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Abstract 

This report focuses on development of demodulation software for ultra-dense 

distributed chirped fiber Bragg grating optical sensors, which measure temperature 

and strain with 75 micron resolution over 1.5 cm for advanced medical 

applications. Initially, addressed problem is stated, thermal ablation technology is 

discussed, and basic background of optics is considered. Next, old and new 

reconstruction algorithms are reviewed in detail. It follows with discussion of 

MATLAB code to LabVIEW environment transition. Real spectrum 

measurements, which are used for verification of proposed reconstruction, were 

obtained during experiments conducted under supervision of Professor Daniele 

Tosi. The obtained data is used as software inputs to obtain thermal distribution. 

Moreover, significance and opportunities of temperature prediction for the 

proposed technology is discussed. Finally, the results of prediction based on linear 

regression model are analyzed and further improvements of technology are 

proposed. 
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Chapter 1 – Introduction & Literature 

Review 

1.1 Introduction 

Cancer is one of the ancient diseases that humanity still struggling. With 

science progress, many treatment procedures were suggested to encounter this 

lethal disease. Before, different primitive tools were used in surgery operations [6]. 

However, nowadays there are many different technologies for cancer tumor 

removal. One of the technologies is temperature ablation. The technology allows to 

selectively increase the temperature of a tissue by using electromagnetic energy [7-

8]. The tumor cell can be subjected to a cellular damage if its temperature will be 

higher than 42-44 °C. If the temperature will achieve the value of 60 °C, the tumor 

cell is destroyed almost instantly due to protein coagulation effect. There are 

several thermal ablation technologies that can be clinically used for this purpose: 

radiofrequency ablation (RFA) [7] [9], microwave ablation (MWA) [10-11], laser 

ablation (LA) [12], and high-intensity focused ultrasound (HIFU) [13]. 

Although TA is a good instrument for destruction of cancer cells, it can 

destroy living cells likewise. Therefore, a temperature sensor should monitor the 

process of thermal ablation [14]. There are two methods that were used for this 
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purpose in late 90’s – thermal imaging [15] [17] and thermocouples [16]. For 

instance, in [15] the study shows implementation of radiofrequency (RF) ablation, 

and thermal imaging methods such as computed tomographic (CT) and magnetic 

resonance (MR) images is used for assessment of the proposed treatment. In [16] 

the study also considers RF ablation, but thermocouples or thermistors are used for 

temperature measurement.  

Nowadays new types of sensors are rapidly acquiring recognition in 

biomedicine – fiber optical sensors (FOS). These sensors have numerous 

advantages with respect to thermocouples [23] [24] – small size, lightweight, 

compatible to magnetic resonance (MR) because of resistance to electromagnetic 

interferences, good sensitivity and quick response to physical/biological influence, 

and conformity to ISO 10993 standard for biocompatibility of medical devices.  

The optical sensors were already applied and commercialized for measurement of 

blood vessel obstructions [18], intra-aortic balloon pumping therapy [19], intra-

cranial pressure [20], solid state manometers [21], and biomechanics [22]. 

Numerous researches over FOS were conducted. In [24] FBG array was used for 

temperature sensing in hyperthermia treatment. In [23] and [25-26] the system was 

applied in RFA, MWA, and LA. In [27] the application of OBR is examined. The 

first reported investigation of CFBG was in [28]. In [29] CFBG optical sensing 

method was improved with development of a spectral reconstruction method. 
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This project concerns the development of demodulation technique that will 

assist in thermal treatment of cancer tumor using CFBG. Firstly, some background 

is discussed in Chapter 1. It will be followed by discussion of old demodulation 

technique. Next, new demodulation technique will be proposed in Chapter 2. Also, 

the developed LabVIEW software will be introduced in the chapter. In Chapter 3, 

some experimental setup and its results will be reviewed, and in Chapter 4 

simulations of the software based on these results will be observed. Finally, some 

conclusions and future works will be discussed in Chapter 6. 

 

1.2 Optics Background 

1.2.1 CFBG model 

Fiber Bragg Grating are reflective arrangement located in the core of an 

optical fiber. It has two index modulation profiles: periodic and quasi-periodic. The 

grating can be obtained by exposing the core of optical fiber to some pattern of 

ultraviolet light radiation. Different arrangements of grating are presented in the 

following figure: 



12 
 

 

Figure 1.1. Variations of index profile [30]. 

Before explaining the working principles of CFBG, it is essential to consider 

the basics of FBG performance. Consider a broadband light injected into a fiber 

from a light source through fiber optic coupler. According to the Zeng and et al, the 

light will be reflected by a grating of the fiber at a specific wavelength, as long as 

Bragg condition is conserved. It states that the frequencies of incident and reflected 

light must be identical [32]. Consequently, all reflected light from each grating of 

the fiber assembles into an impulse of reflection with center wavelength 𝜆𝐵, also 

called Bragg wavelength, which is specific to the grating parameters. The 

parameters can be analyzed by capturing the reflected light using spectrometer. The 

wavelength can be evaluated by the following equation: 

𝜆𝐵 = 2𝑛𝑒𝑓𝑓 ∙ 𝛬 (1) 

where 𝑛𝑒𝑓𝑓 is the effective refractive index and 𝛬 is the period of grating.  
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Figure 1.2 and 1.3 clearly illustrates FBG performance. In case of 

inconsistency of the condition, the phases of reflected lights will not match and 

they will eliminate one another. 

 

Figure 1.2. Reflection of Bragg wavelength for uniform profile [31]. 

 

Figure 1.3. Light transmission and reflection diagram [4]. 

As most of other sensors, the change of external environment (temperature, 

strain, etc.) affects the parameters of the fiber (effective refractive index and 

grating period). Further, the changes of the parameters lead to the changes of 

reflectivity spectrum. The main principles of proposed sensing technique are 

analysis of reflected spectrum, application of designed demodulation algorithm for 
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obtaining grating parameters, and consequently discovering environmental 

affecting factors. For this project, the affecting factor is temperature change. 

This report discusses Chirped Fiber Bragg Grating (CFBG), specifically its 

linear subtype, which has algebraic progression of increase in the spacing between 

grating planes (Figure 2.3). As a result, equation for Bragg wavelength (1) modifies 

to: 

𝜆𝐵(𝑧) = 2𝑛𝑒𝑓𝑓(𝑧) ∗ 𝛬(𝑧) (2) 

where for linearly chirped 

𝛬(𝑧) =  Λ(0) + ∆𝑛(𝑧) (3) 

where 𝛬(0) is a starting period, K is the slope for period along the fiber. 

As a result, for chirped grating of spectrum of different Bragg wavelengths, 

which are related to different grating periods, is reflected from gratings. Thus, 

distributed sensing is possible for chirped profile, which is considerable advantage 

of CFBG sensors. 

 

Figure 1.4. Chirped reflection index change profile [4]. 
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Chapter 2. Simulation methodology. 

 To begin with, algorithm of the demodulation should be clarified. In this 

chapter two decoding techniques, i.e. old and new demodulation algorithms, and 

the development of LabVIEW software will be discussed.  

