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Abstract 
 

Kazakhstan takes 12th place in World oil production, however 52,7 % of 

produced oil comes from “mature” fields that are on the last production stages. 

Therefore, use of enhanced oil recovery methods becomes essential; one of these 

methods is polymer flooding, which involves injecting a polymer solution into the 

reservoir in order to displace trapped oil towards the wellbore. For successful 

injection of polymer solutions in a reservoir it is essential to study properly their 

behavior in porous media.  This master thesis focuses on that topic, by describing 

and understanding two main factors that have a great impact on polymer transport, 

namely (i) the inaccessible pore volume (IPV) and (ii) polymer retention due to its 

adsorption on grain surfaces within the porous medium. In order to reach this goal 

experiments on core samples (plugs) were conducted, and effluent concentration 

profiles were obtained. Moreover, numerical modelling was implemented to 

characterize diffusion/adsorption of polymer molecules inside the porous core. 

Besides characterization of the porosity of the core samples, experimental 

work was based on the idea of contrasting the effluent concentration curves for 

polymer solution flow with the effluent concentration curves of a tracer (sodium 

chloride) during core flooding tests. The effluent concentration of tracer was 

measured by an on-line resistivity apparatus, while the polymer’s concentration was 
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determined indirectly by on-line measurement of pressure drop in a long coil tube, 

which was set right on the exit of the core plug. The adsorption was calculated during 

polymer injection in saturated core sample and was manifested as a delay on polymer 

effluent profile compared to the effluent profile of the tracer. The IPV, on other hand, 

was determined during brine injection after polymer injection, and manifested as 

faster polymer exit compared to the tracer; this is attributed to the multi–scale 

porosity of the core material and large size of the polymeric molecules. Experimental 

effluent profiles were compared to computer simulations using an in-house 

developed computer code.  

Our results demonstrate that adsorption of polymer molecules on grain surface 

averages 0.0006 g/g, and that 14.8 % of the core plug’s pore volume is inaccessible 

to the polymer solution. Also, according to mercury porosimetry, 16 % of the total 

pore volume has smaller diameter than the size of the polymer molecule; this points 

to a multi-scale porous structure, which is expected to affect effluent response curves. 

The transport of polymer through the core was described by a multi-scale dynamic 

convection/diffusion model which was implemented in-house using MATLAB. The 

shapes of curves of the polymer and tracer effluent curve can be reproduced by 

considering the polymer to have a higher Peclet number and lower diffisivity, 

whereas the tracer species is considered to have a higher microscale diffusivity and 
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lower Peclet number. This results is consistent with the analysis of the polymer size 

relative to the multi – scale porosity of the system. 
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Chapter 1-Introduction 
 

“In Kazakhstan, 52.7% of produced oil is represented by mature oilfields that 

have passed through the production "plateau" or are at the last stage of reservoir 

production"(Bulekbai, 2013). 

“More than half of the oil fields in Kazakhstan are mature, they have already 

passed the peak of production and the level of production is low. Currently, the oil 

recovery factor is 30%, while in the world it reaches about 50% - it is necessary to 

increase it by at least 5-7%' - Bakytzhan Sagintayev, first deputy prime minister of 

the Republic of Kazakhstan (Tumasheva, 2015). 

Also it is a fact that a third of Kazakhstan GDP is generated by revenues from 

the oil and gas industry (Statistics, 2014). 

Considering this information, the importance of tertiary recovery or enhanced 

oil recovery (EOR) becomes evident, as it plays a key role in the development of the 

national petroleum industry. 

There are many EOR techniques that can be applied and have been applied 

successfully. However taking into the account that average depth of oil reservoirs in 

Kazakhstan is in the range 500-2500 m (200-8000 ft) and oil viscosity may vary from 

100 to 900 cP, polymer flooding (injection) according to the figure 1.1 (Anon., 2012) 

could be chosen as tertiary recovery method. 
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Figure 1.1 Regimes of application of tertiary oil recovery methods. The circled area and the 

yellow color outline the region (in terms of oil viscosity and reservoir depth) where polymer 

injection might be applied.  

Larry W. Lake (Lake, 2010) gave a comprehensive definition of polymer 

flooding and how it works. Polymer flooding is a method in which a (water-soluble) 

polymer powder is added to the water that is injected in reservoir, making the 

resulting solution more viscous. As a result mobility ratio decreases, sweep 

efficiency increases and the remaining oil is displaced towards the wellbore. These 

terms will be explained in the following section. 

Polymer flooding is the one the major  category of  chemical EOR methods 

which is designed to increase required mobility ratio between polymer and oil 

volume being displaced. However, the success or failure of polymer flooding is 

generally affected by reservoir geology, sweep efficiency, gravity segregation etc.. 
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Unfortunately we cannot directly measure the majority of the variables needed for 

precise prediction of oil displacement during polymer flooding. A first step in 

improving this state of affairs is to understand the behavior of polymer solutions in 

a laboratory environment, specifically their flow behavior in porous core samples, 

obtained from the reservoir of interest. There are two main components that affect 

the polymer behavior in a porous medium, namely (i) polymer retention and (ii) 

inaccessible pore volume (IPV) (Idahosa, 2016). Polymer retention consist of 

mechanical entrapment, adsorption and hydrodynamic retention, while inaccessible 

pore volume refers to the inability of large  polymer molecules to flow through small 

pore spaces. These parameters are determined through measurement of effluents' 

(polymer and tracer) profiles in one-dimensional core injection experiments. The 

data collected in such laboratory experiments are vital for further modelling of this 

EOR process (Ferreira et al, 2016). 

In this study provides one-dimensional (1-D) core flooding experiments were 

performed, using polymer solution (hydrolyzed polyacrylamide) and tracers (sodium 

chloride), in order to better understand the transport behavior of the polymer 

molecules. 
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Chapter 1-Polymer flooding. 
 

2.1 The concept of polymer flooding 

The main function of injecting a polymer solution into oil reservoirs is to 

reduce the mobility ratio (defined by equation 1) of the displacing agent and oil, 

as well as an effective method of leveling the heterogeneity of the porous medium. 

The improved efficiency of flooding is achieved by adding a high molecular 

weight polymer which is dissolved in water. Even at low concentrations, addition 

of polymeric molecules significantly increases the viscosity of water and as a 

result it reduces its mobility and thereby increase the coverage of the layers. 

Figure 2.1 shows a schematic of polymer flooding  (Lake, 1989). 
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 In case where the viscosity of oil considerably exceeds the viscosity of the 

forcing-out agent (water) it is necessary to increase the viscosity of the pumped 

water and reduce its mobility; a direct consequence of this is that the minimum 

amount of water is used and also, that the maximum quantity of oil is recovered. 

Use of excess water leads to a significant reduction in final oil recovery (water 

uselessly circulates through the washed zones, and the oil stays in reservoir) and 

also to large economic losses associated with water pumping, recycling and 

transportation. 

 

 The Mobility Ratio (M) is determined as the ratio of the mobility of the 

injectant fluid (water or polymer solution) to the mobility of the displaced fluid 

(oil). The mobility ratio is a dimensionless number and an indicator of efficiency 

of displacemant: 

 

𝑀 =
𝜆𝑤

𝜆𝑜
=  

𝑘𝑤
µ𝑤

⁄

𝑘𝑜
µ𝑜

⁄
,     (1.1) 

Where 

 𝜆𝑤- water mobility, mD/cP; 

Figure 2.1 Process of polymer flooding (Lake, 1989) 
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𝜆0-oil mobility, mD/cP; 

𝑘𝑤 , 𝑘0- relative permeability of water and oil respectively, mD; 

µ𝑤 , µ𝑜- viscosity of water and oil respectively, cP; 

 

 For successful oil displacement, the Mobility Ratio (M) has to be less than 

1. Otherwise, it was lead to viscous fingering effect i.e. water flows through 

washed zones, oil remains in the reservoir, and this will result in excess water 

production (watercut) (Don W. Green, 1998). One of the method to increase the 

mobility ratio is to adding chemicals in order to increase the water viscosity – thus 

the method of polymer flooding. 

2.2 Worldwide experience and screening criteria for polymer flooding 

 The polymer flooding method in the world is studied since the end of the 

1950s, and in industrial conditions is tested since the 1960s. Commercial 

experiments and also use of polymers in industrial volumes for the purpose of 

increasing oil production in various geological conditions were conducted on 

numerous locations worldwide: USA, Canada, China, France, India, Indonesia, 

Venezuela, Germany, Brazil, Argentina (Delamaide, 31 March-2 April 2014) . In 

recent years the world leader in the field of polymer flooding is China - projects 

on polymer flooding are implemented from the 1990s. Twenty-five years' 

successful experience of application of polymer flooding in China has shown that 

it can effectively be applied on fields with watercut higher than 95%, providing 

increase in oil recovery  to 10% (Wang, 2008) (Chang, 2006) (Appendix A ). 
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Polymer flooding is successfully applied on the large-scale Daqing oil field of 

China. This field is characterized by a complex geological structure and high 

heterogeneity of collectors. Reservoir oil average viscosity is 9 MPa.s, water is 

low-mineralized, and the reservoir temperature 113 °C. The PetroChina company 

since 1994 has carried out six pilot projects in layers with various collector 

(sandstone and conglomerate). The average increase in oil recovery  in 

comparison with water flooding was 15 – 20% (Wang, 2008). 

 In Kazakhstan the first experience of polymer flooding was carried out on 

the field Kalamkas in 1981. This field’s oil is heavy, highly-resinous, sulphurous, 

with viscosity up to 25 MPa.s in reservoir conditions. To prepare the polymer 

solution the Albian/Cenomanian water from specially drilled wells was a source 

for trial flooding. On the chemical composition Albian/Cenomanian water 

belongs to chlor-calcicitic type with the salinity 93 g/l, and density 1,07 g/cc. 

Originally in 1981 - 1983 the efficiency of polymer flooding was low due to high 

salinity and composition of the injected waters. In 1983-1986 in this field 

injection of viscoelastic structures has led to decrease in watercut from 1,5% to 

0,2% a month. By 1990 the oil recovery was 33% at water content of 56%. At 

usual flooding such oil recovery can be reached at 98% watercut (98% of 

produced fluid is water) (Киинов, 1994) (Надиров Н. К., 1982). 

 The analysis of worldwide experience of this technology shows that 

polymer flooding can be conducted in fields with wide variety of geological 

properties. (Appendix A).  Polymer flooding was used in the fields layered by 
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sands, sandstones and conglomerates, including clay sandstones. Successful 

application of polymer flooding has also been reported in limestone reservoirs, 

however, at the same time big losses of polymer due to adsorption are observed. 

Therefore the collector type in principle isn't the limited factor however from the 

economic reasons the terrigenous type of a collector is more favorable.  

 The fields’ depth fluctuates within 579-2205 m. This parameter isn't 

limiting, however polymer flooding isn't recommended to be used in layers 

located as at very high and very low depths. In the layers located at a low depth, 

limiting factor is the injecting pressure which can approach the hydraulic 

fracturing pressure. In layers located at a higher depth the method is not 

recommended mainly because of high reservoir temperatures and the salinity of  

waters (Lake, 1989) (Taber, 1997). 

 The effective thickness of layers varies between 3-38 m, and average 

porosity in the range of 7-32%, in this regard these parameters aren't defining. 

One of the most important parameter is the average permeability of reservoir and 

its variability. When injecting solution of polymer in reservoirs with low 

permeability two problems can arrise: a decrease in well production and an 

increase in degradation of polymer solution due to high injection pressure. The 

lower limit of permeability is defined around 200 mD. In layers with high 

permeability increased concentration of polymer are required and this affects the 

economics of the process (Abou-Kassem, 1999) (J.J. Taber, August 1997). 
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 The reservoir temperature should be varied from 33 to 77 ° C. At higher 

temperatures, thermal degradation of polymer can occur. 

 Analyzing the data presented in Appendix A (worldwide experience of 

polymer floodimg), it is  obvious that desirable to use low-mineralized water to 

prepare the polymer solution, and where the reservoirs have highly mineralized 

water, fresh water buffer need to be injected to protect the polymer solution. For 

the first time this approach was implemented at the North Burbank field in 1970 

(P.D. Moffitt, 1993) (Joseph C. Trantham, 1982). 

 Analysis of world experience shows that the maximum efficiency from the 

use of polymer flooding technology gives an oil increase 5-10% (Lake, 1989). 

2.3 The effect of Inaccessible Pore Volume (IPV) on polymer effluent profiles 

The term "Inaccessible Pore Volume" (IPV) was originally introduced by 

R. Dawson and R.B. Lantz in 1972. They found that not all open pore spaces can 

contribute to polymer flow and that pore spaces inaccecible to polymer molecules 

are filled with water resulting in polymer concentration changes (Dawson & 

Lantz, 1972). They related this phenomena to the differing size of pore spaces, 

some of which are too small for polymer’s molecule to flow through them. 

Therefore the term IPV is associated with the velocity enhancement of polymer 

solution comparing to tracer, as polymer’s molecule avoid small pore spaces and 

only flow through the macro-scale pores. In the experiments that were conducted 

by K.S. Sorbie (K.S. Sorbie,1991) larger velocity enhancement were observed for 

larger polymer's molecular size and in the cores with low permeability; IPV factor 
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do not depend from concentration or flow rate. However this statement a quite 

controversial, as Gupta and Trushenski  (Gupta, 1978) reported that with some 

change in the concentration, velocity enhancement changes too, but later Lotsch 

(Lotsch, et al., 1985)  did not noticed such change in his study. Stavland   ( 

Stavland,  2010)presented the following equation to calculate IPV: 

𝐼𝑃𝑉 = 1 − √
1

1+𝐵
 ,     (2.1) 

where  B is a dimensionless constant, calculated as kw/kp  (ratio of water to oil 

permeabilities of the core sample) 

 

However all the sources related to inaccessible pore volume underline that 

the inaccessible pore volume takes place when there is no adsorption (discussed 

later). 

On the effluent profile, the presence of Inaccessible Pore Volume is 

demonstrated as followes (Dawson & Lantz, 1972): 

 

Figure 2.2 Original experimental demonstration of the inaccessible pore volume 

phenomenon (concentration fraction vs volume of injected fluid/pore volume of sample) 
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In the figure 2.2 is seen that the polymer flows faster than the tracer in a 

porous medium. Polymer is just too large to fit the small pore sizes therefore 

polymer just flow over it instead of flowing through pores. The tracer here helps 

to identify the inaccessible pore volume effect. Pancharoen, et al. concludes in his 

study that interpretation of IPVis best achieved with effluent profile comparing to 

the breakthrough curve (Pancharoen, et al., 2010). 

2.4 The effect of retention on polymer effluent profiles 

Retention has a great impact to the polymer flow in porous media as it 

includes to the adsorption, mechanical entrapment and hydrodynamic retention 

(Ferreira et al, 2016).  Adsorption has the biggest effect on retention, which is 

considered an irreversible process. According to the D.G. Hatzignatiou, U. L. 

Norris and A. Stavland polymer retention is primarily caused by its adsorption on 

rock surfaces (Hatzignatiou, et al., 2013). D. Wang recommends choosing the size 

and molecular weight of polymer to be small enough in order for it to easily flow 

through porous media without clogging the pore space and mechanical trapping 

(Wang, et al., 2008). Moving to the mechanical entrapment and hydrodynamic 

retention, they are considered as reversible processes, controlled by changing the 

flow condition (Ferreira et al, 2016). A good way of illustrating this phenomena 

was found in the research of (Aluhwal, 2008) (figure2.3) 

 According to Sorbie & Phill the hydrodynamic retention is the least well 

studied mechanism of polymer retention, also there is the lack of comprehensive 

definition that will explain this process. (Sorbie & Phill, 1991). However Zhang 
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& Seright fully described this mechanism in their experimental study. They 

explained this kind of retention as a retention occurring due to hydrodynamic 

forces (Zhang & Seright, 2015). According to their laboratory data, it was proven 

that the hydrodynamic retention is directly affected by flow rate. Moreover, 

almost all hydrodynamic retention was irreversible, what is confirmed by 

unchangeable residual resistance factor (ratio of water mobility before and after 

polymer injection). However this study concluded that the enhanced oil recovery 

rheology is dominated more by intrinsic property (intrinsic viscosity, molecular 

eight and polymer’s molecule size) than by retention. So they contradict the 

proposal of Chauveteau that rheology is primary related to retention (Chauveteau, 

et al., 2002). 

 

Figure 2.3 Polymer retention mechanisms in porous medium 

 

Adsorption on other hand is physically present in porous media, and could 

dramatically decrease rock’s permeability (Seright, et al., 2010). In the laboratory 

experiments on core flooding this phenomenon is manifested as a dramatic 
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increase in the pressure gradient when core is post-flushed with water in contrast 

to the water preflush. On the effluent profile adsorption is shown as delay 

comparing to the no adsorption (figure 2.4). Here is assumed the Langmuir form 

of the adsorption 

 

Figure 2.4 Calculated effluent profiles for a linear core system both with and without 

adsorption (L(0) - linear adsorption) 
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Chapter 3 - Methods and process of 

analyses. 
 

3.1 Literature review of measuring methods of IPV and adsorption 

There does not exist experimental apparatus or certain methodology to 

determine these parameters. However, K.S. Sorbie in his book stated that these 

two parameters can be calculated by constructing effluent profile concentration 

versus time (pore volume) and then contrasting the tracer and polymer effluenet 

profiles (K. S. Sorbie, 1991). Also, Lötsch et al. described in their paper that 

adsorption and IPV can be calculated by using tracers. A tracer needs to be added 

to the polymer solution in order to get polymer and tracer effluent curve (T. 

