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Abstract—This paper makes the following contributions to
Switched Capacitor Converter (SCC) equivalent (output) re-
sistance analysis. First, it suggests the relationship between
equivalent resistances of complementary buck and boost SCC:
equivalent resistance of a boost SCC equals that of its buck
counterpart times squared boost voltage Target Ratio (Voltage
Conversion Ratio). Another contribution is equivalent resistance
accurate calculation methodology for an arbitrary 2-phase SCC.
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I. INTRODUCTION

SWITCHED Capacitor Converter (SCC) is known to have
the equivalent circuit for an average output voltage shown

in Fig.1,a. The target output voltage is as a product of a DC
source voltage and SCC voltage Target Ratio (TR).

An equivalent resistance gives an indication on average
converter loss that is an ohmic loss in semiconductor switch
(MOSFET) resistances assuming that capacitor losses are
negligible ([1], [2]). Capacitor ESR may be easily included
if required.

An elegant way to figure out equivalent resistance (at least,
in simulation) is to zero DC source and connect 1 A current
source as a load (Fig.1,b). Then a measured average output
voltage in Volts represents equivalent resistance in ohms.

For Slow Switching Limit (SSL; hyperbolic dashed line
in Fig.2), RC-circuit time constants are much smaller than
switching intervals and equivalent resistance is a function of
converter switched capacitances and switching frequency only.

For Fast Switching Limit (FSL; horizontal dashed line), RC-
circuit time constants are much larger than switching interval
durations and equivalent resistance is a function of converter
parasitic resistances only.

Suppose there is a buck SCC with TR < 1 (Fig.3,a). A
complementary boost SCC is obtained by swapping the DC
source and the load (Fig.3,b). It is well-known that voltage
target ratio of a complementary boost SCC is the inverse of
its buck counterpart.

This paper suggests that there is a relationship between
complementary buck and boost SCC equivalent resistances:
equivalent resistance of a boost SCC equals that of its buck
counterpart times squared boost voltage TR.

(a) (b)
Fig. 1: a) SCC equivalent circuit; b) equivalent resistance
measurement in simulation.

Fig. 2: Equivalent resistance dependence on switching
frequency.

Another contribution of the paper is a novel equivalent
resistance accurate calculation methodology for an arbitrary 2-
phase SCC. This methodology is demonstrated for a Fibonacci
SCC with 2, 3, and 4 switched capacitors.

II. THE RELATIONSHIP BETWEEN EQUIVALENT
RESISTANCES OF COMPLEMENTARY BUCK AND BOOST

SWITCHED CAPACITOR CONVERTERS

Here is a proposition about the relationship between equiv-
alent resistances of the two SCC: boost SCC equivalent
resistance is that of its buck complement times squared TR of
the boost SCC (or divided by squared TR of the buck SCC).

This claim neglects the effects of filter capacitor that is valid
for relatively high switching frequencies.

A hint may be obtained from a SCC ”DC transformer”
equivalent circuit (Fig.4) by moving the equivalent resistance
across the transformer. However, the authors are unaware of
SCC publications explicitly claiming this fact.

For example, the paper by K. Eguchi e.a. [3] presents FSL
equivalent resistances for suggested buck SCC with TR=1/8;
1/13; 1/15; 1/16 and their boost complements (Table II in the
paper). By inspection, the proposition of this letter holds but
this fact is not stated and discussed though Fig.4 of [3] presents
an SCC ”DC transformer” equivalent circuit.

A proof must involve calculation of SCC internal losses.
The approach of [4], [5] suggests first finding charges flowing
through each switched capacitor on switching intervals. For
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(a) (b)
Fig. 3: Buck SCC (a) and its complementary boost
counterpart (b).

(a) (b)
Fig. 4: DC transformer SCC equivalent circuit: a) buck; b)
boost.

that, a set of linear equations must be generated based on: 1)
steady-state conditions - a net charge of a switched capacitor
must be zero on a switching period; 2) Kirchhoff current law
for series-parallel switched capacitor connections.

The last equation to be added is that of a total charge
(current) into the load on a switching period. While the first -
charge balance - equations set the proportions between the
charges of switched capacitors, the last one defines their
absolute values (scale) based on the net charge (current)
supplied to the load.