2.1 First decoding technique. 

2.1.1 Modulation of single FBG. 

In order to review the whole algorithm, it is important to understand the 

modulation of single FBG. The proposed technique is designed for incoherent 

detection that implies assumption of the source (SLED) having a short coherency 

length. In other words, standing waves existing between each section of the grating 

are at minimum, so they can be neglected. This technique is alternative to its 

alternative more complex technique – Transmission matrix model [1], [33].  

This method includes phase relationships in the detection, making it 

coherent. According to Harris, coherent detection cannot be more precise in 

detection than incoherent detection, owing to the fact that the phase detection in 

coherent results in measurement uncertainty [34].  

It can be stated that the proposed technique of incoherent detection is 

adaptation of the transmission matrix model. Eventually, the modulation is 

achieved by using previously discussed equations (1-3): 
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𝑅𝑖(𝜆) =

sinh2 (𝐿𝑔√𝑘2 − 𝜎𝑖
2)

cosh2 (𝐿𝑔√𝑘2 − 𝜎𝑖
2) − 

𝜎𝑖
2

𝑘2

 (4) 

which evaluates the reflectivity on a certain wavelength. 𝐿𝑔 and 𝑘 are characteristic 

variables of a fiber that denotes the length of grating and AC coupling coefficient 

respectively. 𝜎 is DC coupling coefficient and can be evaluated from the equation 

(5). 

𝜎𝑖(𝜆) =  
𝜋

𝜆
𝛿𝑛𝑒𝑓𝑓 + 2𝜋𝑛𝑒𝑓𝑓 (

1

𝜆
−

1

𝜆𝐵,𝑖
) (5) 

It also depends on the Bragg wavelength, amplitude of refractive index 

modulation (𝛿𝑛𝑒𝑓𝑓), effective refractive index (𝑛𝑒𝑓𝑓), and Bragg wavelength (𝜆𝐵,𝑖). 

By using MATLAB, the equations were used to show the refraction of single FBG. 

2.1.2 Modulation of CFBG.  

Since modulation of single FBG was discussed, it is time to concern the 

array of FBGs. In this work, CFBG is considered as the array. In order to evaluate 

the reflected spectrum of CFBG transfer matrix method is used. It is important to 

note that the distance between each FBG is 𝐿𝑔, and the number of FBGs in the 

array is M. The amplitude (Λ) and Bragg wavelength (𝜆𝐵) varies for each FBG. 

Total reflection spectrum is evaluated from the estimation of separate reflection 

spectrums and conversion to transmission spectrums (1 – 𝑅𝑖(𝜆)) of 𝑖-th FBG, 
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multiplication of obtained spectrums and conversion back to the reflection 

spectrum. The final equation is: 

𝑅𝐶𝐹𝐵𝐺(𝜆) = 1 −  ∏[1 − 𝑅𝑖(𝜆)]

𝑀

𝑖=1

 (6) 

2.1.3 Demodulation of CFBG spectrum. 

Next step after modulation of reflection spectrum is demodulation of it to the 

temperature profile. The algorithm that was developed for this purpose is 

applicable for the three types of temperature profiles: linear profile with two 

parameters – gradient and initial temperature value; Gaussian profile with three 

parameters – amplitude, variance, and central position; and super-Gaussian profile 

that has the same parameters of Gaussian profile and also super-Gaussian power 

factor. Since the thermal distribution on a living tissue of living organs is assumed 

to have Gaussian distribution, it was mainly considered in the work. In order to 

achieve the thermal map from the reflection spectrum, the following Gaussian 

equation was used: 

∆𝑇(𝑧) = 𝐴 ∙ exp (
−(𝑧 − 𝑧0)2

2𝑠2
) (7) 

where is 𝐴 is the amplitude (℃), 𝑧 is the position (𝑚), 𝑧0 is the central position 

(𝑚), 𝑠 is the variance (𝑚). For the case of super-Gaussian profile, the equation is: 
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∆𝑇(𝑧) = 𝐴 ∙ exp (
−(𝑧 − 𝑧0)2𝑃

2𝑠0
2𝑃 ) (8) 

where 𝑠0 is: 

𝑠0 =  
𝑠

(0.5 ∙ 𝜋)
2

2𝑃−1

 (9) 

where is P is the super-Gaussian power factor. 

Table 2.1. Variables of CFBG modulation process. 

Symbol Name Unit Value range 

𝑴 Number of gratings (discretization) - 1-500 

𝝍 Chirp rate 𝑛𝑚/𝑐𝑚 - 

𝜹𝒏𝒆𝒇𝒇 Amplitude of refractive index modulation - 10−6 

𝒏𝒆𝒇𝒇 Effective refractive index - 1.5 

𝝃 Thermal sensitivity coefficient 𝑝𝑚/℃ 10.2 

𝑳 Length of CFBG 𝑚 0.015-0.05 

𝑳𝒈 Length of single grating (𝐿/𝑀) 𝑚 – 

𝚲 Grating period 𝑛𝑚 - 

𝒌𝑳𝒈 Grating strength - 0-0.9 

𝒌 AC coupling coefficient 1/𝑛𝑚 - 

𝝈 DC coupling coefficient 1/𝑛𝑚 - 

𝑵 Number of spectrum measurement - - 

𝝀𝑩 Bragg wavelength 𝑛𝑚 1520-1560 
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𝚫𝑻 Temperature ℃ - 

𝑨𝒈 Amplitude guess ℃ - 

𝒔𝒈 Variance guess 𝑀2 - 

𝝁𝒈 Mean guess 𝑚 - 

𝒛 Distance axis 𝑚 0-𝐿 

𝑹𝒎𝒆𝒂𝒔 Measured reflected spectrum - 0-1 

𝑹𝒄𝒂𝒍𝒄 Calculated reflected spectrum - 0-1 

𝑯 Equalizer function  - - 

 

The initialization part of the figure 2.3 is performed with no 𝛥𝑇 gradient 

along the CFBG, i.e. in reference condition. The goal is to obtain the model of the 

CFBG as in Eq. (1-6) based on coupled mode theory (CMT) [1], and therefore to 

populate all the grating parameters outlined in Table 2.1. From the manufacturer, 

the grating length (L) as well as the optical parameters (𝛿𝑛𝑒𝑓𝑓, 𝑛𝑒𝑓𝑓, 𝜉, 𝐿, 𝜆𝐵,0,1) 

can be obtained. In detail, the initial and final wavelengths, i.e. 𝜆𝐵,0,1 and are 

obtained through spectral observation to obtain an initial guess, and running an 

optimization based on the CMT theory until there is the best match between the 

CFBG spectra on the left and right side. The thermal sensitivity coefficient 𝜉, on 

the other hand, is set to 10.2 pm/°C as the sensor is calibrated as in [3].  
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The discretization factor M is chosen according to the selection of the 

reflectivity shape. In other words, large value of the discretization factor leads to 

rounding of the reflectivity figure, which leads to the difference from the actual 

reflectivity spectrum as shown in the figure 3.  

 

Figure 2.2. Representation of dependency of reflection spectrum on gratings 

number (𝑀) and grating strength (𝑘𝐿𝑔). 

