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Abstract.

An interesting problem in solid state physics is to compute discrete breather

solutions in N coupled 1–dimensional Hamiltonian particle chains and investigate

the richness of their interactions. One way to do this is to compute the homoclinic

intersections of invariant manifolds of a saddle point located at the origin of a class

of 2N–dimensional invertible maps. In this paper we apply the parametrization

method to express these manifolds analytically as series expansions and compute

their intersections numerically to high precision. We first carry out this procedure

for a 2–dimensional (2–D) family of generalized Hénon maps (N = 1), prove the

existence of a hyperbolic set in the non-dissipative case and show that it is directly

connected to the existence of a homoclinic orbit at the origin. Introducing dissipation

we demonstrate that a homoclinic tangency occurs beyond which the homoclinic

intersection disappears. Proceeding to N = 2, we use the same approach to accurately

determine the homoclinic intersections of the invariant manifolds of a saddle point at

the origin of a 4–D map consisting of two coupled 2–D cubic Hénon maps. For small

values of the coupling we determine the homoclinic intersection, which ceases to exist

once a certain amount of dissipation is present. We discuss an application of our results

to the study of discrete breathers in two linearly coupled 1–dimensional particle chains

with nearest–neighbor interactions and a Klein–Gordon on site potential.

Keywords: invariant manifolds, polynomial Hénon maps, parametrization method,

discrete breathers
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1. Introduction

An important topic in the study of the dynamics of 1–dimensional lattices (or chains)

of nonlinearly interacting particles is their ability to support under rather general

conditions a very interesting type of localized oscillations called discrete breathers (see

[31, Chpt. 7], [26]). These solutions simply execute periodic motion and involve one or

more central particles that carry most of the energy, while all others in their immediate

vicinity have amplitudes that vanish exponentially as the index of the particle n goes to

+∞ or−∞. Take for example the so–called Klein-Gordon system of ordinary differential

equations written in the form

ün = −V ′ (un) + α (un+1 − 2un + un−1) , V (x) =
1

2
Kx2 +

1

4
x4, (1)

where un for −∞ < n < ∞ is the amplitude of the n-th particle, α > 0 is a parameter

indicating the strength of coupling between nearest neighbors, and V (x) is the on-site

potential with primes denoting differentiation with respect to the argument of V (x).

To construct such a discrete breather solution one may insert a Fourier series

un(t) =
∞
∑

k=−∞

An(k) exp(ikωbt) (2)

in the equations of motion (1), where ωb is the frequency of the breather. Setting the

terms proportional to the same exponential equal to zero one obtains the system of

equations

−k2ω2
bAn(k) = α (An+1(k)− 2An(k) + An−1(k))−KAn(k)−

∑

k1,k2,k3

An(k1)An(k2)An(k3),

(3)

where k1 + k2 + k3 = k, ∀k, n ∈ Z. This equation defines an infinite-dimensional

mapping in the space of Fourier coefficients An(k). Time-periodicity is ensured by the

Fourier basis functions exp (ikωbt), while spatial localization requires that An(k) → 0

exponentially as |n| → ∞.

If we want to construct a breather solution one can start from its lowest order

approximation by substituting un(t) = 2An(1) cos(ωbt) in (3) and obtain a 2–dimensional

map for the largest coefficient An(1) = An(−1) = An as follows

− ω2
bAn = α(An+1 − 2An + An−1)−KAn − 3A3

n, (4)

which may be written in the form

An+1 = −An−1 +
1

α

(

2 +K − ω2
b

)

An +
3

α
A3

n . (5)

If we now define xn = An and yn = An−1 the mapping (5) takes the 2–dimensional

(2–D) form

xn+1 = −yn + Cxn +
3

α
x3
n, (6a)

yn+1 = xn (6b)
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where C = (2 + K − ω2
b )/α. This mapping is area-preserving (and also symplectic)

since the determinant of its Jacobian is unity for all xn and yn. The above approach

has proved quite useful in the past and has led to a wide variety of interesting results

concerning the computation and dynamics of breathers and multibreathers in a large

family of 1–dimensional Hamiltonian lattices [14, 15, 16]. To our knowledge, such a

study has not yet been carried out for coupled Hamiltonian chains of this type.