Lötsch, 1985). Almost all research methods of finding these two parameters by 

core flooding experiments are the same, the basic idea is contrasting tracer and 

polymer flow to get effluent profile. Adsorption can be determined by the delay 

of polymer that can be seen in difference between tracer and polymer curve. IPV, 

in its turn, can be measured by displacing polymer and tracer solution from the 

core with brine water. The polymer will be displaced quicker than the tracer, also 

tracer will be displaced from all pores, while polymer will be only displaced from 

the pores where it can flow. The number of pores which polymer can enter equals 

the entire pore volume minus the inaccessible pore volume (IPV). 
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3.1.1. Research methods of investigation inaccessible pore volume  (IPV) 

The first researcher who has reported the IPV term was Dawson and Lantz in 

1977. They defined the inaccessible pore volume as the space which polymer’s 

molecules hop, so the molecules of polymer are too large to fit in the pore space. 

(Dawson & Lantz, 1972) After they published their paper, many researchers have 

confirmed that by comparing polymer and tracer flow, concluding that polymer 

flows through porous media faster than tracer, when there is no adsorption due to 

inaccessible pore volume for polymer. (Dawson & Lantz, 1972; G. Paul Willhite, 

1977; Chauveteau, 1982).  

Stavland in his laboratory experiments measured IPV based on the difference 

between water and polymer solution permeability. So, the polymer solution was 

injected at different flow rates and the apparent viscosity was measured by 

stabilized pressure drop. He concluded that the apparent viscosity was less than 

the bulk viscosity at low shear rates, and this could be explained by the assumption 

that at low shear rates polymer does not enter the entire pore volume. Even though 

the IPV can be calculated, there is no methods to estimate the adsorption. (A. 

Stavland, 2010).  

M. Pancharoen conducted experiment that proved that statement. To measure 

the IPV during core flood, the adsorption, first, was minimized by saturating the 

core with the 2000 ppm polymer solution until it reached equilibrium. Then the 

polymer was mixed with inorganic salt – NaCl and injected to core, after that the 

effluent was collected and separated into salt and polymer in order to measure 
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their concentration. The polymer concentration was determined by using a 

Ultraviolet–visible spectrophotometer (Lambda 35, Perkin-Elmer), while the 

concentration of salt were identified by titration with silver nitrate (AgNO3). 

Finally, to calculate IPV the difference between breakthrough curve of polymer 

and salt was used. And it was clearly seen from the experiment that polymer flows 

faster through core material if there is no adoption or it is minimized (M. 

Pancharoen, 2010). 

3.1.2 Research methods of investigation polymer retention  

C. Huh (C. Huh, 1990) used sodium bromide as a tracer to investigate polymer 

retention in porous media. The polymer solution with tracer was injected in a core 

plug with residual oil saturation at a constant rate until the effluent concentration 

stabilized. Then, polymer injection was followed by water injection to estimate 

the irreversible retention of the polymer from a mass balance. Effluent samples 

were collected and analyzed to measure polymer concentration by an HPLC 

method with a refractive index detector and concentration of tracer using ion 

chromatography. The work concludes that polymer retention increases with 

increase in polymer concentration and flow velocity. 

 D. Broseta in his laboratory measurements of polymer retention used 

potassium iodide (KI) as a tracer. He conducted the core flooding experiments 

under residual oil saturation conditions and 100% brine saturated core without 

any oil, also he tested the adsorption in hydrophilic and hydrophobic rocks. The 

adsorption/retention was calculated by the delay of polymer in effluent profile 
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(concentration vs pore volume) The concentration of the tracer was detected by 

UV spectroscopy, while the concentration of the polymer was measured using the 

Dohrmann carbon analyzer. Also, it was concluded that hydrophobic cores have 

stronger adsorption than hydrophilic, but in oil residual conditions the adsorption 

increases in hydrophilic cores due to additional adsorbing oil surface. (Daniel 

Broseta, 1995) The same tracer was used by R.N. Manichand in 2014. An in-line 

spectrophotometer, with wavelength detection 230 nm was used to detect tracer – 

KI and also polymer. However, unlike the previous experiment, the polymer 

concentration was calculated by the polymer viscosity that was measured using a 

small-diameter capillary tube that was set up on the exit of core holder with 

accurate digital pressure transducer. (R.N. Manichand, 2014). Using the pressure 

drop across the capillary tube, length and diameter of the tube and recording the 

time that polymer is needed to flow through the tube, viscosity was calculated 

using Poiseuille’s equation (Womersley, 1955).  

The classical tracer/polymer methods were conducted to measure polymer 

retention by J. E. Juri et al. However instead of using classical capillary 

viscometer, innovative inline viscometer was set at the effluent stream at 

anaerobic conditions. This allowed to avoid the problems of chemical degradation 

due to the reaction with oxygen. The effluent concentration was determined by 

COD (Chemical Oxygen Demand) and bleach method. They concluded that the 

extended injection and backflow test obtained accurate results on retention, 
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degradation, pressures and rates behaviors with no adjustable parameters (Juri, et 

al., 2015).  

 Unlike other researchers D.G. Hatzignatiou et.al experimentally investigated 

polymer flow in water and oil–wet core samples. Instead of using tracer in the 

polymer retention investigation, they connect capillary tube to core holder and 

measure pressure drop along the core holder and this capillary tube. Retained 

polymer volume was calculated based on the residual water saturation and the 

polymer breakthrough that is determined using plot of pressure drop across the 

core and the capillary tube. So, the injected polymer breakthrough occurs when 

the capillary pressure drop is equal to the average value of the pressure drop 

before and after breakthrough. Also, it needs to be noted that the average pressure 

is associated with a 50% concentration of a polymer solution. In their paper, they 

concluded that wettability has great impact on the polymer retention, indicating 

that oil-wet formation has the very low amount of retention comparing to the 

water–wet. This phenomenon is explained by the assumption that oil covers the 

boundaries of the rock grains, thus preventing polymer molecules to interact with 

them (Hatzignatiou, et al., 2013).  

 Wan investigated how oxygen presence impacts on polymer retention. In his 

paper, he measured the polymer retention by static (mixing with loose sand) and 

dynamic methods (core floods). Also, the experiments were conducted in 

conditions with presence of oxygen (aerobic), and with no atmospheric or 

dissolved oxygen (anaerobic). Potassium iodide (KI) was used as a tracer and 
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dissolved in polymer solution. It was underlined that from static retention 

measurements there is a little difference between aerobically or anaerobically 

conditions, while from the dynamic retention measurements there is too high 

polymer retention in aerobic condition which is explained by chemical 

degradation of polymer in presence of oxygen (Wan & Seright, 2016).  

3.1.3  Research methods of investigation IPV and polymer retention  

A detailed description about measuring of IPV and adsorption was given by 

Lötsch et al. In their research, they used inorganic salts as a tracer and to 

distinguish between the tracer and polymer they set up the densitometer and 

capillary viscometer in the exit (T. Lötsch, 1985). The adsorption has nonlinear 

relation to the concentration, when it is the reversible, so the adsorption could be 

described by a Langmuir or a Freundlich isotherm (Moore, 1963)  

K.S. Sorbie, in other hand, used radioactive chlorine-36-beta - labelled brine. 

Polymer concentration were measured by a modified phenol-sulfuric acid method 

with an auto analyzer and the levels of beta radio- activity were determined with 

a Beckman TM scintillation counter. (K.S. Sorbie, 1987)  

W.T. Osterloh and E.J. Law in their polymer transport experiments used salts 

as a tracer. They conducted four step injection experiment:  

1. Injection of polymer and tracer until the effluent concentration is equal to 

the initial polymer concentration  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2. Injection of brine until the effluent concentration of polymer and tracer is 

too low to measure   

3. Repetition of step1   

4. Repetition of step2   

The polymer adsorption/retention was calculated by comparing the polymer 

effluent concentration in steps 1 and 3, the IPV was calculated by comparing the 

tracer and polymer effluent curves in step 3. The in-situ viscosity was calculated 

by measuring the pressure drop across core holder at various concentrations and 

rates. (Osterloh & Law, 1988)  

E.S. Moe in his work investigate the IPV and polymer retention by ordinary 

tracer/polymer method. As a tracer was used inorganic salt, and the concentration 

of tracer was used based on its resistivity. The polymer concentration, on the other 

hand was calculated by measuring the viscosity of the polymer flowing through 

the coil that was set up on the exit of core holder. After constructing the effluent 

profile the IPV and retention was calculated by determining the area under 

effluent curves (Moe, 2015).  

3.2  Procedures  to measure IPV and adsorption 

To meet master thesis objectives the methods of used in research Eline Moe 

(Moe, 2015) was chosen because the accurate concentration of tracer can be 

estimated through resistivity, based on the salt solution conductivity, and the 
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polymer concentration could be measured without contact with oxygen, so, the 

chemical degradation may be excluded . 

The effluent profile is find by the following steps: 

1. Prepare polymer solution with tracer in it 

2. Inject the solution through core plug until pressure stabilization 

3. Displace polymer solution with water until pressure stabilization 

During the  first injection of polymer solution with tracer (salt water) the tracer 

will come out first, and then the polymer solution, due to the adsorption of 

polymer solution on core’s rock surface. During the second injection with water 

the polymer solution will be replaced faster than tracer due to inaccessible pore 

volume for polymer. The effluent curve is constructed based on the concentrations 

of the polymer solution and tracer and pore volume. Thus the adsorption is found 

by taking the integral between the tracer and polymer effluent curve during the 

injection of mixed solution through core plug. And the IPV is calculated by taking 

integral between polymer and tracer effluent curve  during displacing with water. 

The concentrations of the 2 curves (polymer and tracer) should be normalized 

to take the integrals by the following equation: 

𝐶𝑛𝑜𝑟𝑚 =
𝐶−𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥−𝐶𝑚𝑖𝑛
,         (3.1) 

Where 

C- concentration of fluid at the effluent 

𝐶𝑚𝑖𝑛 - minimum concentration of fluid 
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𝐶𝑚ax  maximum concentration of fluid 

 The IPV is calculated by taking the integral over time (or number of pore 

volumes) of the difference between the normalized tracer concentration and 

normalized polymer concentration. The unit pore volumes, PV is the time divided 

by the amount of the time that it takes for one pore volume’s worth of fluid to 

flow through the sample.  The equation for IPV is 

IPV = ∫(𝐶𝑡𝑟.𝑛𝑜𝑟𝑚 − 𝐶𝑝𝑜𝑙.𝑛𝑜𝑟𝑚)dPV ,      (3.2) 

where  

𝐶𝑡𝑟.𝑛𝑜𝑟𝑚-normilized tracer concentration 

𝐶𝑝𝑜𝑙.𝑛𝑜𝑟𝑚-normilized polymer concentration 

PV- pore volume. 

As the time – measurement (and therefore the number of pore volumes) is 

discrete, the integral is evaluated by the trapezoidal approximation.  

The equation for  the adsorption is 

𝐴𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = {∑[(𝐶𝑡𝑟.𝑛𝑜𝑟𝑚 − 𝐶𝑝𝑜𝑙.𝑛𝑜𝑟𝑚) ∗ 𝛥𝑃𝑉] + 𝐼𝑃𝑉}∗ 𝑃𝑉 ∗ 𝐶𝑝𝑜𝑙,𝑚𝑎𝑥/𝑊 𝑟𝑜𝑐𝑘, 

(3.3) 

where  

PV is the pore volume of the rock,  
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Wrock is the weight of the rock. 

 

3.3 Polymer analysis 

Analyses for 3 different polymers was conducted in order to choose one of them. 

The polymers were provided by the French company SNF. These polymers are 

used on the Kazakhstan’s oil fields: 

 FP 3630 

 FP 5115 

 FP 5205 

3.3.1 Determination of the physicochemical properties of the polymer 

The method is based on the calculation of the non-volatile content 

substances in powdered polymers by loss in weight after drying. The purpose of 

measuring this method is to determine polymer content in polymer powder to 

prepare solution with accurate concentration. 

Equipment, reagents and materials: 

- Weighing bottles; 

- Analytical balance with weighing accuracy 0.0001 g; 

- Desiccator  

- Drying or heating cabinet (T = 105 ± 2 ° C). 



33 

 

 
 

Weighing bottles washed with chrome mixture,  and after washed 2-3 times with 

distilled water. The washed weighing bottles are dried in a drying cabinet at 105 

± 2 ° C to a constant weight. Dried weighing bottles are stored in a desiccator. 

A pre-dried to constant weight and weighted portion of the polymer is 

placed in the weighing bottles, then it is evenly distributed on the bottom of the 

weighing bottles. The weighing bottles is capped and weighed. The result is 

recorded in grams accurate to the fourth decimal place. 

The open weighing bottles with the sample is placed in a drying cabinet and 

dried at a temperature of 105 ± 2 ° C to constant weight (weight change not more 

than 0.0005 g). After drying, the bottles are cooled in a desiccator to room 

temperature and weighed. The first weighing is carried out after 2 hours of drying, 

the next after 0.5 hours. The degree of rounding weighing results is 0.0001g. 

The polymer content is calculated as a percentage using the equation: 

𝑊 =
𝑚1−𝑚2

𝑚
100 %     (3.4) 

Where 

 m1 – mass of weighing bottles before drying, gr;  

m2 – mass of weighing bottles with polymer powder before drying, gr; 

m – mass of polymer powder, gr;. 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3.3.2 Determination of the polymer solution  hydrolysis degree 

  

The method is based on direct titration of the carboxyl groups of the  

acrylamide polymer in aqueous solution with alkali. There is a relation between 

molecular weight and hydrolysis degree, the higher the molecular weight the 

higher the hydrolysis degree. High molecular weight results in larger moleculas 

size (described later), and results in high IPV effect. However high hydrolysis 

results in low adsorbtion, as the negative carboxyl groups are repulces from 

negatively charged core samples’ particle surface (F.D. Martin, 1975). Thus, the 

hydrolysis degree is one of the parameter to choose the optimum polymer solution 

that will be used in experimental work. 

Equipment, reagents and materials: 

- Analytical balance with weighing accuracy 0.0001 g; 

- paddle stirrer for highly viscous media; 

- Titration installation in accordance; 

- Magnetic stirrer; 

- pH meter with a measurement error of 0.05; 

- Glass cylinder; 

- Glass cup; 

- Burettes; 

- 0.1 molar solution of HCl; 

- 0.05 molar solution of NaOH; 

- Distilled water according. 
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For the analysis polymer solution with a concentration of 0.05-0.1% in 

distilled water is used. A portion of the polymer is calculated taking into account 

the mass fraction of the main substance by the equation: 

 

𝑚 =
𝐶∗𝑃

𝑊
,        (3.5) 

Where 

С – polymer concentration in solution, %;  

Р – polymer solution mass, gr;  

W – polymer content (activity of polymer solution), %.  

The calculated mass of the polymer is weighed on an analytical balance 

with an accuracy of the third decimal place. Distilled water is poured into the 

beaker in the volume required for the analysis, minus the weight of the polymer 

sample. A glass of water is placed under the paddle stirrer and the stirring is turned 

on; the speed of mixing should ensure the creation of a funnel.  The polymer is 

putted evenly among the funnel. The polymer solution is dissolved until complete 

homogenization, dissolution evaluation is carried out visually by the absence of 

polymer globules and solution uniformity. For analysis, the 200 cm3 of polymer 

solution is took, then pH is measured and up to value to pH = 3.8 with 

hydrochloric acid. Then titration is carried out with sodium hydroxide solution to 

pH 7.5. The volume of NaOH solution, used to titration of the polymer solution 

is measured. At the same time the control measurement with the same volume of 
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distilled water is  performed with the same operations as with the working sample 

of the polymer. The degree of hydrolysis of the polymer in percent is calculated 

by the following equation: 

𝛼 =
(𝑉−𝑉𝑜)∗𝐶∗𝑀∗10−3

𝑚−(𝑉−𝑉𝑜)∗𝐶∗23∗10−3 ,      (3.6) 

where  

V and Vo – volume of NaOH solution spent on working and blank sample 

titration, ml;  

m – the weight of the polymer sample contained in the solution taken for 

titration, g; 

C - exact molar concentration of the NaOH solution, mol / l;  

M - molar mass of acrylamide, g / mol; 

23 - molecular weight of sodium, g / mol; 

10-3 - conversion factor from cm3 to dm3 

As a result of the analysis is taken the arithmetic average of two parallel 

measurements, the difference between them should not exceed 0.5%. The results 

were rounded up to 0.1%. 

If a polymer manufacturer provides a technical documentation with different 

methods for determining degree of hydrolysis, then whole analysis is performed 

in accordance with the manufacturer's documentation. 
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3.3.3 Measurement of the intrinsic viscosity for the calculation of the 

molecular weight and molecule diameter of the polymer 

This method is based on measurement of time taken for a solution of dilute 

polymer and sodium chloride to flow through a capillary viscometer of a certain 

diameter. By measuring the intrinsic viscosity the molecular weight can be 

calculated, and by calculating the molecular weight diameter of polymer 

molecules can be identified. By knowing the molecules’ size and pore size 

distribution, the rough assumption about fitting the polymer molecules in pore 

size may be done. The result is obtained by using the procedure for viscosity 

measurement of polymer solutions with different concentrations and by 

extrapolating the experimental data to zero concentration in accordance with the 

Huggins equation: 

η = [η]+KC[η]2  ,     (3.7) 

where  

ηrv - reduced viscosity, dL / g; 

[η] - intrinsic viscosity, dL / g;  

C - polymer concentration, g / dL; 

K - the Huggins constant. 