An essential part of the algorithm is equalizer 𝐻(𝜆), which is obtained from 

the division of measured spectrum by simulated spectrum and afterwards applied to 

the simulated CFBG in order to equalize its spectrum. This is necessary as the 

CMT returns an absolute value for the reflectivity of the CFBG, while the 

measured CFBG has amplitude that depends on the gain and exposure time of the 
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detector and is quantized. In addition, the CFBG spectrum may have spectral 

ripples which are not accounted in the CMT-model. Thus, after the CFBG model is 

generated and the spectrum is simulated, the CFBG spectrum is multiplied by the 

equalizer. 

The grating strength 𝑘𝐿𝑔 determines the overall CFBG reflectivity, which 

needs to match the measured peak reflectivity. Fig. 2.2 serves as a calibration for 

the CMT-based CFBG model based on the discrete set of gratings. Calibration is 

done only with the first spectrum (at the beginning of the measurement process) to 

define 𝑀 and 𝑘𝐿𝑔.  

Some values of our CFBG model parameters (number of modeled FBGs 𝑀, 

and their grating strength 𝑘𝐿𝑔) can be obtained from developed code, illustrated in 

Fig. 2.2, that defines relation between 𝑀, 𝑘𝐿𝑔 and maximum reflectivity of 

simulated CFBG. Thus, maximum value of spectrum measured by spectrometer 

provides possible 𝑀 and 𝑘𝐿𝑔 values for our CFBG model. Then, as it was 

mentioned about the optimization of wavelength range, CFBG spectrum is 

modulated using Eq. (1-6) and CFBG parameters with approximate wavelength 

range, defined from fist spectrum measurement. After, modulated CFBG 

wavelength range margins are optimized by iteration method to minimize 

difference between measured and modulated CFBG spectra. 
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Figure 2.3. Flow chart of the first decoding algorithm [4]. 

2.1.5 Problems of the first decoding technique 

The aim of the project is development of computer software that will process 

and measure temperature concurrently to the medical surgery process. This implies 

the smallest processing time. The processing period of the developed decoding 

technique is excessively long and requires an alternative solution for increasing the 

speed of processing. 
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2.2 Second decoding technique 

2.2.1 Pre-processing functions 

To decrease the complexity and increase the rate of demodulation, the 

algorithm was divided into two main parts. The first part of demodulation process 

is considered on the estimations of starting and ending wavelength values of 

reflection spectrum [15], evaluation of transfer function for aligning the top of 

reflection spectrum for compliance with the characteristics of real fiber reflection 

[4], and the simulation of reflection spectrum using combination of the gradient 

parameters – amplitude, center, variance, and super-Gaussian power. Initially, the 

spectrums are simulated by using a combination of the parameters in the equations 

[2-7]. Then, obtained reflection models are saved with the corresponding gradient 

parameters in the form of matrix in separate database. In order to distinguish each 

matrix, they are named according to the amplitude variations. The figure 2.4 briefly 

demonstrates first part algorithm. 
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Figure 2.4. First part algorithm - preliminary simulations of reflection spectrums. 

2.2.2 Post-processing functions 

The second part of the demodulation is introduced during the ablation 

process. The algorithm works in a loop mode with feedback element – temperature 

change value, which is also the amplitude value of thermal gradient. Initially, the 

algorithm obtains the change of the temperature as input and for the first cycle it is 

assumed to be 0. According to the temperature change, it extracts corresponding 

matrix from database with simulated reflection models made in the previous part. 
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Then, all simulated models are compared with the measured model by using Mean 

Squared Error (MSE). The most related model ascertains the required gradient 

parameters for reconstruction of temperature distribution, and the amplitude value 

is then passed as the input for the next temperature measurement of TA process. If 

the thermal ablation stops, the algorithm also stops. This algorithm allows 

visualizing the temperature change across the sensor through the process. The steps 

of the second part are illustrated in the figure 2.5. 

 

Figure 2.5. Second part algorithm – identification of gradient components during 

thermal ablation. 
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2.2.3 Problems of the second decoding technique 

 In order to improve the developed software, potential challenges must be 

acknowledged. For instance, storage of the simulated reflected spectrums obtained 

in the “pre-processing” part is a challenge for the future. It takes time to simulate 

and store each matrix. For a start, only amplitude was iterated for simulation of the 

reflection spectrum. However, other parameters such as variance, center position, 

and super-Gaussian power factor should be also iterated and considered in 

simulation of the reflection spectrums. Taking account of every possible scenario 

of distribution will greatly accuracy, but also will increase the pre-simulation time, 

thereby creating a challenge to deal with data loss or data corruption. 

2.3 LabVIEW software development 

2.3.1 Opportunities and challenges 

In order to create software with convenient graphical user interface (GUI) 

that can read data from spectrometer, LabVIEW programming environment was 

used. According to [5] LabVIEW is more preferred for “acquiring, processing, and 

displaying signals” than MATLAB. On the other side, MATLAB is better in 

computational aspect. Therefore, the first part of the code that is responsible for 

preparation and estimation of reflection spectrum models remained in the 

MATLAB form. The second part that involves estimation of temperature 

concurrently to thermal ablation was ported from MATLAB to LabVIEW. Due to 
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the difference in the programming environments, porting process was challenging. 

For instance, an apparent difference is the matrix indexing in LabVIEW starts from 

0, while MATLAB starts from 1. Another big challenge is inability of LabVIEW to 

use function on a matrix without applying loop. This increases the duration of 

processing.  

2.3.2 Functions and representations 

The program consists of one main code, and 5 functions that support it.  

 

Figure 2.6. Icons of LabVIEW functions: a) Temperature distribution; b) 

Temperature reconstruction; c) FBG generation; d) Linspace; e) Offset 

removal; 

First function is “Linspace”. Although it is present in MATLAB, there is no 

analogous function in LabVIEW. The function takes three numbers as inputs, 
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namely x1, x2, and n. It generates “n” points between “x1” and “x2” with spacing 

between points calculated by: 

∆=
𝑥2 − 𝑥1

𝑛 − 1
 

 Second function is called “Offset removal”. The function removes the DC 

offset noise presenting in the power reflectivity spectrum as a characteristic noise 

of the spectrometer. The spectrum contains 512 measurement points. The function 

takes initial 100 points with no reflections, evaluates mean of these points, and 

subtracts from all points. 

 Third function is called “FBG generation”. The function evaluates reflection 

spectrum by using characteristic variables of CFBG, and the equations (2-7) from 

the Chapter 2. One of the challenges of converting MATLAB code to LabVIEW 

schematic is square root function. Although LabVIEW has built-in root function, it 

gives not-a-number output for negative input. Therefore, built-in function that 

processes MATLAB code was used. The following figure illustrates the problem: 
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Figure 2.7. Built-in and MATLAB script square root function comparison. 