Let’s assume ideal DC source (decoupling capacitance) and
pure DC output voltage that is a common assumption for
analysis of DC-DC converters; reasonably small output voltage
ripple can be analyzed later on. Then for each switching phase
SCC may be accurately represented by a (high order) RC-
circuit. Once all the charges through switched capacitors are
determined by solving linear algebraic equations, they can be
spread over switching intervals using exponential solutions of
respective RC-circuit differential equations.

Overall loss due to exponential currents in the circuit
resistances is calculated by taking squared current integrals
and equivalent resistance is found by dividing overall loss by
squared output current (that is effectively cancelled).

The logic of the suggested proof is as follows:
- switched capacitor charge balance equations for two

complementary SCC are identical for the same phases;
- the difference is in the last equations that set the charges

absolute values based on the net charge to the load;
- for the same load current, individual charges of boost

SCC are those of buck SCC times boost converter TR (can
be verified by inspection);

- as the equivalent RC-circuits are the same for both SCC,
buck capacitor currents are scaled with the boost SCC TR; it
means that overall loss is scaled with squared boost TR for
the same load DC current that proves the main proposition.

This basic idea is illustrated below by examples using an
elementary 2 capacitor Fibonacci SCC (Fig.5).

III. FIBONACCI SCC WITH MULTIPHASE SWITCHING

Consider Fibonacci buck SCC multiphase switching ([6]) to
produce TR=1/3. Available switching topologies (phases) are

Fig. 5: Fibonacci buck SCC with 2 capacitors.

(a) (b) (c)
Fig. 6: Multiphase Fibonacci buck SCC topologies.

shown in Fig.6.
Capacitor charge balance equations for the three phase

charges to the load
q1 − q2 = 0; q2 − q3 = 0; q1 + q2 + q3 = Q. (1)

The first two equations are about charge balance of indi-
vidual switched capacitors while the last one - about the net
charge to the load during the switching period T , Q/T = I -
load DC current. The solution of (1) is given by

q1 = Q/3; q2 = Q/3; q3 = Q/3. (2)

that means balanced multiphase switching ([6], [7]).
Three equal charges (2) are spread over switching intervals

with their respective time constants ([4], [5]) according to
equivalent first order RC-circuits (Fig. 6; output voltage is
assumed pure DC; switched capacitances C1 = C2 = C)

T1 = 2rC; T2 = (3/2)rC; T3 = 3rC. (3)

By the methodology [5], [6], the equivalent resistance
expression becomes

REQ =
1

18fC

[
coth

(
β

4

)
+ 2coth

(
β

3

)
+ coth

(
β

6

)]
, (4)

where β = 1/(3rCf), f - switching frequency.
For the complementary boost SCC, capacitor charge balance

equations differ from (1) in the last one because the load is
connected only during the third stage (Fig.6) -

q1 − q2 = 0; q2 − q3 = 0; q3 = Q. (5)

The solution of (5) is (2) multiplied by the boost TR=3 -

q1 = Q; q2 = Q; q3 = Q. (6)

This way, complementary boost SCC equivalent resis-
tance is (4) multiplied by 9. Equivalent resistance measure-
ment results according to Fig.1,b are presented in Fig.7 for
C = 10 µF ; Co = 100 µF ; r = 1 Ω; f = 10 kHz. The
measured equivalent resistances amount to 3.28 (practically
the same as calculated by (4)) and 29.6 Ω respectively with
the ratio being very close to predicted theoretical value of 9.

The next Section presents accurate equivalent resistance
calculation methodology for a 2-phase SCC demonstrated for
a Fibonacci SCC with 2, 3, and 4 switched capacitors.
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(a) (b)
Fig. 7: Multiphase SCC equivalent resistance measurements:
a) buck; b) boost.

(a) (b)
Fig. 8: 2-phase Fibonacci SCC topologies: a) phase 1; b)
phase 2.

IV. FIBONACCI SCC WITH 2-PHASE SWITCHING

A. 2-Phase Fibonacci SCC with 2 Switched Capacitors

Classic 2-phase Fibonacci buck SCC generates TR=1/3 with
phase topologies shown in Fig.8.

Capacitor charge balance equations are written as (Fig.8)

q11 − q12 = 0; q21 − q22 = 0; q12 − q22 = 0;

q11 + q21 + q12 = Q, (7)

with the solution being

q11 = q12 = q21 = q22 = Q/3. (8)

During phase 1 (Fig.8,a) the charge delivered to the load is
2Q/3, during phase 2 (Fig.8,b) - Q/3.