 

Equipment, reagents and materials: 

- Analytical balance with weighing accuracy of 0.0001 g; 

- Blade mixer with adjustable rotation speed; 
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- Ubbelohde viscometer with a capillary diameter  0.54 or 0.84 mm; 

- Mechanical stopwatch with 0.2 s. scale;  

- Cylinder; 

- Pipette 1.2-2-20 and pipette 1.2-2-5.10; 

- Glass; 

- Pear rubber; 

- Thermostat suitable for glass viscometers, that maintains the temperature of 25 

± 0.1 ° C; 

- Sodium chloride, pure and filtered solution with a mass fraction of 10%,; 

- Distilled water according;  

- Acetone; 

- Chrome mix. 

Before making measurements on the viscometer, a portion of a polymer 

with mass of 1.5-3.0 g. is weighed (the result is recorded in grams up to the fourth 

decimal place) and evenly added with stirring to a solution of sodium chloride 

with a volume of 100 cm3. The mixture is stirred in a blade mixer until the solution 

is completely homogenized. In addition, dissolution rate should be visually 

checked every 15 minutes by pouring the solution from one glass to another. 

The mass concentration (C) of the obtained polymer solution is calculated 

by the equation: 

𝐶 =
𝑚∗𝑊

𝑉∗100
,       (3.8) 

where  
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m - the mass of the polymer sample, g; 

W - the mass fraction of the main substance in the polymer,%; 

V - the volume of sodium chloride taken to dissolve the polymer, dL.  

Before taking measurements, the viscometer is washed with a chromium 

mixture, rinsed with distilled water, acetone, and dried. 20 cm3 of the filtered 

polymer solution is placed into the Ubbelohde viscometer by pipette, then whole 

viscometer is moved into thermostat for 10-15 minutes at a temperature of 25 ° 

C. At the same time, it is necessary to ensure that the capillary and the viscometer 

ball are completely immersed in a thermostatic liquid. The polymer solution is 

sucked into the viscometer ball just above the top mark by using a rubber bulb 

with a tube assembled on the knee of the viscometer. Furthermore, the second 

knee of the viscometer should be closed using clamp on a rubber tube assembled 

at the end of the knee. Then the clamp is slightly opened and at the moment when 

the polymer solution passes the upper mark, stopwatch starts tracking time for 

polymer solution to flow from the upper mark of the measuring ball to the lower 

mark. This test is carried out at least three times and then the average value of 

three parallel measurements is calculated. After that, the polymer solution is 

diluted in the viscometer itself by consistently adding  4.0 cm3 of sodium chloride 

solution thoroughly mixed with a pear. Then whole viscometer is thermostated 

again, and after each dilution time taken  for polymer solution to drain is 

determined. 
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The mass concentration of dilute polymer solutions (Ci) is calculated by the 

equation: 

𝐶𝑖 =
𝑚∗𝑉

𝑉𝑝
,      (3.9) 

Where 

C - the initial mass concentration of the polymer solution, g / dL; 

V - initial volume of the polymer solution, cm3; 

Vp - volume of the diluted polymer solution, cm3. 

 

At least five dilutions should be made considering that the correct limiting 

viscosity number measurement, the solutions concentration in the viscometer 

should be limited to the area where the relative viscosity lies in the range 2.0 - 

1.2. Sodium chloride solution used for dilution should be thermostatted in the 

same thermostat. By the end of the test, the viscometer should be accurately 

washed, dried, and then 20 cm3 of sodium chloride solution is poured and the time 

for the solvent to drain is measured by the above method. Measurement and 

calculation data are entered in table 3.1. 

 

Table 3.1Table for measuring intrinsic viscosity 

 

Measurements V1 V2 V3 V4 V5 

Polymer drainage time , sec. (t) t1 t2 t3 t4 t5 

Solvent drainage time, sec. (t0) t0 t0 t0 t0 t0 

Relative viscosity ηrel=t/ t0  ηrel1 ηrel2 ηrel3 ηrel4 ηrel5 

Specific viscosity ηsp = ηrel -1 ηsp1 ηsp2  ηsp3  ηsp4  ηsp5  

Mass concentration of polymer solution, 

g/dL Ci 

C1 C2 C3 C4 C5 

Reduced viscosity, dL/g  ηsp/ Ci ηsp1/ C1 ηsp2/ C2 ηsp3/ C3 ηsp4/ C4 ηsp5/ C5 
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Data is processed by graphical method concentration C versus reduced 

viscosity ηsp/ Ci. Through the data points straight line is constructed until 

intersection with y-axis. The intersection point equals to the intrinsic viscosity. 

To calculate the molecular weight the following following equation of is used 

(Flory, 1953): 

[η]=K’*Ma  ,     (3.10) 

Where  

M – is molecular weight  

K’, a are empirical constants for the system polymer – solvent 

The diameter of polymer molecule in μm is found by the equation (Flory, 1953): 

dp=8(M*[η])1/3  ,    (3.11) 

3.3.4 Polymer solution preparation 

Considering the established concentration of polymer solution, calculation 

for determination of quantity of the dry polymer powder required for preparation 

the necessary amount of polymer solution is calculated by a equation: 

𝑊𝑝𝑟 =
𝑊𝑠∗𝐶𝑠∗10−4

𝐴𝑝𝑟
 ,              (3.12) 

Where 

𝑊𝑝𝑟- weight of dry polymer powder, g 

𝑊𝑠 – weight of polymer solution, g 

𝐶𝑠 – polymer solution concentration, ppm 

𝐴𝑝𝑟 – activity of polymer solution, % (90-95 %). 
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The amount of the necessary water required for preparation of necessary 

volume of polymer solution is determined by the equation (8). 

𝑊𝑏𝑠 = 𝑊𝑠 − 𝑊𝑝𝑟 ,       (3.13) 

where: 

𝑊𝑏𝑠 – weight of water for preparing polymer solution, g.  

After determination of necessary parameters (Wpr, Wbs), using the glass, the 

magnetic stirrer and water, polymer solution was prepared. The preparation time 

is approximately 2-3 hrs.  The polymer solution with concentration 2000 ppm was 

prepared. 

3.3.5 Rheological properties of polymer 

Rheological characteristics of polymers was determined on the rheometer - Anton 

Paar MCR 502 at the room temperature and shear speeds from 1 to 100 with-1. 

Processing of results were conducted by software of RHEOPLUS/32 V3.62. By 

results of test dependences of dynamic viscosity on shear speed are constructed. 

 

Figure 3.1 Rheometer - Anton Paar MCR 502 
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3.4 Core analyses 

Core analyses on 6 different samples was conducted in order to choose one. 

3.4.1 Core extraction 

For core material analysis, determination of their various properties, it is 

necessary to have a pure sample of this rock, devoid of all fluids saturating it. In 

this regard, the ready samples after obtaining the correct shape of the cylinder and 

symbols have been sent for extraction. 

The extraction means the process of sample pore space cleaning from oil, 

bitumen, water and salts. The samples extraction in our case was carried out on 

Soxhlet. Prior to extraction, the plugs have been weighed on an analytical balance 

with accuracy to 0.001 g.  

 

Figure 3.2 Soxlet apparatus for core sample’s extraction 
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The samples cleaning have been carried out Soxhlet apparatus with 

washing by organic solvents. As the solvent, the alcohol-benzol mixtures have 

been used. The principle of Soxhlet apparatus operation is very simple. The 

solvent vapors enter through a side tube in the extractor, and then in a refrigerator, 

are condensed and liquid thus formed fills the container, where the sample are, 

which are in the extractor. When the fluid in the extractor reaches the knee of the 

outlet tube (siphon), it flows back into the flask, and wherein the solvent boils.  

During the cleaning process, the samples have been tested for luminescence 

under UV light. In conjunction with the solvent color, this procedure has been 

used to determine the indicator of cleaning from hydrocarbons (HC). After full 

cleaning, all samples at temperature of 1050С have been dried in the drying oven 

(DKN 600) to the constant weight. 

3.4.2  Measurement of porosity, bulk and mineralogical density of rock 

samples with helium porosimeter 

In order to measure the reservoir porosity and permeability, the computer 

station “Abacus” of automated data input by weight and size of the sample have 

been used. The results of samples weighing on an analytical balance with 

accuracy to 0.001g, and the average value of sample size determined by means of 

digital caliper ruler (length and diameter is measured up to 10 times) 

automatically have been filled in a specially created table. 
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Figure 3.3 Ultrapore 300 - helium porosimeter 

After obtaining the basic parameters of weight and volume, the samples 

have been placed in the glass desiccator in order to reduce the adsorption of 

atmospheric moisture and transferred to further conventional analysis 

(determination of porosity and gas permeability). 

In order to measure the volume of samples grain the calibrated helium 

porosimeter (ULTRA-PORE 300) have been used operating on the principle of 

Boyle's Law (3.14). 

𝑃1 ∙ 𝑉1 = 𝑃2 ∙ 𝑉2,       (3.14) 

The equation used to calculate the grains volume is derived from the basic 

equation of Boyle's law as follows: 

𝑃1 ∙ 𝑉𝑅𝑒𝑓 = 𝑃2 ∙ (𝑉𝑅𝑒𝑓 + 𝑉matrix − 𝑉Grains),     (3.15) 

where: 

𝑃1 - pressure in comparison chamber;  

𝑉𝑅𝑒𝑓 - volume of comparison chamber, cm3; 

𝑃2- pressure after helium diffusion in core glass; 

𝑉𝑚𝑎𝑡𝑟𝑖𝑥- volume of core glass, cm3; 
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𝑉𝑔𝑟𝑎𝑖𝑛𝑠- volume of sample grain, cm3. 

Further porosity (3.16), bulk density (3.17) and mineralogical density 

(3.18) of rock sample have been calculated using the equation below: 

𝜑 =
(𝐿∙𝜋∙

𝐷2

4
)−𝑉Grains

(𝐿∙𝜋∙
𝐷2

4
)

∙ 100,      (3.16) 

𝜌volume =
𝑚sample

(𝐿∙𝜋∙
𝐷2

4
)
,       (3.17) 

𝜌miner =
𝑚sample

𝑉Grains
 ,       (3.18) 

where: 

𝜑 – sample porosity, %; 

𝐿– sample length, cm; 

𝐷 – sample diameter, cm; 

𝜌𝑣𝑜𝑙𝑢𝑚𝑒 – bulk density of sample, g/cm3; 

𝜌𝑚𝑖𝑛𝑒𝑟 – mineralogical density of sample (grain density), g/cm3; 

𝑚𝑠𝑎𝑚𝑝𝑙𝑒 – dry weight of sample, gr. 

 

It should be noted that determined porosity is meant as open porosity and 

accordingly, the mineralogical density of rock has an apparent mineralogical 

density, if closed porosity is present in the analyzed sample. Bulk density is the 

ratio of mass of core plug to the bulk volume, while grain density is the density 

of rock - forming minerals. 
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3.4.3  Measurement of samples permeability on nitrogen permeameter 

Measurement of the absolute permeability of samples has been carried out 

using gas (nitrogen) on the calibrated equipment ULTRA-PERM 600 equipped 

with new mass flow meters and pressure sensors. The software makes the 

calculations using Darcy and Klinkenberg equations to calculate the gas 

permeability and reciprocal of average pressure. 

 

Figure 3.1  ULTRA-PERM 600 - Nitrogen permeameter 

The Darcy equation as applied to compressible gasses is used by the 

software to calculate the gas permeability. This has the following form: 

𝐾𝑔 =
1000∙𝑃1∙𝜇∙𝑄1∙𝐿

(𝑃1
2−𝑃2

2)∙𝐴
,       (3.19) 

where: 

𝐾𝑔 – gas permeability, mD; 

𝜇– gas viscosity, cP; 

𝑄1 - gas flow value, cm3\sec; 

𝑃1– input pressure, atm; 

𝑃2– downward pressure, atm; 
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𝐴– section area of sample perpendicular, cm2; 

𝐿– sample length, cm. 

 

3.4.4  Measuring pore size distribution using mercury porosimetry 

In this method, at each pressure step the saturation of pore space with 

mercury is estimated by determining the amount of mercury remaining in the 

penetrometer tube. As the pressure increases, mercury penetrates into the pore 

structure from the tube. The volume of mercury in the penetrometer is measured 

by determining the electrical capacity of the penetrometer. Mercury porosimetry 

(POREMASTER 60) is based on the capillary principle, which causes the 

penetration of liquid into small pores. This principle is expressed by Young-

Laplace equation (3.20): 

𝑃𝑐 =  (
1

𝑅1
+

1

𝑅2
),          (3.20) 

  where  

 Pc – capillary pressure, kPа; 

 – surface tension, kPa/cm;  

R – radii of curvature, cm 

For cylindrical porous tube model, the two radiuses of curvatures are 

similar, and the Young-Laplace equation (3.20) becomes: 

𝑃𝑐 =
2

𝑅
,          (3.21) 



49 

 

 
 

The relationship between the radius of curvature and the radius of a capillary tube 

is: 

→ ,        (3.22) 

By replacing (3.22) for (3.21), Young-Laplace equation for cylindrical porous 

tube model: 

,        (3.23) 

where 

 Pc – capillary pressure, kPа; 

 – surface tension, kPa/cm;  

  – contact angle, °; 

 R – radius of curvature, cm 

The capillary pressure is related to the mercury injection pressure: 

Pc=Pmercury-Pair ,       (3.24) 

Since the test starts with a vacuum, Pair≈ 0, equation (3.25) will be: 

𝑃𝑐 = 𝑃𝑚𝑒𝑟𝑐𝑢𝑟𝑦 =
2𝑚𝑒𝑟𝑐𝑢𝑟𝑦−𝑎𝑖𝑟∗𝑐𝑜𝑠

𝑟𝑖
 ,      (3.25) 

By solving equation (3.25) for ri, the pore size: 

 

,        (3.26) 

where, 

R

r
cos 

r

cos

R

1 


r
Pк

 cos2 


ртути

i
P

r
 cos2 


Pmercury 
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  ri – pore radius in sample, mkm; 

 σ – surface tension between mercury and air, kPa/cc; 

  – contact angle, °; 

 Pmercury –mercury injenction pressure, MPа. 

 

The effect of surface tension between mercury and air is expressed through the 

contact angle: 

 ,          (3.27) 

The total volume of mercury in the penetrometer at the transition from the 

low-pressure to the high-pressure is given by the equation: 

𝑉𝑚𝑒𝑟𝑐𝑢𝑟𝑦 =
Δw

ρ𝑚𝑒𝑟𝑐𝑢𝑟𝑦
,         (3.28) 

Where 

Δw – difference in the weight of sample,  

ρmercury –  density of mercury, g/cc. 

The total amount of mercury in the penetrometer is expressed by the 

following: 

Vmercury = Vpen-Vs   →  Vs=Vpen-Vmercury   ,    (3.29) 

where,  

Vpen – volume of penetrometer, ml;  

Vmercury –volume of mercury in penetrometer measured before going from 

the low-pressure to the high-pressure, ml.  

Vs – total volume of sample, ml. 

ртутиртути

i
PP

r
43161,90130cos4852

145038,0 




Pmercur

y 

Pmercur

y 
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 The following conversion values were applied for calculations: 

Parameter 

System  

«gas-

mercury» 

«gas-reservoir 

brine» 
«gas-oil» 

«oil- 

reservoir 

brine» 

Mercury contact angle 130    

Mercury  IFT 485    

Labouratory contact angle  0 0 30 

Labouratory  IFT   70 24 35 

Contact angle of the collector  0  30 

IFT of the collector  50  25 

Labouratory  TcosTheta  70 24 30,3 

Collector TcosTheta  50  21,7 

IFT – Inverse Fourier Transformation, IFT * cosin of contact angle: 311,8 

The results of 6 samples are presented in Appendix B 

Chapter 4  Main experiment 
4.1 System for experiment 

For carrying out tracer experiments on core plugs, the PLS-200 system 

(figure 4.1) with 4 hydrostatic coreholders was used. Samples were initially 

saturated  with  salt water – 100 g/l NaCl, and then plugs were inserted in 

hydrostatic coreholders. 

 

Figure 4.1  PlS-200 
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For sample saturation with salt water, an automatic saturator (AST-600)  

(Figure 4.2) was used, which  allows to choose in the automated order time of 

pumping of air and pressure of saturation for fast and full saturation of samples 

of a core. 

For water and polymer injection two-cylinder piston pumps and cylindrical 

container with piston replacement were used, so the accurate flow rate may be 

controlled. 

At the effluent of the core holder steel coil with length 4.14 m and diameter 

0.89 mm was established, the pressure gradient inside the coil was measured in 

order to calculate the concentration of polymer solution at the effluent.  

After the coil to measure resistance of the effluent Fluke apparatus (figure 

4.3) was set in order to calculate the concentration 

of the tracer. A diagram of the core flooding 

experimental set up is shown on the Figure 4.4. 

 

Figure 4.3 Fluke Fluke PM 6306 for resistance 

measurement of effluent 

 

Figure 4.2 AST-600 

Autosaturator for sample 

saturation 
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Figure 4.4  Scheme of the system used in experiments 

1) Pump 

2) Flask with polymer solution and tracer (150 g/l NaCl) 

3) Cylindrical container with salt water (100 g/l NaCl) 

4) Core holder 

5) Core plugs 

6) Steel coil 

7) Pressure transducer 

8) PC 

9) Fluke resistance apparatus 

10) Flask 

11) Three – way valve 

The procedures of conducting experiment: 

1. 100% saturated  with 100 g/l NaCl  core plug were inserted in core holders 

and closed hermetically 
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2. Polymer solution with tracer (150 g/l NaCl) in cylindrical container -3 were 

pumped form down to core holder with flow rate 2 ml/min 

3. The effluent goes through the coil first, pressure gradient measured and sent 

to computer 

4. After the coil the effluent goes through resistance apparatus, the data were 

collected via wed-camera 

5. After pressure and resistance stabilization the pump was switched to the 

salt water (100 g/l NaCl) in order to find IPV. 