Fourth function is “Temperature reconstruction”. This function is the core of 

post-processing part of decoding. The function obtains the change of the 

temperature as input. According to the temperature change, it extracts 

corresponding matrix from database of pre-defined “comma-separated values” 

(CSV) format with simulated reflection models made in the previous part. Then, all 

simulated models are compared with the measured model by using Mean Squared 

Error (MSE). The most related model ascertains the required gradient parameters 

for reconstruction of temperature distribution. 

Last function is “Temperature distribution”. The function takes as input 

super-Gaussian power factor, number of gratings, amplitude, variance, and central 

position. The last three is the output of previous “Temperature reconstruction” 

function. Then, the equations (2-7) from the chapter 2 are implemented to build 

Gaussian distribution of temperature. 
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2.3.3 Final model of LabVIEW software 

 The main part of the software assembles all functions and performs the 

demodulation process. Initially, it reads the measurements from spectrometer. 

Spectrometer sends the measurement data with frequency of 10 Hz. In order to 

increase the speed of processing, the processed data size was reduced. Specifically 

saying, the software selects each 10th measurement to process. Then, selected data 

is passed through "offset removal" function to remove offset noise. Next, each time 

record of reflection model passed through loop. In loop, the data is passed through 

"temperature reconstruction" function to obtain characteristic values (amplitude, 

central position, and mean). The obtained values are penetrated through 

"temperature distribution" function to build Gaussian temperature profile. 
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Chapter 3 – Experiments and Simulations 

 Speaking about implementation of the proposed demodulation technique, 

experimental setup should be done. In this chapter, the components, 

interconnections of the setup, and results of the experiment will be illustrated and 

briefly discussed. 

3.1 Experimental setup 

In order to develop the algorithm and software, good input data are required. 

Moreover, some reference data also must be present to make the algorithm as 

precise as possible. For this purpose, real experiments should be conducted.  

 

Figure 3.1. Photo of experimental setup: (1) Luna OBR 4600; (2) RF Generator; (3) 

Spectrometer; (4) SLED; (5) Coupler of 50/50 ratio; (6) PCs; (7) RF applicator; (8) 

SMF; (9) CFBG; (10) Chirped Fiber Bragg Grating. 
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The figure 3.1 shows setup photo of the experiments conducted to compare 

temperature sensing of FBG, CFBG, and optical backscatter reflectometry (OBR). 

 

Figure 3.2. Schematic view for representation of interconnections of the setup. 

Figure 3.2 illustrates schematic view of the setup in figure 3.1 to clarify 

interconnections. According to the figure, Single Mode Fiber (SMF) is a reference 

sensor of temperature change, and it is connected to LUNA OBR 4600, which is a 

reflectometry technology. LUNA OBR 4600 is connected to PC that reads and 

displays the data. Other two fibers are connected to Interferometer that consists of 

superluminescent LED source (EXS2100), and infrared spectrometer (I-MON-512 

USB, Ibsen Photonics) that accepts the reflected light and transfer it to the 

connected PC. The last is RF probe placed in parallel to other fibers and connected 
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to RF generator, i.e. thermal ablation machine. Parallel placing of RF probe and 

fibers is necessary to achieve maximum likelihood in thermal distribution, and 

utilization of a real phantom makes the distribution close to reality. 

3.2 Results of the experiment – reflection models 

 The aim of the experiment was comparison and evaluation of CFBG and 

FBG array. The measurements obtained from the LUNA OBR 4600 were 

considered as a reference due to relative reliability of the existing technology. The 

following figure 3.3 illustrates the results of the comparison.  

 

Figure 3.3. Evaluation of CFBG and FBG array performance with reference to 

LUNA. 

 From the obtained results, the main data is measurements obtained by CFBG 

sensor, since this is the main focus of the given project. Therefore, the data from 

the spectrometer containing required measurements were retrieved. The data is 

represented in the figures 3.4 and 3.5. 
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Figure 3.3. 3D representation of the obtained reflectivity results. 

 

Figure 3.4. Reflection models of CFBG and FBG array. 
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Chapter 4 – Simulation results & 

discussion 

 After performing experiments and extracting data, simulations can be 

conducted to test the performance of demodulation algorithms. This chapter briefly 

discusses the results of the second demodulation algorithm based on LabVIEW, 

and illustrates the coincidence to the results of MATLAB demodulation algorithm.  

4.1 Analysis of demodulation results 

The results of MATLAB and LabVIEW post-processing demodulation is 

illustrated in the figure 4.1 and 4.2 respectively. The figures represents the ablation 

process, specifically saying the temperature distribution over the phantom liver 

used in the experiment. From the figure 4.3, the slow start of heating can be 

observed. The central point of the laser treatment was around 1 mm from a sensor’s 

side. At the time 𝑡 ≥  170 𝑠, the temperature reached 60 °C and continued to grow. 

The maximum temperature reached was slightly above 80 °C. Eventually, the 

temperature trend sharply dropped down due to the shut down of the laser.   

From the obtained results it can be concluded that LabVIEW software 

demodulates in the same manner as MATLAB. However, the speed of processing 
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of LabVIEW is approximately 4 times slower than of MATLAB. It is a challenge 

for the future work. 

 

Figure 4.1. Temperature profile demodulated using MATLAB. 

 

Figure 4.2. Temperature profile demodulated using LabVIEW. 
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Figure 4.3. Comparison of thermal maps. 
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Chapter 5 – Temperature prediction 

using regression models 

  The results of the demodulation algorithm can be further implemented in the 

optimization of thermal pattern detection. In this chapter, linear regression model as 

a prediction algorithm is examined. Firstly, preliminary data processing is 

discussed. Next, MATLAB algorithm used in thermal distribution forecasting is 

introduced. Finally, results of the prediction algorithm are analyzed.  

5.1 Prediction model 

 The prediction model of temperature starts with obtaining and reading data 

from spectrometer. Since the data below 60°C does not affect the cells, the 

prediction algorithm awaits the temperature record of equal or above 60°C, while 

the temperature measurements are stored. As soon as CFBG sensor senses needed 

temperature value, the algorithm is initiated. It processes all stored measurements 

data in the following manner: 



39 
 

 

Figure 5.1. Preprocessing data for time-series prediction.  

where N is the number of time records, i.e. one record per second or can be 

adjusted manually. Position represents gratings, which is for the case is 100 and can 

be also modified by the need. The temperature data from 1
st
 to N

th
 time records are 

used for prediction of (N+1)
th
 temperature distribution. Although, the temperature 

at time of (N+2) is present, it is assumed to be unknown.  

Next step the algorithm creates two datasets for prediction: train and test 

data. Both of these data must have identical dimensions - train data is data from 1
st
 

to (N + 1)
th

, and test data is from 2
nd

 to (N+2)
th

 data. They are fed to the function, 

which is obtained from the built-in application “Regression learner” of MATLAB 

that automates the prediction. The obtained function produces a prediction function 

based on the training data, which in turn forecasts the value at (N + 2). 
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Figure 5.2. P - temperature step prediction algorithm. 