For the complementary boost SCC, the last charge balance
equation in (7) is transformed into q21 = Q and the solution -

q11 = q12 = q21 = q22 = Q. (9)

Assuming pure DC output voltage, phase 1 (Fig.8,a) equiva-
lent 2nd order circuit for natural response calculation becomes
as in Fig.9 with two time constants for equal capacitances
being

T1 = 1.382rC; T2 = 3.618rC. (10)

Let’s seek phase 1 capacitor currents as

i11(t) = a11exp(−t/T1) + a12exp(−t/T2);

i21(t) = a21exp(−t/T1) + a22exp(−t/T2). (11)

To find four unknown coefficients in (11), one needs a set
of four linear equations. The first one is based on the capacitor
charges equality q11 = q12 (8) -
T/2∫
0

i11(t)dt =

T/2∫
0

i21(t)dt, (12)

T - switching period.
Two more equations come from the partial Kirchhoff voltage

law for the left mesh in Fig.8,a for two exponential terms (DC
terms balance is provided by capacitor initial voltages) -

Fig. 9: Phase 1 equivalent circuit.

i11r +
1

C1

t∫
0

i11(t)dt = i21(2r) +
1

C2

t∫
0

i21(t)dt. (13)

Partial Kirchhoff voltage law for the right mesh in Fig.8,a
will be fulfilled automatically.

The last - scaling - equation comes from (8) -
T/2∫
0

i11(t)dt = Q/3. (14)

Once the coefficients of (11) proportional to Q are found,
power loss in all resistances for 2 phases can be calculated by
taking squared current integrals. Phase 2 losses are addressed
similar to multiphase (series capacitances connection).

Finally, the equivalent resistance expression is found as

REQ =
1

170fC
coth

(
1

5.53rCf

)
+

1

9.50fC
coth

(
1

14.5rCf

)
+

+
1

9fC
coth

(
1

6rCf

)
. (15)

The first two terms in (15) are due to squared exponential
terms of phase 1 currents (11). The first term is due to the
smaller time constant in (9) and its contribution is less.

One can expect another term due to the cross-product when
squaring currents (11). However, these terms cancel when
calculating overall phase 1 power loss.

The measured equivalent resistances (Fig.10) amount to
3.00 (3.01 calculated by (15)) and 26.9 Ω with the ratio being
very close to 9 as predicted by the theory.

Phase 1 simulated capacitor currents (Fig.11) are accurately
reproduced by two exponent model (11), the same for phase
2 - by a single exponential term.

B. 2-Phase Fibonacci SCC with 3 Switched Capacitors

A 2-phase 3 switched capacitor Fibonacci SCC (Fig.12)
generates TR=1/5. Phase topologies are shown in Fig.13.

Charge flow equations become

q11 − q12 = 0; q21 − q22 = 0; q31 − q32 = 0;

q31 + q21 − q11 = 0; q32 − q22 = 0;

q11 + q12 + q22 = Q, (16)

(a) (b)
Fig. 10: 2-phase SCC with 2 capacitors equivalent resistance
measurements: a) buck; b) boost.
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Fig. 11: 2-phase SCC capacitor currents.

Fig. 12: Fibonacci SCC with 3 switched capacitors.

with the solution being

q11 = q12 = 2Q/5;

q21 = q22 = q31 = q32 = Q/5. (17)

During Phase 1 the charge delivered to the load is 2Q/5,
during Phase 2 - 3Q/5.

Assuming pure DC output voltage, Phase 1 and 2 equivalent
RC-circuits become as shown in Fig.14.

Though Phase 1 circuit (Fig.14,a) is the 3rd order one, there
are only 2 time constants because 3 capacitors are connected
to the same node.

Assuming equal switched capacitances, Phase 1 and 2 time
constants are found as

T11 = 1.33rC; T12 = 2.0rC;

T21 = 1.293rC; T22 = 2.707rC. (18)

Phase 1 and 2 capacitor currents are sought in the form

i21(t) = a211exp(−t/T11) + a212exp(−t/T12);

i31(t) = a311exp(−t/T11) + a312exp(−t/T12);

i11(t) = i21(t) + i31(t), (19)

and

i12(t) = a121exp(−t/T21) + a122exp(−t/T22);

i22(t) = a221exp(−t/T21) + a222exp(−t/T22);

i32(t) = i22(t). (20)

To find unknown coefficients in (19), (20), sets of linear
equations are generated based on:

- capacitor charges equalities (17) - calculating time inte-
grals of (19), (20) on half a period and equating the same
exponential term coefficients;

- partial Kirchhoff voltage laws for the left meshes (Fig.13,
a and b) for 2 exponential terms (partial Kirchhoff voltage law
for unused right meshes will be fulfilled automatically that can
be checked by direct inspection);

- scaling equation from (17) setting capacitor current time
integral on half a period equal to 2Q/5 or Q/5.