6. The step 4 and 5 repeated. 

4.2 Data processing. 

4.2.1 Construction of the polymer vs. concentration curve 

To construct polymer curve concentration versus time, pressure gradient in 

coil was recalculated to the viscosity by the using Hagen-Poiseuille equation: 

μ =
ΔPπ𝑟4

8𝐿𝑄
 ,       (4.1) 

where  

 ΔP- pressure gradient through coil 

r-radus of the coil tube (0.445 mm) 

L – length of the coil tube (4.14 m) 

Q- flow rate of liquids. (2 ml/min) 
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To find the concentration of polymer through measurement of viscosity during 

the experiment the relationship between concentration and viscosity must be 

determined. For this purpose the viscosity of polymer solutions at different 

concentrations was measured with capillary viscometer. (Figure 4.5)  

The polymer solution is filled in tube 2 until it reaches the line 8. Then the 

time of flowing solution between mark 5 and mark 7 is recorded. These steps 

repeated 3 times for accurate result. 

 Knowing the calibration constant for each viscometer (K) the kinematic 

viscosity is found by equation (4.2) 

v=K*(t-𝜗),      (4.2) 

Where  

t- time, sec 

𝜗 - the Hagenbach correction factor. 𝜗 = 0 when t < 

400 sec 

The dynamic viscosity is calculated by equation 4.3. 

μ = 𝜌 ∗ v,      (4.3) 

The relationship between polymer solution 

concentration and viscosity is shown on the figure 4.6 

Figure 4.5  Capillary  

type viscometer 
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Figure 4.6 The relationship between polymer solution concentration and viscosity 

The relationship can be expressed by equation 4.4 

y = 0.0041x + 0.7735,      (4.4) 

So the polymer concentration is found by equation 4.5 

Cpol= (μ-0.7735)/0.0041,     (4.5) 

4.2.2 Construction of the tracer concentration vs. conductivity curve 

Tracer curve was constructed based on the relationship between salt water 

conductivity and concentration. The core was initially saturated with 100 g/l 

NaCl, while the tracer concentration was 150 g/l NaCl, and the concentration of 

displaced water was 100 g/l NaCl. 

The conductivity (𝜎) of water was calculated through the measured resistivity (𝜌) 

𝜎=1/𝜌,        (4.6) 

The relationship between tracer salinity (concentration) and conductivity is 

shown on the figure 4.7. 
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Figure 4.7 The relationship between tracer salinity (concentration) and conductivity 

Thus, the tracer concentration can be calculated by the equation 4.7.  

Ct=( 𝜎-72.062)/0.7141,       (4.7) 
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Chapter 5 – Results and discussions of 

experimental analyses 
5.1 Results of polymer solutions analyses 

Three polymer powder was analized before conducting experimental work. 

The polymer content, hydrolysis degree, molecular weight, diameter of polymer  

molecules and rheological properties was identified. The raw data and calculated 

values are presented in Appendix C. 

Table 5.1 The physicochemical properties of polymer solution 

 Polymer 

content 

(activity of 

polymer 

solution), 

% 

Hydrolysis 

degree, % 

Intrinsic 

viscosity, 

dl/g 

Molecular 

weight, 

g/mol *106  

Diameter of 

polymer 

molecule, 

μm 

FP 3630 90.27 25 19.452 10.07 0.474 

FP 5205 90.36 15 17.613 9.90 0.447 

FP 5115 90.6 11 16.790 9.61 0.435 
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Figure 5.1 Rheological data of polymer FP3630 (log-log chart) 

 

 

Figure 5.2 Rheological data of polymer FP5205 (log-log chart) 
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Figure 5.3 Rheological data of polymer FP5115 (log-log chart) 

 

The polymer FP 5205 was chosen to conduct the main experiment as it has 

optimal properties: average molecular weight and average diameter of polymer’s  

molecule. If the polymer FP 3630 would be chosen the adsorbtion and IPV value 

will be to high due to high molecular weight and as result large molecules, even 

if it has the highest hydrolysis degree. And if the polymer FP 5115 would be 

chosen there is a possibility that due to small molecules the IPV effect would not 

be measured. 

From the rheology results it is noticed that for the lowest concentration – 500 

ppm of all 3 polymer solutions, the curves are instable. This phenomena may be 

described by the idea that there can be some errors by measuring low viscosity 

solutions by rheometer Anton Paar MCR502. 



61 

 

 
 

5.2 Results of core analyses 

Table 5.2 Results of standard analysis of core samples 
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D
  

1 Akkudyk 20 
2253.2

4 
41.65 

21.5

1 

3.1

8 

2.9

3 

15.8

0 

5.7

1 

26.

6 

1.9

4 

2.6

4 
687.6 

2 Akkudyk 19 
1920.3

4 
41.28 

21.3

0 

3.1

9 

2.9

2 

15.6

7 

5.6

4 

26.

5 

1.9

4 

2.6

3 
552.4 

3 Botakhan  1705.4 
43.11 21.8

1 

3.1

9 

2.9

5 

16.3

4 

5.4

7 

25.

1 

1.9

8 

2.6

4 

604 

4 Akshabulak 45 1777.3 40.7 21.5 
3.1

7 

2.9

4 

15.3

4 

6.1

5 

28.

6 

1.8

9 

2.6

5 
321.80 

5 
Akshabulak 

206 

1883.3

7 
43.6 21.6 

3.1

8 

2.9

4 

16.5

4 

5.0

2 

23.

3 

2.0

2 

2.6

3 
891.10 

6 
Akshabulak 

501 

1656.5

9 

106.8

8 

50.0

2 

4.5

0 

3.7

6 

40.3

1 

9.7

1 

19.

4 

2.1

4 

2.6

5 

1210.0

0 

 

After measuring the total porosity, permeability and pore size distribution, 

it was decided to use core plug #6. As it has the highest gas permeability -1210 

mD, even the porosity is not highest, the pore size distribution, comparing to 

others is quite good, 62.3%of pores are belong to the pores from 1 to 50 μm. 

(Figure 5.1). Other core plugs’ pore size distributions are presented in Appendix 

B. 
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Figure 5.4 The pore size distribution of core plug Akshabulak 501 

5.3 Results of main experiments 

The plots of tracer and polymer curves are shown in figure 5.5 and 5.6 

respectively. The pore volume at the x-axis is equal to the multiplication of flow 

rate to the total time and divided by pore volume of core plug, which is equal to 

the 9.71 cm3 (Table 5.2). 
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Figure 5.5 Tracer effluent curve 

 

Figure 5.6  Polymer effluent curve 

The normalized concentration of each curve is presented on figure 5.7. The 

normilized concentration was calculated according to equation 3.1. 
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Figure 5.7  Effluent curves 

The adsorption and IPV values  were calculated according to equations 3.2 

and 3.3. (Table 5.3)  To determine the integral between the tracer and the polymer 

curve while the polymer injection and integral between the tracer and the polymer 

curve during the water injection after the polymer injection the MATLAB 

software was used. (Figure 5.8). The code is shown in Appendix D. 
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Figure 5.8 Calculation IPV and adsorption 

Table 5.3 Calculated IPV and adsorption for core plug - Akshabulak 501 

 Value  

Weight of sample, g 106.88 

Volume of sample, cc 50.02 

Pore volume of sample, cc 9.71 

Total porosity of sample, % 19.4 

IPV 14.8 

Adsorption, g/g 0.0006 

Polymer adsorbed, g 0.064 

 

According to the conducted research it should be mentioned that the 

concentration of effluent polymer is not equal to the concentration of injected 

polymer. If the concentration of injected polymer was 2000 ppm, the maximum 
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concentration of effluent was around 1500 ppm. This phenomenon may be 

explained by the fact of the mechanical destruction during polymer flow through 

porous media and permanent trapping of the larger molecules of polymer between 

the core’s grains. Also, the concentration of polymer curve at the beginning and 

the end of the experiment reached values close to zero, but did not go down to 

zero. This fact can be most likely due to sensitivity of pressure transducers, as the 

tracer viscosity is very low it is very problematic to record pressure gradient inside 

the coil tube. The same behavior was noticed in tracer curve, which can be 

explained by the dissolving of salts from core’s grains. 

Another interesting conclusion is the fact that IPV is 14.8%, while 

according to the pore size distribution the percentage of pores that was smaller 

than the diameter of polymer is 16%. Even if these numbers are not equal they are 

pretty close and the difference can be attributed to the polydispersity of the actal 

polymer solution. Additionally, the difference between these two numbers may 

be due to a discrepancy between the measured pore size distribution and the pore 

size distribution in the actual core, as for the former measurement (mercury 

porosimetry) a small part of core was taken. 
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Chapter 6 – Comparison with numerical 

modelling 
 

To help understand the phenomena happening during polymer solution flow 

through core sample, a multi-scale model was implemented in MATLAB. The 

code was written based on the scientific paper of Papathanasiou et al  - “Dynamic 

Modeling of mass transfer phenomena with chemical reaction in immobilized- 

enzyme bioreactors” (Papathanasiou, 1988).  Although the paper is for the fluid 

bed immobilized – enzyme bioreactors, it includes the important parameters to 

describe the behavior of polymer solution in porous media containing multi-scale 

porosity. These are mass transfer and diffusion characteristics, as well as a first-

order intraparticle chemical reaction. The model considers the following factors: 

 mass accumulation and consumption in intrapracticle space 

 mass diffusion into the pore spaces  

 Uniformity of species activity all over particles 

 stationary particles  

 The model is used to take into account diffusion/reaction inside the small 

grains (or within the microscale porosity) that are described using ordinary 

equations which can be easily solved in MATLAB. The diffusion of a species 

within the grains (bead) is impacted by a combination of these factors, in 

dimensionless form, typical values are given in square brackets: 
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 𝐷R - dimensionless diffusivity, to describe how accessible the reactant is 

diffuse to the particles [10-4 to 50]   

 β – Partition coefficient to describe the partitioning of a substance between 

the bulk and the intrapracticle space 

 𝐵m -Biot number, describes how effectively the reactant travels from the 

solution to the particles [0.01 to 100]  

 𝑃e - Peclet number, ratio of the superficial fluid velocity and the reactor 

length to the axial dispersion  

 e- bed voidage, ratio of empty space to total volume of the column 

 ep – particle voidage, ratio of empty space to volume of the bead 

 𝜙 -Thiele Modulus, a measure of how fast the reaction occurs [0 to 10].  

In accordance with dispersion model presented in the paper the mass balance 

in the bulk liquid (dimensionless) is: 

𝜕𝐶𝐿

𝜕𝑡𝑅
= (

1

𝑃𝑒
) (

𝜕2𝐶𝐿

𝜕𝑥2
) − (

𝜕𝐶𝐿

𝜕𝑥
) − 𝑄∗,                                      (6.1 ) 

where 

𝐶𝐿- concentration in the bulk liquid 

𝑄∗ - fluid to particle mas flux, 𝑄∗ = 3 (1 − 휀)[
𝐷𝑒𝑓𝑓

𝑅(
𝐹

𝑉𝑇
)
] (

𝜕𝐶𝑅

𝜕𝑟
)  r=R 

𝑡𝑅 = dimensionless time, 
𝑡

𝜀
(

𝐹

𝑉𝑇
) 

𝑃𝑒 = Peclet number, dimensionless, 𝑢𝐿/𝐷𝐿 

𝑥 = dimensionless axial distance 
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The relation between the concentration at the particle surface (CR) and the 

concentration in the bulk liquid (CL) is determined by the method outlined in the 

publication. After discretization of Equation (6.1 ) into N nodes, the set of ODEs 

for node “i” are given by the following equations where n = 1, 2 … n0. 

 

𝜕𝐶𝑖

𝜕𝑡𝑅
=      [(

1

𝑃𝑒𝛿𝑥2
+

1

2𝛿𝑥
) 𝐶𝑗−1 − (

2

𝑃𝑒𝛿𝑥2
+ 3(1 − 휀)𝐵𝑚𝐷𝑅) 𝐶𝑖

+ ((3(1 − 휀)𝐵𝑚𝐷𝑅))β𝐶𝑅𝑖 +
휀𝐷𝑅

𝑆𝑖
 𝐶𝑗+1] ,                          (6.2 ) 

 

𝑑𝐶𝑅𝑖

𝑑𝑡𝑅
=

𝐵𝑚

2휀𝑝

휀𝐷𝑅

𝑆𝑖
𝐶𝑖 −

휀𝐷𝑅𝛽

𝑆𝑖
(

9𝜙2𝑆𝑖

𝛽
+

𝐵𝑚

2휀𝑝
) 𝐶𝑅𝑖 −

휀𝐷𝑅

𝑆𝑖
∑ Ψ𝑖

𝑛

𝑛𝑜

1

,            (6.3 ) 

 

𝑑Ψ𝑖
𝑛

𝑑𝑡𝑅
= [

𝐵𝑚

2휀𝑝

휀𝐷𝑅

𝑆𝑖
𝐶𝑖 −

휀𝐷𝑅𝛽

𝑆𝑖
(

9𝜙2𝑆𝑖

𝛽
+

𝐵𝑚

2휀𝑝
) 𝐶𝑅𝑖 −

휀𝐷𝑅

𝑆𝑖
∑ Ψ𝑖

𝑛

𝑛𝑜

1

+ 9휀𝐷𝑅𝜙2𝐶𝑅𝑖 − (9휀𝐷𝑅𝜙2 + 휀𝐷𝑅𝜋2𝑛2)Ψ𝑖
𝑛] ,                 (6.4 ) 

 

The resulting system of N(2+n0) ODEs can be solved using standard ODE 

solvers in MATLAB. 

Based on the dynamic model, figure 6. 1 shows how varying the diffusivity 
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values affect to the concentration profile of the effluent. Case 1 has a Dr=0.0001 

– low enough that the species does not diffuse within the particles of the 

immobilized bed. The rapid increase in concentration is explained by the fact that 

molecules hop between small spaces between particles since, due to its larger 

molecule size it cannot diffuse into the micro-porous space, and therefore 

spreading takes short time.  Case 2 (Dr=50), on other hand, corresponds to 

molecules which easilty diffuse into the micro-porous space (in our case, smaller 

molecules) , and as a result we observea slower increase in effluenet 

concentration. In this case, polymer molecules have to travel through the entire, 

micro- and macro-porous space before exiting the sample. 

 

Figure 6.1 Comparing low Dr (pure dispersion case) and high Dr (diffusion in particles 

impacts the response) cases 
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Case n N Dr Bm β 𝜙 Pe e ep delay 

1 25 100 0.001 1 1 0 3 0.3 0.7 0 

2 25 100 10 1 1 0 3 0.3 0.7 0 

To compare  the predicted  response to the experimental data, two 2 

different regimes were studied: the rise (polymer injection) and fall (brine 

injection). Thus we can use modelling to helping explain what is happening 

during the core experiments: polymer and brine injection. 

 

Figure 6.2 Modelling of tracer and polymer curve rise with delay 

Case n N Dr Bm β 𝜙 Pe e ep delay 

1 25 100 0.7 1 1 0.3 10 0.7 0.9 650 

2 25 100 100 1 1 0 5 0.7 0.9 0 

 

The parameters for tracer and polymer rising curve are compared in figure 

6.2. The delay of polymer curve takes place due adsorption to the grain. The 
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adsorption of the polymer solution is characterized by the capture of the polymer 

by small pores (dynamic adsorption) and the deposition of the polymer on a solid 

pore surfaces (static adsorption). We can assume that these phenomena can be 

approximated by a first order reaction between polymer solution and particles and 

take φ = 0.3 (a good fit with experimental data was obtained using this value).  As 

it is noticed from figure 6.2  polymer species corresponds to the lower diffusion 

(fit with low Dr and high Pe values), whereas the tracer to a higher amount of 

diffusion  (fit with high Dr and low Pe values). The diffusion of polymer in porous 

media is governed by the heterogeneity of the core sample, especially by multi-

scale porosity. The diffusion for polymer species is associated with inaccessible 

pore volume effects that accelerate the polymer solution through a permeable 

medium.  The relation between Peclet number and diffusion is indicated by the 

fact that low Peclet number corresponds to large values of diffusivity whereas 

high Peclet number – smaller values of diffusivity (Kirby, 2010).  

In our case, the fast molecular diffusion of the tracer can be explained by the fact 

that tracer accessibly flows through core plugs due to its small molecule size. 

Polymer agent, in other hand, is not accessible to the particles due to the IPV 

effect, and therefore the diffusivity is low.  
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Figure 6.3 Modelling of tracer and polymer curve rise without delay 

Case n N Dr Bm β 𝜙 Pe e ep delay 

1 25 100 10 0.1 0.2 0 3 0.4 0.2 0 

2 25 100 4 1 0.15 0 500 0.4 0.2 0 

 

Figure 6.3 represents the same experimental data of polymer and tracer rise 

but with another set of parameters. As it seen from the figures (6.2 and 6.3) the 

main concept related to the diffusion is remain the same: polymer species 

corresponds to the low diffysivity and high Peclet namber, while the tracer curve 

is opposite. However the varied coefficient here are β (partition coefficient) and 

delay. For figure 6.2 the delay parameter should be increased to 650 s for polymer 

solution, to shift it a bit to the right, show delay and fit experimental data. Even if 

considering that before take the measurement the species need to flow through the 

long coil the delay should be only 80 seconds.  Also according to the scheme 
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(figure 4.4) both polymer and tracer have to flow through the coil together, before 

recording the values. Therefore, implementing the delay here is not reasonable.  