The quality of the predictor can be observed by using RMSE: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
(𝑇𝑝𝑟𝑒𝑑 − 𝑇𝑚𝑒𝑎𝑠)2 (10) 

Despite the fact that the algorithm can be used for any number of predictions 

(P), for this project 3 step prediction was examined. Larger step of prediction is 

assumed to be unnecessary. For that reason, the first predicted value is 
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concatenated to the 1-(N+1) measured data for further prediction as long as three 

predictions are made. Figure 5.2 illustrates the discussed algorithm in the form of 

flow chart, where 𝑇 is temperature in Celsius, 𝑖 is the prediction iteration, and 𝑃 is 

the number of total prediction steps.  

5.2 Analysis of obtained results 

For predictions, thermal profiles obtained by LabVIEW demodulation 

software in chapter 3 were used. Three step prediction algorithm has produced 

three temperature distributions that are compared to the measured data. The figures 

5.3 and 5.4 show prediction errors and comparison of predicted and measured 

distributions respectively.  

 

Figure 5.3. Errors of three step temperature prediction. 

It can be seen that the last prediction based on the measured data and two 

predicted data produced maximum difference of approximately 13°C at 4.5-6 mm 
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sensor position. On the other side, relatively low error of 1.7°C and 6°C were 

achieved in the second and first predictions at the same sensor position accordingly. 

Furthermore, the figure 5.4 illustrates that the algorithm constructs relatively 

correct shape of temperature distribution. Nonetheless, the most important position 

of the sensor is the point of ablation. According to the thermal map illustrated in 

the previous chapter in the figure, the heat was concentrated around 0.5 – 1.5 mm 

sensor position. In other words, this range of sensor position needs accurate and 

precise prediction.  
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Figure 5.4. Temperature profiles comparison for 3 step prediction. 
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 Another important aspect of prediction is forecasting the way the 

temperature distributes. For this purpose, the radius of distribution must be 

compared and analyzed. The figures 5.5 and 5.6 show the changes of predicted and 

measured temperature profiles, and the figure 5.7 shows the sequence of decrement 

followed by increment of temperature distribution. According to these figures, it 

can be noticed that the sequence was predicted correctly, but the amplitude and the 

radius of thermal distribution were predicted with errors. 

 

Figure 5.5. Radius change of predicted temperature profiles. 

 The difference between the measured and the predicted radius of distribution 

is illustrated in the figure 5.7. The errors are approximately 0.1, 0, and 0.3 

millimeters. Even though it may seem that the errors are small, the slightest 

miscalculation of the thermal distribution can lead to the damage of living cells. 

Therefore, in the future the prediction algorithm is expected to forecast with the 

smallest error of nanometers. 
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Figure 5.6. Predicted temperature profile change. 

 

Figure 5.7. Measured temperature profile change during prediction. 
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Figure 5.8. Difference between predicted and measured radius in millimeter scale. 

 For the purpose of examination, the prediction algorithm was applied to 

another thermal map of different experiment. The results of the prediction can be 

observed in the Appendix D. The results showed similar performance of prediction, 

therefore it can be concluded that prediction algorithm based on linear regression is 

not able to detect with anticipated accuracy. The alternative approaches that can be 

taken into account as a future work are non-linear regression model, or prominent 

in present day Neural Networks in case of massive amount of experiment data. 
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Chapter 6 – Conclusion 

Developing of the code give to the developer good understanding of the 

work principles of almost any system, which in this case is combination thermal 

ablation process and Chirped Fiber Bragg Grating sensors. This knowledge 

obtained has supported me in writing of this report. The report considered the 

development of demodulation software on MATLAB and LabVIEW of power 

reflectivity spectrum of CFBG sensor in order to obtain the temperature pattern. 

Moreover, it examined feasibility of prediction of temperature profile distribution. 

Although the prediction of temperature pattern using linear regression still requires 

enhancements due to insufficiently precise forecasting results, the demodulation of 

few experiments have showed some convincing results. Specifically saying, the 

demodulation software performs their task both on MATLAB and LabVIEW. 

However, there are still some work to do. For the instance, the results of 

comparison to the existing LUNA OBR 4600 technology have shown that the 

precision of estimations must be improved. Also, the code needs acceleration of 

compilation process. In the near future, constant debugging and designing of faster, 

more precise and accurate demodulation and prediction algorithms are expected. 
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Appendix A 

Main Code: 

 

Linspace function: 
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Offset removal: 

 

Temperature Distribution: 
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FBG generation function: 

 

Temperature Reconstruction (a): 
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Temperature Reconstruction (b): 
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Appendix B 

Simulation main code: 

clc 

close all 

clear all 

tic 

  

%///////////////  READ SPECTRE  

/////////////////////////////////////////////// 

[db_val] = GetItalian; %take measurement of italian spectrometer 

% lambdaS = 1510e-9;  %start of lambda, shown in plots  

% lambdaE = 1595e-9;  %end of lambda, shown in plots 

  

[scans,pixels] = size(db_val); 

  

M = 100;              %number of sections, can be varied 

  

%//////////////////  PARAMETERS OF GRATING  

///////////////////////////////// 

grating.kL= 0.62;           

grating.dneff = 1e-6;         %change of refraction index 

grating.neff = 1.5;           %refraction index 

  

lengthofFBG = 0.1;  %length of LCFBG sensor   or Length can be 

0.016 

L = lengthofFBG/M;    %length of grating 

k = grating.kL/L;           %strength 

  

  

for ii = 1:scans 

   db_val(ii,:)= db_val(ii,:)-mean(db_val(ii,1:100)); 

end 

  

  

Xnm=(320)*(85e-9)/509; 

  

CFBG=db_val(:,1:320); 

FBG_array=db_val(:,321:end); 

  

  

[CFBG_measurements,N_CFBG] = size(CFBG); 
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lambdaS = 1510e-9; %[m] 

lambdaE = (1510e-9)+Xnm; %[m] 

lambda_CFBG = linspace (lambdaS,lambdaE,N_CFBG);  

  

guessL.LAMBDA1_guess=1534.4e-9;    

guessL.LAMBDA2_guess=1557.7e-9;  

  

lambdaLocal_final = linspace(guessL.LAMBDA1_guess, 

guessL.LAMBDA2_guess, M); 

ideal_spectrum_final = ones(1,length(lambda_CFBG)); 

  

for ii=1:M 

    Reflectivity_final  = FBGgeneration( lambdaLocal_final(ii), 

lambda_CFBG, L, grating,k); % specification 

    Transmission_final = 1 - Reflectivity_final; 

    ideal_spectrum_final = ideal_spectrum_final .* 

Transmission_final; %transmission spectrum 

end 

  

ideal_Reflection_final=1-ideal_spectrum_final; 

  

  

figure 

plot(lambda_CFBG,ideal_Reflection_final,lambda_CFBG,CFBG(:,:)); 

 

  

%/////////////// PRE-FILTERING  

////////////////////////////////////////////// 

[LAMBDA1_new, LAMBDA2_new,filter_final,Zero_filter_new] = 

lambda_calculation2(CFBG,lambda_CFBG,M,L,grating,N_CFBG,guessL,k)

; 

  

figure 

plot(lambda_CFBG,filter_final) 