Once the coefficients of (19), (20) are found from the
linear set of equations, power loss in all resistances for 2
phases has to be calculated by taking squared current integrals

(a) (b)

Fig. 13: 2-phase Fibonacci SCC topologies: a - phase 1; b -
phase 2.

(a) (b)
Fig. 14: Phase 1 (a) and 2 (b) equivalent circuits for time
constants calculation.

to proceed to equivalent resistance. Finally, the equivalent
resistance expression is determined as

REQ =
1

33.3fC
coth

(
1

5.53rCf

)
+

1

11.1fC
coth

(
1

8rCf

)
+

+
1

8.58fC
coth

(
1

10.8rCf

)
+

1

291fC
coth

(
1

5.17rCf

)
.

(21)

The first two terms of (21) represent the contribution of 2
squared exponential terms of Phase 1 currents, the last two -
that of Phase 2.

Exponential cross-product terms due to squaring currents
(19), (20) cancel when calculating overall power losses.

Measured average output voltage that represents equivalent
resistance in ohms for parameters C = 10 µF ; Co = 100 µF ;
r = 1 Ω; f = 10 kHz is presented in Fig.15.

The measured equivalent resistance amounts to 3.00 Ω (3.01
calculated by formula (21)).

Simulated SCC output voltage, current to the filtered load,
and switched capacitor currents are shown in Fig.16 for source
voltage of 5 V and active load equal to equivalent resistance.

Switched capacitor currents (Fig.16,b) are perfectly recon-
structed using 2nd order RC-circuit models (19),(20).

C. 2-Phase Fibonacci SCC with 4 Switched Capacitors

A 2-phase 4 switched capacitor Fibonacci SCC (Fig.17)
generates TR=1/8. Phase topologies are shown in Fig.18.

Capacitor charge balance equations become

q11 − q12 = 0; q21 − q22 = 0; q31 − q32 = 0;

q41 − q42 = 0; q41 + q31 − q21 = 0;

q42 − q32 = 0; q32 + q22 − q12 = 0;

q11 + q21 + q12 = Q, (22)

with the solution being

q11 = q12 = 3Q/8;

q21 = q22 = 2Q/8;

q31 = q32 = q41 = q42 = Q/8. (23)

During Phase 1 the charge delivered to the load is 5Q/8,
during Phase 2 - 3Q/8.
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Fig. 15: Equivalent resistance measurement for 2-phase
Fibonacci SCC with 3 capacitors.

(a) (b)
Fig. 16: 2-phase 3 capacitor SCC simulation results: a)
output voltage and current to the filtered load; b) switched
capacitor currents.

Assuming pure DC output voltage, Phase 1 and 2 equivalent
RC-circuits become as shown in Fig.18.

Though Phase 1 circuit (Fig.18,a) is the 4th order one, there
are only 3 time constants because 3 capacitors are connected
to the same node. For Phase 2 circuit (Fig.18,b), there are 2
time constants for the same reason.

Assuming equal switched capacitances, Phase 1 and 2 time
constants are found as

T11 = 1.258rC; T12 = 1.605rC; T13 = 3.137rC;

T21 = 1.724rC; T22 = 1.276rC. (24)

Phase 1 and 2 capacitor currents are sought in the form

i11(t) = a111exp(−t/T11) + a112exp(−t/T12)+

+ a113exp(−t/T13);

i31(t) = a311exp(−t/T11) + a312exp(−t/T12)+

+ a313exp(−t/T13);

i41(t) = a411exp(−t/T11) + a412exp(−t/T12)+

+ a413exp(−t/T13);

i21(t) = i31(t) + i41(t), (25)

and

i22(t) = a221exp(−t/T21) + a222exp(−t/T22);

i32(t) = a321exp(−t/T21) + a322exp(−t/T22);

i32(t) = i42(t);

i12(t) = i22(t) + i32(t). (26)

To find unknown coefficients in (25), (26), sets of linear
equations are generated based on:

- capacitor charges equalities (23) - calculating time inte-
grals of (25), (26) on half a period and equating the same

Fig. 17: Fibonacci SCC with 4 switched capacitors.