Moving to the figure 6.3 it is seen that delay for both cases are the same, 

however β is less than 1, and different for both cases. These discrepancies can 

arise due to the fact that the porous core sample is not exactly the same as a fixed-

bed reactor or an assembly of porous spheres. But still the main concept of 

diffusion/reaction inside small grains taking into account micro scale porosity is 

confirmed and explained. 

 

Figure 6.4 Modeling the polymer and tracer fall curve 

Case n N Dr Bm β 𝜙 Pe e ep delay 

1 25 100 10 0.1 0.2 0 3 0.4 0.2 0 

2 25 100 4 1 0.15 0 500 0.4 0.2 0 

 

 Although, for the falling curves (figure 6.4), a set of parameters that 

will fit the experimental data with β=1 was not found, the main concept is still the 
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same. As in rise curves, here the tracer species have the higher molecular diffusion 

than polymer, which is confirmed with high Dr value and low Peclet number for 

tracer curve.  The reason why polymer comes out faster than the tracer is the IPV. 

The inaccessible pore volume depends on the molecular weight of the polymer, 

the permeability, the porosity and the pore size distribution of core plug sample. 

Considering the fact that polymer molecules’ diameter much bigger than tracer’s 

and core plug is characterized by a multi – scale porosity, the polymer molecules 

are incapable to flow through whole pore volume of the core plug and 

consequently skip some of the pore volume which leads to a faster exit. 

 Summarizing this chapter,  a dynamic model to describe the  transport of 

polymer through a multi – scale porous media from the literature was compared 

to the experimental curves obtained from a core sample. Even though it is difficult 

to assign physical values to all model parameters, the idea of diffusion in multi 

scale porosity medium, which is central to the model, seems to explain the 

difference between polymer and tracer effluent curves. Two key parameters to 

reproduce the shape of the experimental curves, the Peclet number and 

dimensionless diffusivity, were identified.  At low values of diffusivity, as is the 

case for the polymer molecules, part of the core sample is rendered inaccecible to 

the polymer, thus reproducing the IPV effect. 
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Chapter 7 - Conclusion 
 

 

Based on the results of this master thesis including all experimental and 

numerical work the following conclusions can be drawn: 

  Polymer flooding has a future in Kazakhstan’s oil fields as the 62.7 % of 

them are on the last stage of the production, and according to the world 

experience it has a wide range of criteria to apply. 

  To successful injection of polymer solution in reservoirs its transport 

behavior in porous media need to be studied properly. Two main factors 

that have a great impact on that is inaccessible pore volume (IPV) and 

polymer retention that includes adsorption on the grain surface. 

 Tracer, as sodium chloride, was used to contrast the polymer flow. And the 

IPV and adsorption was measured during core flood experiments and found 

by effluent concentration of polymer and tracer.  The results show that 

adsorption is 0.0006 g\g, polymer adsorbed is 0.064 g, the core sample’s 

inaccessible pore volume for polymer solution is 14.8 % while the pore 

diameter less than polymer molecule is 16%.  Even these number are not 

the same, they are pretty close, what confirm the theory that IPV effect 

takes place due to skipping the polymer molecules small pore sizes. 

 A dynamic model to describe the transport of polymer through porous 

media was presented. According to the model, it is highlighted that there is 
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now ideal case that would fit and explain totally the experemetal data. This 

can happen due to the fact that porous media of core sample is not a fixed 

bed – reactor. It was confirmed that polymer molecules have lower 

diffusivity than tracer molecules. The most important parameters are found 

to be the Peclet number and the dimensionless diffusivity. This phenomena 

may be explained by the fact that polymer‘s molecules hop between grains 

due to their large size (thus avoiding the IPV), while tracer molecules, beign 

smaller, can travel through the entire micro- and macro-scale pore space.  
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Appendices 
Appendix A  

 

Appendix A presents worldwide experience of polymer flooding and effect of this. 
Figure A. 1 World experience of polymer flooding 

 

Field, country Operating 

company, year 

Depth, 
m 

Thickness, m Area, ga Temperature, 
0С 

Porosity, 
% 

Lithology Oil 

viscosity,cP 

Permeability, 

mD 

Salinity of 

injected water, % 

Polymer and it 

concentration, % 
Effect 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Niagara fiels, 

Kentuki, USA 

Dou Chemical, 

1959 
- - - - - 

sandstone 

16 20  
вязкость 

раствора 1,35 

мПа*с 

Oil production 

increase 

 

 

North Hosvill, 

Texas 

 

Hant oil 
chemical 

,1963 
- - 2800 105 - Limestone 0,07-0,09 50 - 

Pusher, 0,025-

0,05 

+3.3% increase 

in oil production 

 
 
 

Vernon, Cansas 

  
1963 - - 6 24 - - 75 30 - 

Pusher, 

0,045 

+8.6% increase 

in oil production 

Nightingto 

beach, California 

Стандарт Оил 

К, 1964 
- - 3600 52 - - 37-76 2300 - 

Pusher, 4.1% increase in 

oil production 0,05-0,035  
Brea Olinda, 

California 
1967 - - 9,6 57 - - 25-100 750  Pusher, 0,08 

Increase in oil 

production 

Tiber Saut 
Ashland Pan. 

Can. Pet., 1967 
990 22 364 35 

26,3 Sandstone 

58 2100 
Mixture of fresh 

water and brine 

Pusher-500 и 

Pusher-700, 

0,036 or 0,023 

- 
26.6  

Scal-Krick 1967 - - 222 51 - - 3,2 70 - 
Pusher -500, 

0,024 

+8.2% 

increase in oil 

production 

Orlyanskoe, 

south part, Russia 

  

  

Cuibyshev neft 

(1968 - 1976 ) 

960 - 

1050 
6,0 

- 

24 19 - 25 
Sandstone-

limestone 
9-14 400-1300 1-2 g/l 

PАА, 0,01 - 

0,015 

1832 t of 

addition oil 

production to 1t 

on the injected 

agent 

Orlyanskoe, north 

part, Russia 

  

 

Cuibyshev neft 

(1973 - 1976) 
282 

1106 t of 

addition oil 

production to 1t 

on the injected 

agent 

Brelam, Duved, Texcaco 

Inc. 
595 3 107 44 29,3 sandstone 9,8 400 

Mixture of fresh 

water and brine 

Pusher-723, 

(0,0389-0,0075) 

+8.6% increase 

in oil production 1969 

Wilmington, 

California 

Mobil oil 

corparation, 

1969 

- - 152 57 - - 30,8 Very high - 
Pusher -700, 

0,021 

Not successful 

concentration of 

polymer and 

injection volume 

was low 
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1 2 3 4 5 6 7 8 9 10 11 12 13 

North barbenk, 

Phillips 
1970 914 11-15 64-65 47 11-32 

sandstone 

3,0 1000-2000 0,12 
Pusher -1000, 

(0,025-0,0025) 

+1.6% 

increase in oil 

production 
ник 

Taber Manville, 

Alberta, canada 

Chevron 

1971 960 9-10 208-210 33 23,2 

Sandstone 

120 1920 Fresh water 
Pusher -700, 

0,025 

Noticed increase 

in oil production 

 

 

Nof Alma 1971 - - 52 52 - - 29,5 110 - 
Kelzan, 

0,05 

Decrease in 

watercut 

Pembina, Alberta 

Canada, Mobil 
1971 1524 4-5 

128-

130 
52 7-13 

Conglomerate, 

sandstone 

1,1 450 0,025-0,03 
Pusher -700, 

(0,1-0,01) 

Not successful 

experiment due 

to small 

concentration of 

polymer and 

injected volume 

of agent. 

 

West Semlek, 

Kruk, Waioming 

Terra 

Resources Inc. 

1973 2205 8 139,2 62-63 20 sandstone 12,3 650 0,775 Betz (0,02) 
+4.4 % increase 

in oil production 

Ovasco unit, 

Kimbell, 

Nebrasca Chain 

Oil Inc. 

1975 1845 - 207 77 17 sandstone 3,27 193 - 
Calgon 454 

(0,05-0,025) 
 

North Stanly 

osagz, 

Oklakhoma 

1976 884 15,5 
624 

(404) 
41 18 

sandstone 

 
2,2 300 Fresh water 

Pusher -700, 

(0,0285) 

48.4 t of addition 

oil production to 

1t on the injected 

agent 

 

North Stanly 

osagz, 

Oklakhoma 

1977 600 4-6 44 - 30 
sandstone 

 
40 1000 0,05 g/l PAA 

Decrease in 

watercut 

 

Kalamkas, 

kazakhstan 

  

  

1981 - 

1986 
- - - - 

 

sandstone 

 
20 - 25 Up to 5000 93 g/l 

 190t of addition 

oil production to 

1t on the injected 

agent 

 

 
  

   

Daging, Chine 

PetroChina 

1994 

 

 

- 6-22 - 113 - 
Sandstone- 

condlomerate 
9 160-860 

Low salinity 

 

 

- 

+4.420% 

increase in oil 

production 

 

 



85 

 

 
 

Appendix B 

Appendix B presents the results of mercury porosimeter and pore size distribution. 

The pore size distribution was calculated as the ration of delta volume of mercury 

of each step to the total intruded volume 

Table B. 1Results of Mercury porosimeter of sample Akkudyk 20 

Pressure 

  [PSI] 

Pore 

Diameter 

[nm] 

Pore 

Diameter 

[μm]  

Volume 

Intruded 

[cc/g] 

Delta 

Volume 

[cc/g] 

Volume 

Intruded 

% 

Dv(d) 

[cc/(nm-

g)] 

dV/d(log 

 [cc/g] 

Pore size 

Distribution, 

%  

1 2 3 4 5 6 7 8 9 

0.815 261754 261.754 0 0 0 2.63E-08 1.65E-02 0  

1.16 183896.6 183.8966 0.0021 0.0021 1.74 2.44E-08 1.03E-02 1.75  

1.522 140139.5 140.1395 0.0032 0.0012 2.7 2.63E-08 8.53E-03 1.00  

1.812 117752.7 117.7527 0.004 0.0007 3.33 3.51E-08 9.66E-03 0.58  

2.352 90683.53 90.68353 0.0052 0.0012 4.35 8.00E-08 1.70E-02 1.00  

2.785 76595.69 76.59569 0.0064 0.0012 5.35 6.94E-08 1.23E-02 1.00  

3.795 56214.94 56.21494 0.0082 0.0018 6.87 1.90E-07 2.51E-02 1.50  

4.415 48312.79 48.31279 0.0107 0.0025 8.93 4.55E-07 5.18E-02 2.09  

5.246 40664.48 40.66448 0.0163 0.0056 13.59 1.17E-06 1.11E-01 4.67  

6.241 34178.92 34.17892 0.0275 0.0112 22.92 2.01E-06 1.59E-01 9.35  

7.208 29593.48 29.59348 0.037 0.0095 30.84 1.98E-06 1.35E-01 7.93  

8.189 26050.71 26.05071 0.0446 0.0076 37.19 2.22E-06 1.33E-01 6.34  

9.385 22730.78 22.73078 0.0506 0.006 42.19 1.56E-06 8.13E-02 5.01  

10.406 20499.15 20.49915 0.0537 0.0032 44.82 1.36E-06 6.45E-02 2.67  

11.806 18068.77 18.06877 0.057 0.0033 47.54 1.30E-06 5.39E-02 2.75  

13.112 16269.08 16.26908 0.0592 0.0022 49.36 1.09E-06 4.09E-02 1.84  

14.736 14475.79 14.47579 0.061 0.0019 50.93 1.14E-06 3.82E-02 1.59  

16.419 12992.61 12.99261 0.0629 0.0018 52.44 1.33E-06 3.99E-02 1.50  

17.966 11873.43 11.87343 0.0643 0.0014 53.64 1.21E-06 3.33E-02 1.17  

19.561 10905.49 10.90549 0.0656 0.0013 54.7 1.39E-06 3.50E-02 1.09  

21.325 10003.54 10.00354 0.0668 0.0012 55.69 1.25E-06 2.88E-02 1.00  

23.155 9212.69 9.21269 0.0678 0.0011 56.57 1.48E-06 3.16E-02 0.92  

25.069 8509.48 8.50948 0.0688 0.001 57.44 1.19E-06 2.31E-02 0.83  

26.965 7911.04 7.91104 0.0694 0.0006 57.93 1.25E-06 2.28E-02 0.50  

28.665 7441.78 7.44178 0.0702 0.0008 58.56 1.55E-06 2.66E-02 0.67  

30.656 6958.66 6.95866 0.0709 0.0007 59.13 1.39E-06 2.24E-02 0.58  

32.6 6543.65 6.54365 0.0713 0.0005 59.52 1.33E-06 2.02E-02 0.42  

34.976 6099.05 6.09905 0.0723 0.0009 60.3 2.12E-06 2.99E-02 0.75  

37.853 5635.54 5.63554 0.0731 0.0009 61.02 1.83E-06 2.38E-02 0.75  

40.722 5238.5 5.2385 0.0739 0.0008 61.7 2.06E-06 2.48E-02 0.67  

43.305 4926.05 4.92605 0.0745 0.0005 62.15 2.00E-06 2.29E-02 0.42  

46.075 4629.9 4.6299 0.0752 0.0007 62.73 2.25E-06 2.41E-02 0.58  

51.675 4128.16 4.12816 0.0771 0.0019 64.3 4.87E-06 4.72E-02 1.59  

61.826 3450.38 3.45038 0.0812 0.0042 67.77 6.26E-06 4.96E-02 3.51  

69.599 3065 3.065 0.0833 0.0021 69.52 4.73E-06 3.34E-02 1.75  

78.861 2705.04 2.70504 0.0849 0.0016 70.82 4.80E-06 3.02E-02 1.34  

91.005 2344.08 2.34408 0.087 0.0021 72.58 6.30E-06 3.42E-02 1.75  

105.957 2013.29 2.01329 0.089 0.002 74.28 5.97E-06 2.78E-02 1.67  

125.774 1696.08 1.69608 0.091 0.002 75.95 7.07E-06 2.79E-02 1.67  

152.332 1400.37 1.40037 0.0935 0.0025 78.04 9.56E-06 3.11E-02 2.09  

188.195 1133.51 1.13351 0.0964 0.0028 80.4 1.16E-05 3.07E-02 2.34  
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1 2 3 4 5 6 7 8 9 

235.82 904.6 0.9046 0.0993 0.0029 82.86 1.38E-05 2.90E-02 2.42  

297.421 717.24 0.71724 0.1022 0.0029 85.24 1.72E-05 2.87E-02 2.42  

372.576 572.56 0.57256 0.105 0.0028 87.59 2.13E-05 2.83E-02 2.34  

460.653 463.09 0.46309 0.1075 0.0026 89.71 2.60E-05 2.80E-02 2.17  

561.515 379.9 0.3799 0.11 0.0024 91.76 3.05E-05 2.68E-02 2.00  

675.16 315.96 0.31596 0.1119 0.0019 93.35 3.14E-05 2.30E-02 1.59  

801.398 266.19 0.26619 0.1136 0.0018 94.82 3.80E-05 2.34E-02 1.50  

937.525 227.54 0.22754 0.1149 0.0013 95.91 2.72E-05 1.42E-02 1.09  

1120.011 190.46 0.19046 0.1158 0.0009 96.64 2.91E-05 1.30E-02 0.75  

1370.933 155.6 0.1556 0.1172 0.0014 97.81 4.53E-05 1.63E-02 1.17  

1658.168 128.65 0.12865 0.1183 0.0011 98.73 3.16E-05 9.27E-03 0.92  

2020.769 105.56 0.10556 0.1188 0.0005 99.16 2.22E-05 5.44E-03 0.42  

2504.408 85.18 0.08518 0.1193 0.0005 99.58 2.54E-05 4.98E-03 0.42  

3106.577 68.67 0.06867 0.1197 0.0003 99.84 1.24E-05 1.93E-03 0.25  

3835.079 55.62 0.05562 0.1198 0.0001 99.93 4.99E-06 6.16E-04 0.08  

4716.453 45.23 0.04523 0.1198 0 99.93 0.00E+00 0.00E+00 0.00  

5731.128 37.22 0.03722 0.1198 0 99.93 0.00E+00 0.00E+00 0.00  

6807.617 31.34 0.03134 0.1198 0 99.94 8.55E-06 6.42E-04 0.00  

7918.744 26.94 0.02694 0.1198 0.0001 100 9.14E-06 5.50E-04 0.08  

 

 

 

 
 

Figure B. 1 Pore size distribution sample Akkudyk 20 
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Table B. 2 Results of Mercury porosimeter of sample Akkudyk 19 

Pressure 

  [PSI] 

Pore 

Diameter 

[nm] 

Pore 

Diameter 

[μm]  

Volume 

Intruded 

[cc/g] 

Delta 

Volume 

[cc/g] 

Volume 

Intruded 

% 

Dv(d) 

[cc/(nm-

g)] 

dV/d(log 

 [cc/g] 