  

for amplitude_val=1:5:150 

amplitude_val 

simulation_profiles(amplitude_val,lambda_CFBG, L, M, grating, 

filter_final, LAMBDA1_new, LAMBDA2_new,k); 

end 

  

toc 
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Get_Italian function: 

 

function [db_val] = GetItalian() 

  

[nome,path]=uigetfile('*.txt','Spettro'); 

file=[path,nome]; 

s=load(file); 

  

db_val=s(2:10:end,end:-1:6)/(2^16);  

  

end 

 

 

FBGgeneration function: 

 

function [Reflectivity]=FBGgeneration(lambdaB,lambda,L,grating,k) 

 

sigma = pi./lambda*grating.dneff; 

delta = 2*pi*grating.neff*(1./lambda - 1./lambdaB); 

sigmahat = delta + sigma; 

  

Reflectivity = ( sinh(L*sqrt(k.^2 - sigmahat.^2)).^2 ) ./ ( ( 

cosh(L*sqrt(k.^2 - sigmahat.^2)).^2 ) - (sigmahat.^2)./(k.^2)); 

 

end 
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Lambda_calculation function: 

 
function [LAMBDA1_new, LAMBDA2_new,filter_final,Zero_filter_new] 

= lambda_calculation2(db_val_CFBG, lambda,M, L, 

grating,N_CFBG,guessL,k) 

  

%///////////////  OBTAIN FIRST SPECTRUM  

////////////////////////////////////////////// 

new_real_spectrum=db_val_CFBG(1,:); %First spectrum (no 

temperature profile) used for filtering 

     

%/////////////// FILTERING  

//////////////////////////////////////////////     

      

transfer_equalizer = equalizer(new_real_spectrum, lambda, M, L, 

grating,guessL,k); 

% creates ideal spectrum with given grating parameters 

% obtain transfer_function=italian_filtered/simulated_ideal 

  

% ITERATION ITERATION ITERATINO ITERATION 

  

rangeLambda1=0.99*guessL.LAMBDA1_guess:0.1e-

9:1.01*guessL.LAMBDA1_guess; 

ww=0; 

size_lam=length(rangeLambda1); 

B=zeros(2,size_lam); 

 

for LAMBDA1=(0.99*guessL.LAMBDA1_guess):0.1e-

9:(1.01*guessL.LAMBDA1_guess) 

    lambdaLocal = linspace(LAMBDA1, guessL.LAMBDA2_guess, M); 

    Transm_partial_calc_LAMBDA1=ones(1,length(lambda)); 

    ww=ww+1;  

    for ii = 1:M 

        Reflectivity_calc  = FBGgeneration( lambdaLocal(ii), 

lambda, L, grating,k); 

        Transmission_calc = 1 - Reflectivity_calc; 

        Transm_partial_calc_LAMBDA1 = Transm_partial_calc_LAMBDA1 

.* Transmission_calc; 

    end 

         

    difference_a=sqrt((new_real_spectrum-(1-

Transm_partial_calc_LAMBDA1)).^2); 

     

    B(ww,1)=mean(difference_a); 

    B(ww,2)=LAMBDA1; 
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end 

  

[~,LAMBDA1_position] = min(B(:,1)); 

LAMBDA1_new=B(LAMBDA1_position,2); 

  

lambdaLocal_fin = linspace(LAMBDA1_new, guessL.LAMBDA2_guess, M); 

ideal_spectrum_fin = ones(1,length(lambda)); 

  

for zz=1:M 

    Reflectivity_fin  = FBGgeneration( lambdaLocal_fin(zz), 

lambda, L, grating,k ); % specification 

    Transmission_fin = 1 - Reflectivity_fin; 

    ideal_spectrum_fin = ideal_spectrum_fin .* Transmission_fin; 

%transmission spectrum 

end 

  

rangeLambda2=0.99*guessL.LAMBDA2_guess:0.1e-

9:1.01*guessL.LAMBDA2_guess; 

ee=0;  

sizelam2=length(rangeLambda2); 

V=zeros(2,sizelam2); 

 

for LAMBDA2=0.99*guessL.LAMBDA2_guess:0.1e-

9:1.01*guessL.LAMBDA2_guess 

    lambdaLocal2 = linspace(LAMBDA1_new, LAMBDA2, M); 

    Transm_partial_calc_LAMBDA2=ones(1,length(lambda)); 

    ee=ee+1;  

    for ii = 1:M 

        Reflectivity_calc  = FBGgeneration( lambdaLocal2(ii), 

lambda,L, grating,k); 

        Transmission_calc = 1 - Reflectivity_calc; 

        Transm_partial_calc_LAMBDA2 = Transm_partial_calc_LAMBDA2 

.* Transmission_calc; 

    end 

     

    difference_var=sqrt((new_real_spectrum-(1-

Transm_partial_calc_LAMBDA2)).^2); 

    

    V(ee,1)=mean(difference_var); 

    V(ee,2)=LAMBDA2;  

     

end 

  

[~,LAMBDA2_position] = min(V(:,1)); 

  

LAMBDA2_new=V(LAMBDA2_position,2); 
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display(LAMBDA1_new); 

display(LAMBDA2_new); 

  

lambdaLocal_final = linspace(LAMBDA1_new, LAMBDA2_new, M); 

ideal_spectrum_final = ones(1,length(lambda)); 

  

for ii=1:M 

    Reflectivity_final  = FBGgeneration( lambdaLocal_final(ii), 

lambda, L, grating,k); % specification 

    Transmission_final = 1 - Reflectivity_final; 

    ideal_spectrum_final = ideal_spectrum_final .* 

Transmission_final; %transmission spectrum 

end 

  

figure  

plot(lambda*10e8,1-

ideal_spectrum_final,lambda*10e8,new_real_spectrum); 

title('Measured and simulated spectra with new wavelength 

range'); 

xlabel('Wavelength [nm]'); ylabel('Reflectivity') 

legend('Simulated','Measured') 

  

TF=new_real_spectrum./(1-ideal_spectrum_final); 

  

for ff=1:(N_CFBG/2) 

    if abs(new_real_spectrum(ff+1)-new_real_spectrum(ff))>0.05 

        lambda_border1=ff; 

        break; 

    end  

end 

  

for gg=(N_CFBG-1):(-1):(N_CFBG/2) 

    if abs(new_real_spectrum(gg+1)-new_real_spectrum(gg))>0.02 

        lambda_border2=gg; 

        break; 

    end           

end 

  

Zero_filter_new = zeros(1,N_CFBG); 

for rr=1:N_CFBG 

    if (rr >= lambda_border1) && (rr <= lambda_border2) 

        Zero_filter_new(rr) = 1; 

    else 

        Zero_filter_new(rr) = 0; 

    end 

end 
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%////////////////////////////////////////////////////////////////

///////// 

  

  

filter_final = TF.*Zero_filter_new; 

  

figure 

plot(lambda, transfer_equalizer, 'b'); title('Filter Equalizer'); 

xlabel('Wavelength, nm');  

ylabel('Measured Spectrum/Simulated Spectrum'); 

  

figure 

plot(lambda, filter_final, 'b'); title('Filter FINAL'); 

xlabel('Wavelength, nm');  

ylabel('Final filter = Equalizer * H filter'); 

