger than this as long as we are dealing
with n < 105 systems at this redshift.

FIG. 9. Inverse variance weighting in the K test pro-
vides a substantially unbiased result, where Kestimated =
∑

(Ki/σ
2

Ki
)/

∑

(1/σ2

Ki
). The estimates for zl = 0.3, 0.45, 0.6,

0.75, 0.9 from left to right (triangular points) lie very close
to Ktrue (dotted blue line), and the residual bias for this case
of Ωk = −0.02 is small compared to the statistical dispersion
and the distinction from the flat case Kestimated = 0.

We emphasize that the weighting, and the results in
the figures, should be viewed simply as a demonstration
of principle that bias can be reduced. The actual data
analysis should employ Monte Carlo simulations of the
actual data characteristics. This can furthermore be done
iteratively: e.g. subtract the modeled bias for Ωk = 0,
estimate the new Ωk, resimulate, etc.
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FIG. 10. Appropriate weighting on the Ωk estimator
can provide a substantially unbiased result; we find that
Ωk,estimated =

∑

(Ωk,i/σ
0.35
Ωk,i

)/
∑

(1/σ0.35
Ωk,i

) works quite well.
The estimates for zl = 0.3, 0.45, 0.6, 0.75, 0.9 from left
to right (triangular points) lie very close to the true value
Ωk,true = −0.02 (dotted blue line).
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