Pore size 

Distribution, 

%  

1 2 3 4 5 6 7 8 9 

67.88 3142.65 3.14 0.02 0.023 70.51 0.00 0.00 70.5  

511.21 417.29 0.42 0.03 0.004 83.99 0.00 0.01 13.4  

735.28 290.13 0.29 0.03 0.002 88.82 0.00 0.00 5.0  

953.71 223.68 0.22 0.03 0.000 89.11 0.00 0.00 0.3  

1259.73 169.34 0.17 0.03 0.000 89.31 0.00 0.00 0.3  

1666.66 127.99 0.13 0.03 0.000 89.54 0.00 0.00 0.3  

2194.42 97.21 0.10 0.03 0.000 90.08 0.00 0.00 0.6  

2834.85 75.25 0.08 0.03 0.000 90.90 0.00 0.00 0.9  

3609.17 59.11 0.06 0.03 0.000 90.96 0.00 0.00 0.0  

4522.03 47.17 0.05 0.03 0.000 90.96 0.00 0.00 0.0  

5520.15 38.64 0.04 0.03 0.000 91.37 0.00 0.00 0.3  

6554.43 32.55 0.03 0.03 0.000 91.94 0.00 0.00 0.6  

7609.63 28.03 0.03 0.03 0.000 92.79 0.00 0.00 0.9  

8687.82 24.55 0.02 0.03 0.000 93.30 0.00 0.00 0.6  

9807.23 21.75 0.02 0.03 0.000 93.68 0.00 0.00 0.3  

10962.85 19.46 0.02 0.03 0.000 94.00 0.00 0.00 0.3  

12154.67 17.55 0.02 0.03 0.000 94.30 0.00 0.00 0.3  

13382.23 15.94 0.02 0.03 0.000 94.50 0.00 0.00 0.3  

14644.95 14.57 0.01 0.03 0.000 94.61 0.00 0.00 0.0  

15941.84 13.38 0.01 0.03 0.000 94.65 0.00 0.00 0.0  

17274.11 12.35 0.01 0.03 0.000 95.03 0.00 0.00 0.3  

18643.12 11.44 0.01 0.03 0.000 95.28 0.00 0.00 0.3  

20048.70 10.64 0.01 0.03 0.000 95.36 0.00 0.00 0.0  

21493.43 9.92 0.01 0.03 0.000 95.65 0.00 0.00 0.3  

22977.04 9.28 0.01 0.03 0.000 95.74 0.00 0.00 0.0  

24496.59 8.71 0.01 0.03 0.000 95.94 0.00 0.01 0.3  

26051.99 8.19 0.01 0.03 0.000 96.87 0.00 0.01 0.9  

27659.92 7.71 0.01 0.03 0.000 97.38 0.00 0.00 0.6  

29387.48 8.26 0.01 0.03 0.000 97.49 0.00 0.00 0.0  

31358.45 6.80 0.01 0.03 0.000 97.67 0.00 0.00 0.3  

34206.80 6.24 0.01 0.03 0.000 98.39 0.00 0.01 0.6  

37711.61 5.66 0.01 0.03 0.000 99.51 0.00 0.01 1.2  

41413.02 5.15 0.01 0.03 0.000 100.00 0.00 0.00 0.6 
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Figure B. 2Pore size distribution sample Akkudyk 19 

 

 

Table B. 3Results of Mercury porosimeter of sample Botakhan 

Pressure 

  [PSI] 

Pore 

Diameter 

[nm] 

Pore 

Diameter 

[μm]  

Volume 

Intruded 

[cc/g] 

Delta 

Volume 

[cc/g] 

Volume 

Intruded 

% 

Dv(d) 

[cc/(nm-

g)] 

dV/d(log 

 [cc/g] 

Pore size 

Distribution, 

%  

1 2 3 4 5 6 7 8 9 

0.71 302142.4 302.14 0.00 0.0003 0.23 0.00 0.02 0.2% 

2.18 97738.43 97.74 0.01 0.00580 5.06 0.00 0.02 4.8% 

2.67 79810.74 79.81 0.01 0.00020 5.26 0.00 0.00 0.2% 

3.13 68079.93 68.08 0.01 0.00030 5.49 0.00 0.01 0.2% 

4.13 51663.56 51.66 0.01 0.00090 6.20 0.00 0.01 0.7% 

4.78 44595.07 44.60 0.01 0.00050 6.58 0.00 0.01 0.4% 

5.72 37326.16 37.33 0.01 0.00120 7.59 0.00 0.01 1.0% 

6.50 32797.60 32.80 0.01 0.00040 7.96 0.00 0.01 0.3% 

7.43 28707.70 28.71 0.01 0.00090 8.68 0.00 0.02 0.7% 

8.48 25165.52 25.17 0.01 0.00070 9.24 0.00 0.01 0.6% 

9.61 22200.18 22.20 0.01 0.00100 10.03 0.00 0.04 0.8% 

10.83 19705.77 19.71 0.01 0.00280 12.32 0.00 0.08 2.3% 

12.12 17596.75 17.60 0.02 0.00760 18.60 0.00 0.25 6.3% 

13.27 16073.35 16.07 0.04 0.01470 30.80 0.00 0.42 12.2% 

14.58 14632.23 14.63 0.05 0.01560 43.70 0.00 0.32 12.9% 

15.95 13372.84 13.37 0.06 0.00930 51.39 0.00 0.19 7.7% 

17.43 12242.64 12.24 0.07 0.00550 55.98 0.00 0.13 4.6% 

19.01 11220.86 11.22 0.07 0.00420 59.47 0.00 0.10 3.5% 

20.78 10264.86 10.26 0.08 0.00330 62.20 0.00 0.08 2.7% 

22.54 9462.69 9.46 0.08 0.00220 64.00 0.00 0.06 1.8% 

24.45 8724.38 8.72 0.08 0.00200 65.67 0.00 0.05 1.7% 

26.35 8096.00 8.10 0.08 0.00160 66.97 0.00 0.05 1.3% 

28.12 7586.97 7.59 0.08 0.00120 67.99 0.00 0.04 1.0% 
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1 2 3 4 5 6 7 8 9 

30.10 7088.33 7.09 0.08 0.00120 69.00 0.00 0.05 1.0% 

32.26 6612.91 6.61 0.08 0.00150 70.25 0.00 0.03 1.2% 

34.79 6131.88 6.13 0.09 0.00060 70.77 0.00 0.02 0.5% 

37.57 5677.96 5.68 0.09 0.00090 71.49 0.00 0.03 0.7% 

40.41 5279.59 5.28 0.09 0.00130 72.57 0.00 0.04 1.1% 

43.04 4956.27 4.96 0.09 0.00060 73.10 0.00 0.03 0.5% 

45.74 4663.96 4.66 0.09 0.00080 73.74 0.00 0.02 0.7% 

49.16 4339.31 4.34 0.09 0.00040 74.08 0.00 0.01 0.3% 

56.03 3807.39 3.81 0.09 0.00070 74.67 0.00 0.02 0.6% 

67.27 3171.00 3.17 0.09 0.00150 75.93 0.00 0.02 1.2% 

80.09 2663.56 2.66 0.09 0.00200 77.62 0.00 0.03 1.7% 

92.55 2305.02 2.31 0.09 0.00120 78.64 0.00 0.01 1.0% 

111.07 1920.57 1.92 0.10 0.00110 79.55 0.00 0.02 0.9% 

137.47 1551.75 1.55 0.10 0.00190 81.13 0.00 0.02 1.6% 

169.36 1259.55 1.26 0.10 0.00150 82.39 0.00 0.01 1.2% 

214.95 992.44 0.99 0.10 0.00150 83.61 0.00 0.01 1.2% 

274.24 777.86 0.78 0.10 0.00170 85.00 0.00 0.02 1.4% 

345.33 617.73 0.62 0.10 0.00180 86.49 0.00 0.02 1.5% 

430.98 494.97 0.49 0.11 0.00140 87.66 0.00 0.01 1.2% 

536.07 397.94 0.40 0.11 0.00130 88.72 0.00 0.02 1.1% 

652.88 326.74 0.33 0.11 0.00140 89.92 0.00 0.02 1.2% 

778.69 273.95 0.27 0.11 0.00120 90.94 0.00 0.02 1.0% 

923.20 231.07 0.23 0.11 0.00110 91.87 0.00 0.01 0.9% 

1104.99 193.05 0.19 0.11 0.00070 92.44 0.00 0.01 0.6% 

1362.58 156.56 0.16 0.11 0.00110 93.33 0.00 0.01 0.9% 

1691.52 126.11 0.13 0.11 0.00080 94.00 0.00 0.01 0.7% 

2113.47 100.93 0.10 0.11 0.00100 94.80 0.00 0.01 0.8% 

2598.52 82.09 0.08 0.12 0.00090 95.57 0.00 0.01 0.7% 

3159.99 67.51 0.07 0.12 0.00060 96.07 0.00 0.01 0.5% 

3841.38 55.53 0.06 0.12 0.00030 96.33 0.00 0.00 0.2% 

4671.94 45.66 0.05 0.12 0.00030 96.56 0.00 0.00 0.2% 

5647.08 37.78 0.04 0.12 0.00050 97.00 0.00 0.01 0.4% 

6715.65 31.76 0.03 0.12 0.00070 97.57 0.00 0.01 0.6% 

7823.72 27.27 0.03 0.12 0.00050 97.95 0.00 0.01 0.4% 

8958.35 23.81 0.02 0.12 0.00030 98.22 0.00 0.01 0.2% 

10116.73 21.09 0.02 0.12 0.00020 98.41 0.00 0.00 0.2% 

11322.41 18.84 0.02 0.12 0.00030 98.66 0.00 0.01 0.2% 

12567.49 16.97 0.02 0.12 0.00050 99.10 0.00 0.01 0.4% 

13850.64 15.40 0.02 0.12 0.00030 99.32 0.00 0.01 0.2% 

15172.64 14.06 0.01 0.12 0.00020 99.46 0.00 0.00 0.2% 

16533.50 12.90 0.01 0.12 0.00010 99.52 0.00 0.00 0.1% 

17936.06 11.89 0.01 0.12 0.00000 99.53 0.00 0.00 0.0% 

19379.02 11.01 0.01 0.12 0.00000 99.53 0.00 0.00 0.0% 

20862.57 10.23 0.01 0.12 0.00010 99.58 0.00 0.00 0.1% 

22388.02 9.23 0.01 0.12 0.00000 99.60 0.00 0.00 0.0% 

23954.36 8.91 0.01 0.12 0.00030 99.84 0.00 0.01 0.2% 

25560.15 8.35 0.01 0.12 0.00020 100.00 0.00 0.00 0.2% 
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Figure B. 3 Pore size distribution sample Botakhan 

 
Table B. 4 Results of Mercury porosimeter of sample Akshabulak 45 

Pressure 

  [PSI] 

Pore 

Diameter 

[nm] 

Pore 

Diameter 

[μm]  

Volume 

Intruded 

[cc/g] 

Delta 

Volume 

[cc/g] 

Volume 

Intruded 

% 

Dv(d) 

[cc/(nm-

g)] 

dV/d(log 

 [cc/g] 

Pore size 

Distribution, 

%  

1 2 3 4 5 6 7 8 9 

0.829 257290.9 257.2909 0 0 0 1.36E-08 8.49E-03 0.00 

1.291 165234.4 165.2344 0.0016 0.0016 1.02 2.16E-08 8.34E-03 1.04 

1.68 126972.5 126.9725 0.0026 0.001 1.71 2.11E-08 6.07E-03 0.65 

2.196 97156.25 97.15625 0.0031 0.0005 2.02 1.96E-08 4.53E-03 0.33 

3.082 69210.42 69.21042 0.0039 0.0008 2.52 9.24E-08 1.53E-02 0.52 

3.591 59409.39 59.40939 0.0056 0.0017 3.63 1.60E-07 2.16E-02 1.11 

4.362 48909.03 48.90903 0.0061 0.0006 4 0.00E+00 0.00E+00 0.39 

5.12 41661.75 41.66175 0.0065 0.0004 4.26 1.33E-07 1.32E-02 0.26 

5.985 35642.03 35.64203 0.0075 0.001 4.91 1.17E-07 9.40E-03 0.65 

6.958 30658.08 30.65808 0.0078 0.0003 5.08 2.57E-08 1.78E-03 0.20 

7.844 27195.88 27.19588 0.0078 0 5.09 2.89E-08 1.90E-03 0.00 

8.785 24283.42 24.28342 0.0081 0.0003 5.27 1.18E-07 6.64E-03 0.20 

10.047 21233.26 21.23326 0.0084 0.0004 5.51 2.01E-07 1.00E-02 0.26 

11.381 18744.54 18.74454 0.0092 0.0008 6.01 3.75E-07 1.64E-02 0.52 

12.556 16989.96 16.98996 0.0103 0.001 6.7 1.05E-06 4.16E-02 0.65 

13.713 15556.29 15.55629 0.0132 0.0029 8.59 3.31E-06 1.20E-01 1.89 

15.025 14197.63 14.19763 0.0201 0.007 13.14 7.37E-06 2.43E-01 4.57 

16.571 12873.58 12.87358 0.0355 0.0154 23.18 1.49E-05 4.47E-01 10.05 

18.301 11656.05 11.65605 0.0565 0.0209 36.85 1.58E-05 4.24E-01 13.64 

19.97 10682.22 10.68222 0.0694 0.013 45.31 1.18E-05 2.91E-01 8.49 

21.72 9821.3 9.8213 0.0781 0.0087 50.98 9.24E-06 2.09E-01 5.68 

23.531 9065.76 9.06576 0.0843 0.0062 55.02 7.59E-06 1.59E-01 4.05 

25.306 8429.86 8.42986 0.0887 0.0044 57.9 6.45E-06 1.25E-01 2.87 

27.031 7891.74 7.89174 0.092 0.0033 60.06 6.02E-06 1.10E-01 2.15 

28.639 7448.66 7.44866 0.0947 0.0027 61.82 6.19E-06 1.07E-01 1.76 

30.585 6974.78 6.97478 0.0976 0.0029 63.69 5.73E-06 9.21E-02 1.89 

32.567 6550.35 6.55035 0.0997 0.0021 65.08 4.90E-06 7.41E-02 1.37 

35.181 6063.6 6.0636 0.1022 0.0025 66.69 5.10E-06 7.14E-02 1.63 

38.007 5612.69 5.61269 0.1044 0.0022 68.15 4.49E-06 5.81E-02 1.44 
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1 2 3 4 5 6 7 8 9 

40.711 5239.9 5.2399 0.1059 0.0015 69.13 3.99E-06 4.83E-02 0.98 

43.217 4936.05 4.93605 0.1072 0.0012 69.92 4.19E-06 4.77E-02 0.78 

46.226 4614.75 4.61475 0.1085 0.0013 70.8 4.26E-06 4.54E-02 0.85 

51.416 4148.91 4.14891 0.1109 0.0024 72.34 5.86E-06 5.73E-02 1.57 

63.487 3360.09 3.36009 0.1172 0.0063 76.46 9.11E-06 7.05E-02 4.11 

72.778 2931.14 2.93114 0.1207 0.0035 78.77 6.39E-06 4.29E-02 2.28 

82.675 2580.24 2.58024 0.1222 0.0015 79.76 3.73E-06 2.22E-02 0.98 

98.231 2171.64 2.17164 0.1239 0.0016 80.84 5.02E-06 2.56E-02 1.04 

118.89 1794.28 1.79428 0.1266 0.0027 82.59 8.17E-06 3.39E-02 1.76 

142.13 1500.89 1.50089 0.1288 0.0022 84.01 6.26E-06 2.16E-02 1.44 

174.924 1219.51 1.21951 0.1304 0.0016 85.08 6.97E-06 1.99E-02 1.04 

220.463 967.61 0.96761 0.1326 0.0022 86.52 9.28E-06 2.07E-02 1.44 

277.653 768.3 0.7683 0.1344 0.0018 87.71 9.21E-06 1.64E-02 1.17 

354.531 601.7 0.6017 0.1359 0.0015 88.69 9.62E-06 1.35E-02 0.98 

457.081 466.71 0.46671 0.1374 0.0014 89.63 1.04E-05 1.12E-02 0.91 

598.957 356.16 0.35616 0.1383 0.0009 90.24 8.69E-06 7.23E-03 0.59 

814.613 261.87 0.26187 0.1393 0.001 90.9 1.18E-05 7.09E-03 0.65 

1117.066 190.97 0.19097 0.1401 0.0008 91.42 1.23E-05 5.51E-03 0.52 

1542.622 138.29 0.13829 0.141 0.0009 91.99 2.06E-05 6.62E-03 0.59 

2103.974 101.39 0.10139 0.1419 0.0009 92.58 2.94E-05 6.92E-03 0.59 

2787.602 76.53 0.07653 0.1428 0.0009 93.16 5.11E-05 9.26E-03 0.59 

3573.043 59.7 0.0597 0.1442 0.0014 94.1 1.15E-04 1.60E-02 0.91 

4422.335 48.24 0.04824 0.1458 0.0016 95.13 1.62E-04 1.82E-02 1.04 

5337.242 39.97 0.03997 0.1474 0.0016 96.16 1.96E-04 1.81E-02 1.04 

6323.917 33.73 0.03373 0.1485 0.0012 96.93 1.91E-04 1.49E-02 0.78 

7404.795 28.81 0.02881 0.1495 0.001 97.55 2.01E-04 1.34E-02 0.65 

8526.123 25.02 0.02502 0.1502 0.0008 98.04 1.64E-04 9.39E-03 0.52 

9687.493 22.02 0.02202 0.1506 0.0003 98.26 1.17E-04 5.97E-03 0.20 

10892.36 19.58 0.01958 0.1509 0.0003 98.49 1.29E-04 5.81E-03 0.20 

12134.64 17.58 0.01758 0.1511 0.0002 98.62 9.37E-05 3.81E-03 0.13 

13417.86 15.9 0.0159 0.1513 0.0001 98.71 5.74E-05 2.09E-03 0.07 

14738.59 14.47 0.01447 0.1513 0.0001 98.75 5.45E-05 1.83E-03 0.07 

16097.46 13.25 0.01325 0.1514 0.0001 98.8 1.20E-04 3.73E-03 0.07 

17497.8 12.19 0.01219 0.1517 0.0003 98.97 3.03E-04 8.54E-03 0.20 

18939.12 11.26 0.01126 0.1519 0.0002 99.11 1.51E-04 3.90E-03 0.13 

20421.01 10.45 0.01045 0.152 0.0001 99.17 6.21E-05 1.48E-03 0.07 

21944.2 9.72 0.00972 0.152 0 99.18 0.00E+00 0.00E+00 0.00 

23508.42 9.07 0.00907 0.152 0 99.18 0.00E+00 0.00E+00 0.00 

25112.65 8.49 0.00849 0.152 0 99.18 0.00E+00 0.00E+00 0.00 

26758.19 7.97 0.00797 0.152 0 99.18 2.55E-06 4.84E-05 0.00 

28443.02 7.5 0.0075 0.152 0.0001 99.21 4.55E-04 7.98E-03 0.07 

30149.45 7.08 0.00708 0.1524 0.0004 99.44 6.36E-04 1.03E-02 0.26 

31960.42 6.67 0.00667 0.1525 0.0001 99.49 5.03E-05 7.60E-04 0.07 

33934.07 6.29 0.00629 0.1525 0 99.49 0.00E+00 0.00E+00 0.00 

36616.51 5.83 0.00583 0.1525 0 99.49 8.10E-05 1.13E-03 0.00 

40376.98 5.28 0.00528 0.1527 0.0002 99.62 6.24E-04 7.68E-03 0.13 

44431.12 4.8 0.0048 0.153 0.0004 99.86 6.17E-04 6.80E-03 0.26 

48647.82 4.39 0.00439 0.1532 0.0002 99.97 4.29E-04 4.31E-03 0.13 
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Figure B. 4Pore size distribution sample Akshabulak 45 