  

end 

  

 

simulation_profiles function: 

 

function [] = simulation_profiles(amplitude_val,lambda_CFBG,  L,  

M, grating, filter_final,LAMBDA1_new, LAMBDA2_new,k) 

  

lambdaLocal = linspace(LAMBDA1_new, LAMBDA2_new, M); 

  

amplitude_set=amplitude_val-2:1:amplitude_val+6; 

  

variance_set=30:1:70; 

centre_set=0:1:40; 

superG_set=1; 

  

sets = {amplitude_set, centre_set, variance_set, superG_set}; 

[amplitude_i, centre_j, variance_z, superG_k] = ndgrid(sets{:}); 

all_combinations = [amplitude_i(:) centre_j(:) variance_z(:) 

superG_k(:)]; 

number_of_rows=size(all_combinations,1); 

 

lambdaLocal_new1 = ones(1, M); 

deltalambda_new1 = ones(1, M); 

  

for rr=1:number_of_rows 

    Transm_partial_calcREC = ones(1, length(lambda_CFBG)); 

     

    amplitude1=all_combinations(rr,1); 
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    centre1=all_combinations(rr,2); 

    variance1=all_combinations(rr,3); 

    G1=1; 

     

     [delta_Gaussian1] = TempDistribution( G1, amplitude1, M, 

variance1, centre1); 

  

    for mm=0:(M-1) 

        deltalambda_new1(mm+1) = delta_Gaussian1(mm+1)*10.2e-12; 

        lambdaLocal_new1(mm+1) = lambdaLocal(mm+1) + 

deltalambda_new1(mm+1); 

 

        Reflectivity_calcREC  = FBGgeneration( 

lambdaLocal_new1(mm+1), lambda_CFBG, L, grating,k); 

        Transmission_calcREC = 1 - Reflectivity_calcREC; 

        Transm_partial_calcREC = Transm_partial_calcREC .* 

Transmission_calcREC; 

    End 

 

    Model_spectrumREC=1-Transm_partial_calcREC; 

  

    filterMmodel=filter_final.*Model_spectrumREC; 

    

saved_matrix(rr,:)=[amplitude1,centre1,variance1,filterMmodel]; 

  

end 

    

filename= strcat('amplitude','_', 

num2str(amplitude_set(1)+2),'_',num2str(amplitude_set(end)-1)); 

   

save(filename, 'saved_matrix'); 

 

 

 

TempDistribution function: 

function [delta_Gaussian,ax] = TempDistribution(  G, amplitude,M, 

variance, centre) 

     

    jj=1:M; 

    variance0=variance/((0.5*pi)^(2/(2*G-1))); 
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    delta_Gaussian = amplitude*exp((-(abs(jj-

centre)).^(2*G))/(2*variance0.^(2*G))); 

    ax = exp((-(abs(jj-centre)).^(2*G))/(2*variance0.^(2*G))); 

  

end 

 

 

Main Code: 
 
clc 

close all 

clear all 

 

%///////////////  READ SPECTRE  //////////////////////////// 

[db_val] = GetItalian; %take measurement of italian spectrometer 

  

[scans,pixels] = size(db_val); 

  

M = 100;              %number of sections, can be varied 

  

%//////////////////  PARAMETERS OF GRATING  ////////////////// 

grating.kL= 0.62;           

grating.dneff = 1e-6;         %change of refraction index 

grating.neff = 1.5;           %refraction index 

  

lengthofFBG = 0.1; %length of LCFBG sensor or Length can be 0.016 

L = lengthofFBG/M;    %length of grating 

k = grating.kL/L;           %strength 

  

  

for ii = 1:scans 

   db_val(ii,:)= db_val(ii,:)-mean(db_val(ii,1:100)); 

end 

   

Xnm=(320)*(85e-9)/509; 

CFBG=db_val(:,1:320); 

  

lambdaS = 1510e-9; %[m] 

lambdaE = (1510e-9)+Xnm; %[m]  

  

guessL.LAMBDA1_guess=1534.4e-9;    

guessL.LAMBDA2_guess=1557.7e-9;  

  

lambdaLocal_final = linspace(guessL.LAMBDA1_guess, 

guessL.LAMBDA2_guess, M);  

%/////////// RECONSTRUCTION //////////////////////// 
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YYmax = scans; % scans; 

  

results(1)=0; 

Temperature_preprocessing = zeros(YYmax, M); 

 

%/////////////// RECONSTRUCTION  //////////////////////// 

iteration=0; 

  

for YY=1:YYmax 

   

[results] = temperature_reconstruction(CFBG(YY,:),results(1)); 

  results2(YY, :) = results; 

  [Temperature_preprocessing(YY,:), ax] = TempDistribution(1,  

results(1), M, results(3), results(2)); 

  iteration=iteration+1; 

  display(iteration) 

 

end 

 

return 

 

 

temperature_reconstruction function: 

 

function [results] = temperature_reconstruction(CFBG,amplitude) 

  

 amps=[0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 

100 105 110 115 120 125 130 135 140 145]+1; 

 differencE=amps-amplitude; 

 indeX=find(differencE<=1,1,'last'); 

 amplitude_start=amps(indeX); 

  

 filename= strcat('amplitude','_', 

num2str(amplitude_start),'_',num2str(amplitude_start+5)); 

  

 A=load(filename); 

 B=A.saved_matrix; 

 CF=sqrt(mean(((CFBG-B(:,4:end)).^2)')); 

     

[~,I]=min(CF); 

  

results=B(I,1:3); 

  

end 
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Appendix C 

Temperature prediction MATLAB code: 

clear; 

clc; 

close all; 

 

ResultCSV = csvread('Result.csv'); 

[row, col] = find(ResultCSV >= 60); 

ind = find(row == min(row)); 

heatP = [min(row), col(ind(1))]; 

 

steps = heatP(1); 

% ResultCSV = csvread('Result.csv')'; 

% [rowsR, columnsR] = size(ResultCSV); 

 

Name = {}; 

 

for (kk = 1:steps) 

    Name{end+1} = strcat('VarName',int2str(kk)); 

end 

 

%First 

 

Train = ResultCSV(1:steps, :);     

TrainT = array2table(Train'); 

TrainT.Properties.VariableNames = Name; 

 

Test = ResultCSV(2:(steps + 1), :); 

TestT = array2table(Test'); 

TestT.Properties.VariableNames = Name; 

 

[modelT, RMSE] = trainRegressionModel(TrainT, Name); 

predicVal = modelT.predictFcn(TestT); 

error(1, :) = Test(steps, :) - predicVal'; 

 

% Second 

 

Train = [Train; predicVal'];     

TrainT = array2table(Train'); 

Name = []; 

for (kk = 1:(steps + 1)) 

    Name{end+1} = strcat('VarName',int2str(kk)); 

end 

TrainT.Properties.VariableNames = Name; 

 

Test = [Train(2:end, :); ResultCSV((steps + 1), :)]; 
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TestT = array2table(Test'); 

TestT.Properties.VariableNames = Name; 

 