(a) (b)
Fig. 18: 2-phase Fibonacci SCC topologies: a - phase 1; b -
phase 2.
exponential term coefficients;

- partial Kirchhoff voltage laws for 2 left meshes (Fig.18, a)
and the left mesh (Fig.18, b) for 3 exponential terms of Phase
1 and 2 terms of Phase 2;

- scaling equation from (23) setting capacitor current time
integral on half a period equal to 3Q/8 or 2Q/8 or Q/8.

Once the coefficients of (25), (26) are found from the
linear set of equations, power loss in all resistances for 2
phases has to be calculated by taking squared current integrals
to proceed to equivalent resistance. Finally, the equivalent
resistance expression is determined as

REQ =
1

642fC
coth

(
1

5.03rCf

)
+

1

116.5fC
coth

(
1

6.42rCf

)
+

+
1

9.34fC
coth

(
1

12.5rCf

)
+

1

67.0fC
coth

(
1

5.11rCf

)
+

+
1

9.78fC
coth

(
1

6.89rCf

)
. (27)

The first three terms of (27) represent the contribution of 3
squared exponential terms of Phase 1 currents, the last two -
2 squared terms of Phase 2.

Exponential cross-product terms due to squaring currents
(25), (26) cancel when calculating overall power losses.

Measured average output voltage that represents equivalent
resistance in ohms for parameters C = 10 µF ; Co = 100 µF ;
r = 1 Ω; f = 20 kHz is presented in Fig.20.

The measured equivalent resistance amounts to 2.41 Ω (2.42
calculated by formula (27)).

Simulated SCC output voltage, current to the filtered load,
and switched capacitor currents are shown in Fig.21 for source
voltage of 8 V and active load equal to equivalent resistance.

Switched capacitor currents (Fig.21,b) are perfectly recon-
structed using 3rd and 2nd order RC-circuit models (25),(26).

V. COMPARISON OF ACCURATE AND APPROXIMATE
EQUIVALENT RESISTANCES

The majority of researchers is convinced that accurate SCC
equivalent resistance calculation (even under infinite filter

(a) (b)
Fig. 19: Phase 1 (a) and 2 (b) equivalent circuits for time
constants calculation.192
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Fig. 20: Equivalent resistance measurement for 2-phase
Fibonacci SCC with 4 capacitors.

(a) (b)
Fig. 21: 2-phase 4 capacitor SCC simulation results: a)
output voltage and current to the filtered load; b) switched
capacitor currents.

capacitance assumption) is a difficult task [8]. Most popular
Seeman-Maksimovic approximate formula is [8]

REQ =
[
(RSSL)

2
+ (RFSL)

2
]1/2

. (28)

where RSSL - SSL equivalent resistance approximation; RFSL

- FSL one.
Recently, M. Makowski suggested another formula [9] -

REQ = [(RSSL)
p

+ (RFSL)
p
]
1/p

; p = 2.545. (29)

The results of accurate equivalent resistance calculation
from the previous sections (15), (21), (27) are compared with
their approximations (28), (29) in Fig.22-24.

VI. CONCLUSION

This paper suggests that equivalent resistance of a boost
SCC equals that of its buck complementary counterpart times
squared boost voltage Target Ratio. The proposition is solidi-
fied by theoretical calculations and simulation examples for a
2 capacitor Fibonacci SCC with multiphase switching and 2,
3 and 4 capacitor Fibonacci SCC with 2-phase switching.

Fig. 22: Comparison of accurate and approximate equivalent
resistances for 2 capacitor Fibonacci SCC

Fig. 23: Comparison of accurate and approximate equivalent
resistances for 3 capacitor Fibonacci SCC

Fig. 24: Comparison of accurate and approximate equivalent
resistances for 4 capacitor Fibonacci SCC

The proposed accurate equivalent resistance calculation
methodology for a 2-phase SCC is demonstrated for Fibonacci
SCC with 2, 3, and 4 switched capacitors. Accurate equiv-
alent resistance is compared with Seeman-Maksimovic and
Makowski approximations in a broad frequency range.
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