 
Table B. 5Results of Mercury porosimeter of sample Akshabulak 206 

Pressure 

[PSI] 

Pore 

Diameter 

[nm] 

Pore 

Diameter 

[μm] 

Volume 

Intruded 

[cc/g] 

Delta 

Volume 

[cc/g] 

Volume 

Intruded 

% 

Dv(d) 

[cc/(nm-

g)] 

dV/d(log 

[cc/g] 

Pore size 

Distribution, 

% 

1 2 3 4 5 6 7 8 9 

0.818 260690.13 260.69013 0 0 0.00 4.81E-09 3.29E-03 0% 

1.64 130068.63 130.06863 0.0018 0.0018 1.91 2.15E-08 6.48E-03 1.92% 

2.464 86566.11 86.56611 0.003 0.0012 3.17 2.79E-08 5.53E-03 1.28% 

3.166 67382.48 67.38248 0.0036 0.0007 3.88 5.21E-08 8.29E-03 0.75% 

3.924 54366.09 54.36609 0.0045 0.0009 4.83 8.45E-08 1.07E-02 0.96% 

4.746 44948.13 44.94813 0.0057 0.0011 6.05 1.70E-07 1.79E-02 1.17% 

5.589 38171.43 38.17143 0.0075 0.0018 8.00 4.19E-07 3.76E-02 1.92% 

6.438 33136.93 33.13693 0.0108 0.0033 11.49 7.58E-07 5.81E-02 3.52% 

7.406 28803.53 28.80353 0.0144 0.0037 15.40 1.07E-06 7.23E-02 3.95% 

8.584 24850.58 24.85058 0.0198 0.0053 21.06 1.34E-06 7.67E-02 5.66% 

9.883 21584.41 21.58441 0.0239 0.0042 25.53 1.31E-06 6.53E-02 4.48% 

11.23 18996.29 18.99629 0.027 0.0031 28.84 1.04E-06 4.55E-02 3.31% 

12.667 16840.69 16.84069 0.029 0.002 30.96 9.62E-07 3.74E-02 2.13% 

14.118 15109.63 15.10963 0.0306 0.0016 32.63 9.75E-07 3.41E-02 1.71% 

15.513 13750.88 13.75088 0.0322 0.0016 34.31 1.09E-06 3.46E-02 1.71% 

16.9 12622.72 12.62272 0.0333 0.0012 35.55 1.02E-06 2.99E-02 1.28% 

18.652 11436.7 11.4367 0.0346 0.0013 36.94 1.31E-06 3.47E-02 1.39% 

20.446 10433.38 10.43338 0.0363 0.0017 38.75 2.13E-06 5.15E-02 1.81% 

22.168 9622.85 9.62285 0.0382 0.0019 40.76 1.81E-06 3.99E-02 2.03% 

23.892 8928.78 8.92878 0.0392 0.001 41.79 1.56E-06 3.23E-02 1.07% 

25.681 8306.62 8.30662 0.0402 0.001 42.9 1.61E-06 3.08E-02 1.07% 

27.502 7756.65 7.75665 0.041 0.0008 43.73 1.20E-06 2.14E-02 0.85% 

29.318 7276.05 7.27605 0.0416 0.0006 44.32 1.45E-06 2.44E-02 0.64% 

31.258 6824.48 6.82448 0.0424 0.0008 45.22 1.90E-06 3.00E-02 0.85% 

33.665 6336.62 6.33662 0.0433 0.0009 46.13 1.86E-06 2.72E-02 0.96% 

36.429 5855.86 5.85586 0.0443 0.001 47.2 2.17E-06 2.94E-02 1.07% 

39.078 5458.86 5.45886 0.0451 0.0009 48.11 2.02E-06 2.54E-02 0.96% 

41.688 5117.15 5.11715 0.0458 0.0007 48.85 2.16E-06 2.55E-02 0.75% 

44.464 4797.63 4.79763 0.0466 0.0007 49.64 2.54E-06 2.81E-02 0.75% 

47.672 4474.82 4.47482 0.0473 0.0007 50.42 2.10E-06 2.17E-02 0.75% 
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1 2 3 4 5 6 7 8 9 

52.747 4044.26 4.04426 0.0482 0.0009 51.39 2.08E-06 1.96E-02 0.96% 

62.884 3392.33 3.39233 0.0498 0.0016 53.13 3.14E-06 2.49E-02 1.71% 

74.597 2859.68 2.85968 0.0521 0.0022 55.53 4.88E-06 3.23E-02 2.35% 

86.094 2477.79 2.47779 0.0539 0.0018 57.47 4.68E-06 2.69E-02 1.92% 

100.707 2118.26 2.11826 0.0558 0.0019 59.49 5.72E-06 2.81E-02 2.03% 

119.396 1786.68 1.78668 0.0579 0.0021 61.69 7.02E-06 2.92E-02 2.24% 

143.955 1481.87 1.48187 0.0603 0.0025 64.32 8.72E-06 3.00E-02 2.67% 

176.567 1208.17 1.20817 0.063 0.0027 67.15 1.09E-05 3.07E-02 2.88% 

220.361 968.06 0.96806 0.0659 0.003 70.31 1.36E-05 3.07E-02 3.20% 

277.58 768.51 0.76851 0.069 0.003 73.56 1.73E-05 3.09E-02 3.20% 

348.852 611.5 0.6115 0.0723 0.0033 77.05 2.45E-05 3.49E-02 3.52% 

433.309 492.31 0.49231 0.0756 0.0034 80.63 3.14E-05 3.59E-02 3.63% 

529.679 402.74 0.40274 0.0787 0.0031 83.95 3.62E-05 3.37E-02 3.31% 

637.817 334.46 0.33446 0.0812 0.0025 86.61 3.54E-05 2.73E-02 2.67% 

761.325 280.2 0.2802 0.083 0.0018 88.51 3.42E-05 2.22E-02 1.92% 

898.342 237.46 0.23746 0.0845 0.0015 90.15 3.64E-05 2.00E-02 1.60% 

1052.767 202.63 0.20263 0.086 0.0015 91.71 5.19E-05 2.45E-02 1.60% 

1215.234 175.54 0.17554 0.0876 0.0016 93.4 5.04E-05 2.03E-02 1.71% 

1395.551 152.86 0.15286 0.0883 0.0007 94.19 2.95E-05 1.05E-02 0.75% 

1636.917 130.32 0.13032 0.0892 0.0008 95.06 4.31E-05 1.30E-02 0.85% 

1950.859 109.35 0.10935 0.0901 0.001 96.11 4.29E-05 1.08E-02 1.07% 

2334.746 91.37 0.09137 0.0907 0.0006 96.74 2.44E-05 5.08E-03 0.64% 

2816.027 75.75 0.07575 0.0909 0.0002 96.94 8.19E-06 1.43E-03 0.21% 

3414.881 62.47 0.06247 0.0911 0.0002 97.12 1.74E-05 2.53E-03 0.21% 

4119.473 51.78 0.05178 0.0913 0.0002 97.31 1.58E-05 1.90E-03 0.21% 

4955.43 43.05 0.04305 0.0914 0.0001 97.45 9.40E-06 8.97E-04 0.11% 

5926.138 36 0.036 0.0914 0 97.46 4.94E-06 4.41E-04 0.00% 

7005.984 30.45 0.03045 0.0915 0.0001 97.6 4.34E-05 3.08E-03 0.11% 

8126.076 26.25 0.02625 0.0917 0.0002 97.82 5.73E-05 3.52E-03 0.21% 

9269.087 23.01 0.02301 0.092 0.0003 98.09 6.17E-05 3.23E-03 0.32% 

10459.076 20.4 0.0204 0.0921 0.0001 98.16 2.36E-05 1.13E-03 0.11% 

11687.966 18.25 0.01825 0.0922 0.0001 98.29 9.71E-05 4.12E-03 0.11% 

12955.422 16.47 0.01647 0.0924 0.0002 98.49 5.57E-05 2.08E-03 0.21% 

14262.372 14.96 0.01496 0.0924 0 98.52 3.93E-05 1.39E-03 0.00% 

15606.601 13.67 0.01367 0.0926 0.0002 98.68 1.82E-04 5.78E-03 0.21% 

16990.564 12.56 0.01256 0.0927 0.0002 98.89 1.48E-04 4.27E-03 0.21% 

18416.477 11.58 0.01158 0.0929 0.0001 99.01 1.32E-04 3.54E-03 0.11% 

19881.631 10.73 0.01073 0.093 0.0002 99.18 1.45E-04 3.55E-03 0.21% 

21388.773 9.97 0.00997 0.0931 0.0001 99.24 6.98E-05 1.61E-03 0.11% 

22936.35 9.30 0.0093 0.0931 0 99.28 4.60E-05 9.82E-04 0.00% 

24523.342 8.70 0.0087 0.0931 0 99.31 1.91E-05 3.77E-04 0.00% 

26152.555 8.16 0.00816 0.0932 0 99.32 1.06E-04 2.02E-03 0.00% 

27861.605 7.66 0.00766 0.0933 0.0001 99.46 2.67E-04 4.71E-03 0.11% 

29666.225 7.19 0.00719 0.0933 0.0001 99.52 2.71E-05 4.40E-04 0.11% 

31418.43 6.79 0.00679 0.0933 0 99.52 0.00E+00 0.00E+00 0.00% 

33195.992 6.43 0.00643 0.0933 0 99.52 1.48E-04 2.23E-03 0.00% 

35171.09 6.07 0.00607 0.0935 0.0001 99.66 3.05E-04 4.24E-03 0.11% 

38294.555 5.57 0.00557 0.0935 0 99.7 1.66E-05 2.15E-04 0.00% 

42230.719 5.05 0.00505 0.0936 0.0001 99.75 2.53E-04 3.00E-03 0.11% 

46355.223 4.60 0.0046 0.0937 0.0002 99.94 3.46E-04 3.65E-03 0.21% 

 



94 

 

 
 

 

 
Figure B. 5Pore size distribution sample Akshabulak 206 

 

Table B. 6 Results of Mercury porosimeter of sample Akshabulak 500 

Pressure 

[PSI] 

Pore 

Diameter 

[nm] 

Pore 

Diameter 

[μm] 

Volume 

Intruded 

[cc/g] 

Delta 

Volume 

[cc/g] 

Volume 

Intruded 

% 

Dv(d) 

[cc/(nm-

g)] 

dV/d(log 

[cc/g] 

Pore size 

Distribution, 

% 

1 2 3 4 5 6 7 8 9 

0.818 340280.2 340.2802 0.0000 0.0000 0.00 4.81E-09 3.29E-03 0.00 

1.64 239065.5 239.0655 0.0016 0.0016 1.91 2.15E-08 6.48E-03 1.52 

2.464 182181.3 182.1813 0.0029 0.0013 3.17 2.79E-08 5.53E-03 1.28 

3.166 153078.5 153.0785 0.0037 0.0008 3.88 5.21E-08 8.29E-03 0.75 

3.924 117888.6 117.8886 0.0047 0.0010 4.83 8.45E-08 1.07E-02 0.96 

4.746 99574.4 99.5744 0.0062 0.0016 6.05 1.70E-07 1.79E-02 1.50 

5.589 73079.42 73.07942 0.0082 0.0020 8.00 4.19E-07 3.76E-02 1.92 

6.438 62806.63 62.80663 0.0109 0.0026 11.49 7.58E-07 5.81E-02 2.52 

7.406 52863.82 52.86382 0.0145 0.0037 15.40 1.07E-06 7.23E-02 3.55 

8.584 44432.6 44.4326 0.0183 0.0038 21.06 1.34E-06 7.67E-02 3.66 

9.883 38471.52 38.47152 0.0217 0.0034 25.53 1.31E-06 6.53E-02 3.28 

11.23 33865.92 33.86592 0.0252 0.0034 28.84 1.04E-06 4.55E-02 3.31 

12.667 29550.01 29.55001 0.0274 0.0022 30.96 9.62E-07 3.74E-02 2.14 

14.118 26648.9 26.6489 0.0292 0.0018 32.63 9.75E-07 3.41E-02 1.71 

15.513 23489.4 23.4894 0.0310 0.0018 34.31 1.09E-06 3.46E-02 1.71 

16.9 21149.8 21.1498 0.0323 0.0013 35.55 1.02E-06 2.99E-02 1.28 

18.652 18818.53 18.81853 0.0337 0.0014 36.94 1.31E-06 3.47E-02 1.39 

20.446 16890.39 16.89039 0.0356 0.0019 38.75 2.13E-06 5.15E-02 1.82 

22.168 15435.46 15.43546 0.0377 0.0021 40.76 1.81E-06 3.99E-02 2.03 

23.892 14177.14 14.17714 0.0388 0.0011 41.79 1.56E-06 3.23E-02 1.07 

25.681 13004.6 13.0046 0.0400 0.0011 42.9 1.61E-06 3.08E-02 1.07 

27.502 11976.5 11.9765 0.0408 0.0009 43.73 1.20E-06 2.14E-02 0.85 

29.318 11062.32 11.06232 0.0415 0.0007 44.32 1.45E-06 2.44E-02 0.64 

31.258 10284.35 10.28435 0.0424 0.0009 45.22 1.90E-06 3.00E-02 0.85 

33.665 9674.314 9.674314 0.0434 0.0010 46.13 1.86E-06 2.72E-02 0.96 

36.429 9046.258 9.046258 0.0445 0.0011 47.2 2.17E-06 2.94E-02 1.07 

39.078 8506.745 8.506745 0.0455 0.0010 48.11 2.02E-06 2.54E-02 0.96 

41.688 7928.765 7.928765 0.0463 0.0008 48.85 2.16E-06 2.55E-02 0.75 
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1 2 3 4 5 6 7 8 9 