[modelT, RMSE] = trainRegressionModel(TrainT, Name); 

predicVal2 = modelT.predictFcn(TestT); 

error(2, :) = Test(steps, :) - predicVal2'; 

 

% Third 

 

Train = [Train; predicVal2'];     

TrainT = array2table(Train'); 

Name = []; 

for (kk = 1:(steps + 2)) 

    Name{end+1} = strcat('VarName',int2str(kk)); 

end 

TrainT.Properties.VariableNames = Name; 

 

Test = [Train(2:end, :); ResultCSV((steps + 2), :)]; 

TestT = array2table(Test'); 

TestT.Properties.VariableNames = Name; 

 

[modelT, RMSE] = trainRegressionModel(TrainT, Name); 

predicVal3 = modelT.predictFcn(TestT); 

error(3, :) = Test(steps, :) - predicVal3'; 

 

Train = [Train; predicVal3']; 

 

figure; 

surf(Train); 

title('Temp distribution with prediction'); 

xlabel('Sensor points'); 

ylabel('Time steps'); 

zlabel('Temperature'); 

axis([1 100 1 22 0 80]); 

grid on; 

 

figure; 

surf(ResultCSV(1:(steps+3), :)); 

title('Actual temp distribution'); 

xlabel('Sensor points'); 

ylabel('Time steps'); 

zlabel('Temperature'); 

axis([1 100 1 22 0 80]); 

grid on; 

 

error2 = abs(error); 

figure; 

 

for ii = 1:3 

    plot(error2(ii, :)); 

    hold on; 

end 
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title('Error across sensor through 3 step prediction'); 

legend('Error 1', 'Error 2', 'Error 3'); 

xlabel('Sensor points'); 

ylabel('Temp error'); 

axis([1 100 0 (max(error2(:)) + 1)]); 

grid on; 

hold off; 

 

 

TrainRegressionModel function: 

function [trainedModel, validationRMSE] = 

trainRegressionModel(trainingData, predictorNames) 

% [trainedModel, validationRMSE] = trainRegressionModel(trainingData) 

% returns a trained regression model and its RMSE. This code recreates 

the 

% model trained in Regression Learner app. Use the generated code to 

% automate training the same model with new data, or to learn how to 

% programmatically train models. 

% 

%  Input: 

%      trainingData: a table containing the same predictor and response 

%       columns as imported into the app. 

% 

%  Output: 

%      trainedModel: a struct containing the trained regression model. 

The 

%       struct contains various fields with information about the 

trained 

%       model. 

% 

%      trainedModel.predictFcn: a function to make predictions on new 

data. 

% 

%      validationRMSE: a double containing the RMSE. In the app, the 

%       History list displays the RMSE for each model. 

% 

% Use the code to train the model with new data. To retrain your model, 

% call the function from the command line with your original data or 

new 

% data as the input argument trainingData. 

% 

% For example, to retrain a regression model trained with the original 

data 

% set T, enter: 

%   [trainedModel, validationRMSE] = trainRegressionModel(T) 

% 
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% To make predictions with the returned 'trainedModel' on new data T2, 

use 

%   yfit = trainedModel.predictFcn(T2) 

% 

% T2 must be a table containing at least the same predictor columns as 

used 

% during training. For details, enter: 

%   trainedModel.HowToPredict 

 

% Auto-generated by MATLAB on 30-Oct-2018 00:59:47 

 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

%predictorNames = {'VarName1', 'VarName2', 'VarName3'}; 

predictors = inputTable{:, 1:(end-1)}; 

response = inputTable{:, end}; 

isCategoricalPredictor = [false, false, false]; 

 

% Train a regression model 

% This code specifies all the model options and trains the model. 

% concatenatedPredictorsAndResponse = predictors; 

% concatenatedPredictorsAndResponse{:, end + 1} = response; 

concatenatedPredictorsAndResponse = inputTable; 

concatenatedPredictorsAndResponse.Properties.VariableNames = 

predictorNames; 

linearModel = fitlm(... 

    concatenatedPredictorsAndResponse, ... 

    'linear', ... 

    'RobustOpts', 'off'); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

linearModelPredictFcn = @(x) predict(linearModel, x); 

trainedModel.predictFcn = @(x) 

linearModelPredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields tVarName4o the result struct 

trainedModel.RequiredVariables = predictorNames; 

trainedModel.LinearModel = linearModel; 

trainedModel.About = 'This struct is a trained model exported from 

Regression Learner R2018b.'; 

trainedModel.HowToPredict = sprintf('To make predictions on a new 

table, T, use: \n  yfit = c.predictFcn(T) \nreplacing ''c'' with the 

name of the variable that is this struct, e.g. ''trainedModel''. \n 

\nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g. matrix/vector, datatype) 

must match the original training data. \nAdditional variables are 

ignored. \n \nFor more information, see <a 

href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 



72 
 

''appregression_exportmodeltoworkspace'')">How to predict using an 

exported model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

%predictorNames = {'VarName1', 'VarName2', 'VarName3'}; 

predictors = inputTable(:, 1:(end - 1)); 

response = inputTable{:, end}; 

isCategoricalPredictor = [false, false, false]; 

 

% Perform cross-validation 

KFolds = 10; 

cvp = cvpartition(size(response, 1), 'KFold', KFolds); 

% Initialize the predictions to the proper sizes 

validationPredictions = response; 

for fold = 1:KFolds 

    trainingPredictors = predictors(cvp.training(fold), :); 

    trainingResponse = response(cvp.training(fold), :); 

    foldIsCategoricalPredictor = isCategoricalPredictor; 

     

    % Train a regression model 

    % This code specifies all the model options and trains the model. 

    concatenatedPredictorsAndResponse = trainingPredictors; 

    concatenatedPredictorsAndResponse{:, end + 1} = trainingResponse; 

    concatenatedPredictorsAndResponse.Properties.VariableNames = 

predictorNames; 

    linearModel = fitlm(... 

        concatenatedPredictorsAndResponse, ... 

        'linear', ... 

        'RobustOpts', 'off'); 

     

    % Create the result struct with predict function 

    linearModelPredictFcn = @(x) predict(linearModel, x); 

    validationPredictFcn = @(x) linearModelPredictFcn(x); 

     

    % Add additional fields to the result struct 

     

    % Compute validation predictions 

    validationPredictors = predictors(cvp.test(fold), :); 

    foldPredictions = validationPredictFcn(validationPredictors); 

     

    tModel.predictFcn = validationPredictFcn; 

 

    % Add additional fields tVarName4o the result struct 

    tModel.RequiredVariables = predictorNames; 

    tModel.LinearModel = linearModel; 

    tModel.About = 'This struct is a trained model exported from 

Regression Learner R2018b.'; 

     

    % Store predictions in the original order 
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    validationPredictions(cvp.test(fold), :) = foldPredictions; 

end 

 

 

trainedModel = tModel; 

 

% Compute validation RMSE 

isNotMissing = ~isnan(validationPredictions) & ~isnan(response); 

validationRMSE = sqrt(nansum(( validationPredictions - response ).^2) / 

numel(response(isNotMissing) )); 
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