44.464 7326.202 7.326202 0.0470 0.0008 49.64 2.54E-06 2.81E-02 0.75 

47.672 6810.05 6.81005 0.0478 0.0008 50.42 2.10E-06 2.17E-02 0.75 

52.747 6403.865 6.403865 0.0488 0.0010 51.39 2.08E-06 1.96E-02 0.96 

62.884 6018.87 6.01887 0.0506 0.0018 53.13 3.14E-06 2.49E-02 1.71 

74.597 5366.608 5.366608 0.0530 0.0024 55.53 4.88E-06 3.23E-02 2.35 

86.094 4485.494 4.485494 0.0550 0.0020 57.47 4.68E-06 2.69E-02 1.92 

100.707 3984.5 3.9845 0.0571 0.0021 59.49 5.72E-06 2.81E-02 2.03 

119.396 3516.552 3.516552 0.0595 0.0023 61.69 7.02E-06 2.92E-02 2.24 

143.955 3047.304 3.047304 0.0622 0.0028 64.32 8.72E-06 3.00E-02 2.67 

176.567 2617.277 2.617277 0.0652 0.0030 67.15 1.09E-05 3.07E-02 2.88 

220.361 2204.904 2.204904 0.0686 0.0033 70.31 1.36E-05 3.07E-02 3.20 

277.58 1820.481 1.820481 0.0719 0.0033 73.56 1.73E-05 3.09E-02 3.20 

348.852 1473.563 1.473563 0.0755 0.0037 77.05 2.45E-05 3.49E-02 3.52 

433.309 1175.98 1.17598 0.0793 0.0038 80.63 3.14E-05 3.59E-02 3.63 

529.679 932.412 0.932412 0.0827 0.0034 83.95 3.62E-05 3.37E-02 3.31 

637.817 744.328 0.744328 0.0843 0.0015 86.61 3.54E-05 2.73E-02 1.47 

761.325 602.017 0.602017 0.0856 0.0014 88.51 3.42E-05 2.22E-02 1.32 

898.342 493.87 0.49387 0.0873 0.0017 90.15 3.64E-05 2.00E-02 1.60 

1052.767 410.748 0.410748 0.0890 0.0017 91.71 5.19E-05 2.45E-02 1.60 

1215.234 346.047 0.346047 0.0907 0.0018 93.4 5.04E-05 2.03E-02 1.71 

1395.551 295.802 0.295802 0.0920 0.0012 94.19 2.95E-05 1.05E-02 1.17 

1636.917 247.598 0.247598 0.0931 0.0011 95.06 4.31E-05 1.30E-02 1.07 

1950.859 202.28 0.20228 0.0937 0.0007 96.11 4.29E-05 1.08E-02 0.64 

2334.746 167.245 0.167245 0.0946 0.0009 96.74 2.44E-05 5.08E-03 0.85 

2816.027 137.228 0.137228 0.0954 0.0008 96.94 8.19E-06 1.43E-03 0.75 

3414.881 110.734 0.110734 0.0959 0.0006 97.12 1.74E-05 2.53E-03 0.53 

4119.473 89.271 0.089271 0.0969 0.0010 97.31 1.58E-05 1.90E-03 0.96 

4955.43 72.306 0.072306 0.0979 0.0010 97.45 9.40E-06 8.97E-04 0.96 

5926.138 58.799 0.058799 0.0988 0.0009 97.46 4.94E-06 4.41E-04 0.85 

7005.984 48.386 0.048386 0.0994 0.0006 97.6 4.34E-05 3.08E-03 0.53 

8126.076 40.742 0.040742 0.1002 0.0008 97.82 5.73E-05 3.52E-03 0.75 

9269.087 35.022 0.035022 0.1002 0.0000 98.09 6.17E-05 3.23E-03 0.03 

10459.08 32.526 0.032526 0.1007 0.0005 98.16 2.36E-05 1.13E-03 0.48 

11687.97 28.626 0.028626 0.1009 0.0002 98.29 9.71E-05 4.12E-03 0.24 

12955.42 25.454 0.025454 0.1017 0.0007 98.49 5.57E-05 2.08E-03 0.71 

14262.37 22.854 0.022854 0.1019 0.0002 98.52 3.93E-05 1.39E-03 0.24 

15606.6 20.67 0.02067 0.1021 0.0001 98.68 1.82E-04 5.78E-03 0.14 

16990.56 18.811 0.018811 0.1022 0.0001 98.89 1.48E-04 4.27E-03 0.14 

18416.48 17.225 0.017225 0.1029 0.0007 99.01 1.32E-04 3.54E-03 0.67 

19881.63 15.847 0.015847 0.1039 0.0010 99.18 1.45E-04 3.55E-03 0.99 

21388.77 14.638 0.014638 0.1039 0.0000 99.24 6.98E-05 1.61E-03 0.03 
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Figure B. 6Pore size distribution sample Akshabulak 500 
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Appendix C 

Appendix C presents the raw and calculated data of 3 polymer powder. 

 
Table C 1 Mass fraction of the main substance 

  FP 3630 FP 5115 FP 5205 

Mass of polymer before 

drying, g 
2.558 2.183 2.24 

Mass of polymer after 

drying, g 
2.309 1.966 2.024 

Mass fraction of the main 

substance,% 
90.27% 90.06% 90.36% 

 

 
Table C 2 Hydrolysis degree 

  FP 3630 FP 5115 FP 5205 

Mass of polymer, g 0.33 0.33 0.33 

Volume of NaOH solution for 

working sample titration, ml 
8.15 4.5 5.6 

Volume of NaOH solution for 

working blank titration, ml 
1.2 1.2 1.2 

molar concentration of NaOH, mol/l 0.05 0.05 0.05 

Polymer mass, g 0.106 0.107 0.107 

Hydrolysis degree, % 
25% 11% 15% 
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Table C 3 Intrinsic viscosity of sample FP3630 

 

Polymer 

drainage 

time , 

sec. (t) 

Average 

polymer 

drainage 

time , sec. (t 

avr) 

Relative 

viscosity 

ηrel=tavr/ 

t0* 

Specific 

viscosity, 

ηsp = ηrel 

-1 

Mass 

concentration 

of polymer 

solution, g/dL 

Ci 

Reduced 

viscosity, 

dL/g ηsp/ 

Ci 

 

C1 

228.07 

228.1 1.950 0.950 
0.045 

 
21.105 228.05 

228.03 

C2 

206.6 

206.6 1.767 0.767 
0.037 

 
20.955 206.7 

206.6 

C3 

184.06 

184.4 1.576 0.576 
0.028 

 
20.498 184.53 

184.595 

C4 

163.62 

163.6 1.398 0.398 
0.020 

 
20.258 163.56 

163.5 

C5 

143.12 

143.1 1.223 0.223 0.011 19.835 143.01 

143.065 

 

*t0=116.965 

 

 
Figure C 1 Intrinsic viscosity of sample FP3630 
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Table C 4 Intrinsic viscosity of sample FP5115 

 

Polymer 

drainage 

time , 

sec. (t) 

Average 

polymer 

drainage 

time , sec. (t 

avr) 

Relative 

viscosity 

ηrel=tavr/ 

t0* 

Specific 

viscosity, 

ηsp = 

ηrel -1 

Mass 

concentration 

of polymer 

solution, g/dL 

Ci 

Reduced 

viscosity, 

dL/g ηsp/ 

Ci 

 

C1 

225.15 

225.2 1.930 0.930 
0.045 

 
20.66 225.25 

225.2 

C2 

202.48 

202.7 1.737 0.737 
0.037 

 
20.14 202.88 

202.68 

C3 

181.59 

181.8 1.558 0.558 
0.028 

 
19.8 181.98 

181.75 

C4 

159.14 

159.1 1.363 0.363 
0.020 

 
18.47 159.04 

159.1 

C5 

139.99 

139.9 1.199 0.199 0.011 17.65 139.86 

139.75 

 

*t0=116.965 

 

 

 
Figure C 2 Intrinsic viscosity of sample FP5115 
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Table C 5Intrinsic viscosity of sample FP5205 

 

Polymer 

drainage 

time , 

sec. (t) 

Average 

polymer 

drainage 

time , sec. 

(t avr) 

Relative 

viscosity 

ηrel=tavr/ 

t0* 

Specific 

viscosity, 

ηsp = 

ηrel -1 

Mass 

concentration 

of polymer 

solution, g/dL 

Ci 

Reduced 

viscosity, 

dL/g 

ηsp/ Ci 

 

C1 

227.15 

227.2 1.947 0.947 
0.045 

 
21.03 227.28 

227.1 

C2 

204.28 

204.4 1.752 0.752 
0.037 

 
20.54 204.41 

204.58 

C3 

182.59 

182.8 1.566 0.566 
0.028 

 
20.13 182.98 

182.75 

C4 

159.94 

160.0 1.371 0.371 
0.020 

 
18.85 159.99 

159.94 

C5 

141.09 

141.1 1.209 0.209 0.011 18.56 141.06 

141.05 

 

 

 
Figure C 3 Intrinsic viscosity of sample FP5205 
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Appendix D 

Appendix D presents the Matlab code for calculation IPV and adsorbtion, and raw 

data from experiment. 

 

Matlab code 

 
%read initial data 
A=dlmread('sample2_all.txt'); 
t=A(:,1); 
dp=A(:,2); 
res=A(:,3); 
 
%calculating viscosity, polymer concentration and norm.conc 
 
mu=(dp*6894.7573*3.14*((0.089/2)^4))/(8*414*(2/60))*1000; %viscosity 
C_pol=((mu-0.7735)/0.0041)/10^6; %polymer conc in g/cc 
C_pol_norm=C_pol/0.001513; 
 
%calculating conductivity, tracer concentration and norm.conc 
 
R=res*0.023854; %ohm/m 
cond =10./R;%mS/cm 
 
C_tr=(cond-72.062)/(0.7141*1000); %g/cc 
C_tr_norm=(C_tr-0.1)/(0.15-0.1); 
 
%calculating PV 
 
PV=t*(2/60)/9.71; %#ofPV 
 
%IPV 
t1=A(152:212,1); 
pv=t1*(2/60)/9.71; %#ofPV 
 
dp1=A(152:212,2); 
mu1=(dp1*6894.7573*3.14*((0.089/2)^4))/(8*414*(2/60))*1000; %viscosity 
c_pol=((mu1-0.7735)/0.0041)/10^6; %polymer conc in g/cc 
c_pol_norm=c_pol/0.001513; 
 
res1=A(152:212,3); 
R1=res1*0.023854; %ohm/m 
cond1 =10./R1; 
c_tr=(cond1-72.062)/(0.7141*1000); 
c_tr_norm=(c_tr-0.1)/(0.15-0.1); 
 
integral_polymer1 = trapz(pv,c_pol_norm); 
integral_tracer1 = trapz(pv,c_tr_norm); 
ipv=integral_tracer1-integral_polymer1; 
IPV=ipv/9.71; 
disp(['IPV = ',num2str(IPV) ]); 
 
 
% Absorption calculation 
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t2=A(1:59,1); % PV for absorption calculation 
pv1=t2*(2/60)/9.71; %#ofPV 
dp2=A(1:59,2); % polymer curve for absorption calculation 
mu2=(dp2*6894.7573*3.14*((0.089/2)^4))/(8*414*(2/60))*1000; %viscosity 
c_pol1=((mu2-0.7735)/0.0041)/10^6; %polymer conc in g/cc 
c_pol_norm1=c_pol1/0.001513; 
res2=A(1:59,3); %tracer curve for absorption calculation 
R2=res2*0.023854; %ohm/m 
cond2 =10./R2; 
c_tr1=(cond2-72.062)/(0.7141*1000); 
c_tr_norm1=(c_tr1-0.1)/(0.15-0.1); 
 
 
integral_polymer = trapz(pv1,c_pol_norm1); % area under polymer curve 
integral_tracer = trapz(pv1,c_tr_norm1); % area under tracer curve 
 
A=integral_tracer-integral_polymer; % difference in areas 
 
Ads=(A+ipv)*9.71*.001513/106.88; 
pol_abs=Ads*106.88; 
disp(['Adsorption1 = ',num2str(Ads), ' g/g' ]); 
disp(['Polymer absorbed1 = ',num2str(pol_abs), ' g' ]); 
 
figure(1); 
figure('Units','centimeters','color','w') 
subplot(2,2,1); 
plot(PV,C_pol_norm,PV,C_tr_norm) 
ylim([0 1]) 
legend('Cp = polymer production curve','Ct = tracer production curve') 
title('concentration vs PV','FontSize',16) 
xlabel('Pore Volume','FontSize',14) 
ylabel('Normalized Concentration','FontSize',14) 
legend('Location','SouthOutside') 
subplot(2,2,2); 
figure('Units','centimeters','color','w') 
plot(pv,c_pol_norm,pv,c_tr_norm) 
ylim([0 1]) 
title('IPV','FontSize',16) 
xlabel('Pore Volume','FontSize',14) 
ylabel('Normalized Concentration','FontSize',14) 
subplot(2,2,3); 
figure('Units','centimeters','color','w') 
plot(pv1,c_pol_norm1,pv1,c_tr_norm1); 
ylim([0 1]) 
title('Adsorption','FontSize',16) 
xlabel('Pore Volume','FontSize',14) 
ylabel('Normalized Concentration','FontSize',14) 
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Raw data from experiment                                   

 

t 

Pressure 

gradient,psi 

resistance, 

ohm 

1 2 3 

0 -0.009 1.006 

60 -0.009 2.910 

120 -0.008 2.912 

180 -0.008 2.846 

240 0.252 2.849 

300 0.361 2.800 

360 0.515 2.802 

420 0.644 2.755 

480 0.805 2.757 

540 1.006 2.741 

600 1.006 2.781 

660 1.059 2.773 

720 1.115 2.766 

780 1.174 2.711 

840 1.236 2.654 

900 1.301 2.653 

960 1.369 2.643 

1020 1.139 2.636 

1080 1.522 2.572 

1140 1.697 2.571 

1200 1.974 2.571 

1260 2.215 2.569 

1320 2.778 2.513 

1380 3.015 2.515 

1440 3.325 2.516 

1500 3.800 2.516 

1560 3.772 2.453 

1620 4.293 2.452 

1680 4.346 2.451 

1740 4.590 2.448 

1800 5.224 2.447 

1860 5.872 2.446 

1920 5.692 2.411 

1980 6.017 2.412 

2040 6.154 2.410 

2100 6.378 2.409 

2160 5.852 2.401 

2220 6.621 2.400 

2280 6.161 2.399 

2340 6.632 2.398 

1 2 3 

2400 7.068 2.384 

2460 6.516 2.383 

2520 7.011 2.383 

2580 6.717 2.382 

2640 6.619 2.381 

2700 6.979 2.380 

2760 7.192 2.379 

2820 6.713 2.379 

2880 7.347 2.377 

2940 7.068 2.377 

3000 7.740 2.376 

3060 7.442 2.376 

3120 8.189 2.377 

3180 7.987 2.379 

3240 8.288 2.380 

3300 7.956 2.380 

3360 7.773 2.375 

3420 8.360 2.375 

3480 7.931 2.375 

3540 8.064 2.375 

3600 8.302 2.361 

3660 8.698 2.361 

3720 8.398 2.361 

3780 8.297 2.361 

3840 8.458 2.368 

3900 8.146 2.368 

3960 8.342 2.369 

4020 7.866 2.369 

4080 8.475 2.362 

4140 8.324 2.363 

4200 7.763 2.363 

4260 8.428 2.363 

4320 7.707 2.363 

4380 8.591 2.363 

4440 7.955 2.364 

4500 8.323 2.364 

4560 7.680 2.364 

4620 8.126 2.364 

4680 8.177 2.365 

4740 7.835 2.365 

4800 8.867 2.358 

4860 7.826 2.359 

4920 8.151 2.359 

4980 8.033 2.360 
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1 2 3 

5040 7.561 2.361 

5100 8.182 2.362 

5160 8.198 2.364 

5220 7.928 2.365 

5280 8.232 2.367 

5340 7.956 2.368 

5400 7.706 2.355 

5460 8.317 2.357 

5520 7.655 2.358 

5580 8.141 2.360 

5640 7.833 2.361 

5700 8.372 2.363 

5760 9.075 2.364 

5820 8.023 2.353 

5880 8.265 2.346 

5940 8.629 2.345 

6000 8.689 2.346 

6060 8.853 2.343 

6120 9.030 2.340 

6180 8.643 2.343 

6240 7.834 2.340 

6300 8.307 2.340 

6360 8.738 2.340 

6420 8.263 2.340 

6480 8.406 2.340 

6540 8.212 2.340 

6600 8.088 2.343 

6660 8.479 2.341 

6720 7.808 2.340 

6780 8.964 2.340 

6840 8.238 2.344 

6900 8.308 2.342 

6960 8.393 2.340 

7020 8.881 2.345 

7080 7.895 2.343 

7140 8.121 2.343 

7200 8.313 2.345 

7260 8.421 2.351 

7320 8.391 2.357 

7380 8.681 2.353 

7440 8.723 2.346 

7500 8.212 2.354 

7560 7.718 2.359 

7620 8.111 2.347 

1 2 3 

7680 8.329 2.357 

7740 7.546 2.352 

7800 7.911 2.347 

7860 8.106 2.350 

7920 8.242 2.346 

7980 7.803 2.351 

8040 8.373 2.347 

8100 8.282 2.340 

8160 8.003 2.353 

8220 8.307 2.346 

8280 8.463 2.346 

8340 8.485 2.353 

8400 8.337 2.357 

8460 8.261 2.353 

8520 7.985 2.353 

8580 8.140 2.353 

8640 8.594 2.353 

8700 8.715 2.360 

8760 8.401 2.365 

8820 8.666 2.367 

8880 8.086 2.365 

8940 8.692 2.369 

9000 8.618 2.371 

9060 8.586 2.374 

9120 7.969 2.373 

9180 8.370 2.378 

9240 8.065 2.379 

9300 8.258 2.382 

9360 8.095 2.385 

9420 8.304 2.387 

9480 8.217 2.393 

9540 7.609 2.394 

9600 7.663 2.415 

9660 8.027 2.416 

9720 7.819 2.415 

9780 7.241 2.414 

9840 7.220 2.414 

9900 7.164 2.412 

9960 6.886 2.429 

10020 7.170 2.472 

10080 7.324 2.486 

10140 6.603 2.478 

10200 6.912 2.481 

10260 6.922 2.500 
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1 2 3 

10320 6.000 2.497 

10380 5.734 2.493 

10440 6.308 2.491 

10500 5.361 2.489 

10560 5.746 2.504 

10620 5.103 2.523 

10680 5.160 2.515 

10740 5.142 2.515 

10800 5.316 2.514 

10860 4.870 2.536 

10920 4.892 2.533 

10980 3.450 2.536 

11040 3.515 2.539 

11100 2.742 2.541 

11160 3.339 2.544 

11220 2.479 2.604 

11280 2.191 2.606 

11340 1.481 2.608 

11400 1.435 2.612 

11460 1.177 2.619 

11520 1.376 2.626 

11580 1.419 2.627 

11640 1.420 2.689 

11700 0.846 2.692 

11760 0.848 2.694 

11820 0.816 2.714 

11880 1.760 2.749 

11940 2.102 2.751 

12000 0.872 2.778 

12060 1.196 2.804 

12120 1.100 2.805 

12180 1.865 2.806 

12240 1.676 2.805 

12300 1.133 2.809 

12360 1.466 2.826 

12420 0.224 2.858 

12480 0.534 2.883 

12540 0.086 2.892 

12600 0.288 2.895 

12660 0.357 2.900 

 

 