Breather solutions of the original chain (1) by definition must have large values of

|An| for small n = 0,±1,±2, ..., while An → 0 as n → ±∞. This implies that these

amplitudes can be identified as homoclinic orbits lying at the intersections of stable

and unstable manifolds of the origin, which if hyperbolic is necessarily a saddle point of

the map (6). For any homoclinic intersection point, its orbit under forward (backward)

iteration along the stable (unstable) manifold asymptotically converges to the origin.

Thus the requirement that An → 0 as n → ±∞ is fulfilled at the outset. To locate such

homoclinic orbits accurately, one must be able to write down precise expressions for the

curves representing these manifolds and compute their points of intersection.

The purpose of this paper is twofold: First, we develop and apply the

parametrization method to compute intersections of invariant stable and unstable

manifolds of a certain class of 2–D and 4–D invertible maps. These are the types

of maps used to obtain the largest coefficients An and Bn in the Fourier expansion of

the n–th particle of two coupled chains. So far, such 2–D maps have been successfully

used to obtain such An approximation for 1–D Hamiltonian particle chains with Klein-

Gordon on-site potential (see [14, 15, 16, 17]). Second, we locate the coordinates of

the homoclinic points of such mappings, along with the critical value of the dissipation

parameter for which homoclinic intersections no longer exist. The accuracy of our

computations of homoclinic points of 4–D maps is very encouraging, as an application

of these techniques to coupled 1D particle chains is now possible.

The success of this approach in studying the existence of breathers relies on

the fact that breather computation is achieved by using rapidly convergent Newton

schemes to compute the breathers as simple periodic orbits of a Hamiltonian system

of differential equations. As is well–known, this crucially relies on having an accurate

first approximation. This is why the knowledge of the first Fourier coefficients from

the homoclinic orbits of the corresponding maps is so useful. Indeed, higher Fourier

coefficients are not needed, since they are obtained through the convergence of the

Newton method to the exact breather solution.

The paper is structured as follows: First, in section 2, we introduce the 2–D

mapping of interest here and prove its hyperbolic behavior for the symplectic case.

In section 3 we explain the idea of the parametrization method and how we use it to

obtain power series for the manifold equations. In section 4 we solve these equations

numerically and obtain the homoclinic intersections for a cubic map of the form (6).

Finally, in section 5, we apply our approach to a 4–D map with cubic nonlinearities and

compute manifold intersections for various parameter values, commenting also on the

accuracy limitations encountered by our numerical algorithms in this process. We close
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with our concluding remarks in section 6.

2. Hyperbolicity in a Family of 2–Dimensional Hénon Maps

2.1. Generalized Hénon maps

Nearly 45 years ago the French astronomer Michel Hénon introduced a 2–D mapping of

the plane onto itself with the simple form [2]

h : R2 → R
2, h(x, y) = (1 + y − ax2, bx), (7)

which exhibits very interesting phenomena related to chaos, bifurcations and strange

attractors for different values of its parameters a > 0 and |b| ≤ 1. In fact, the occurrence

of some of the most important properties of (7) have been related to the transition from

simple dynamics to hyperbolicity (see e.g. [4, 5, 12]). This implies that there are dense

sets of chaotic orbits lying at the intersections of invariant manifolds of unstable (saddle)

fixed points and periodic orbits [8].

Nowadays, however, it is more common to consider instead of (7) its conjugate

expression

hs : R
2 → R

2, h(x, y) = (y,−bx+ a− y2), (8)

which is more convenient to generalize both in form as well as number of dimensions, as

described for example in [11] and [24]. Thus, let us consider the family of generalized

Hénon maps of the plane onto itself defined by

H : R2 → R
2, H(x, y) = (y,−δx+ p(y)), (9)

where p(y) is a univariate polynomial. This class is of particular importance as any

polynomial mapping of the plane having a polynomial inverse (i.e. any member of the

2–D affine Cremona group) is either a composition of mappings of the form (9), or

possesses trivial dynamics [6].

The main properties of the generalized Hénon family (9) are the following: First,

the inverse of H(x, y) is explicitly given as H−1(x, y) = (−1
δ
y + 1

δ
p(x), x). Moreover, if

the polynomial p(y) is odd, the mapping H(x, y) is symmetric under the transformation

σ(x, y) = (−x,−y), which implies H ◦σ = σ◦H(x, y). For δ = 1 the mapping H(x, y) is

a symplectomorphism (or symplectic map), as it preserves the natural symplectic form

of the plane, dx∧dy. In addition, H is also differentially conjugate to its inverse, since,

if we define ρ(x, y) = (y, x), it follows that H ◦ ρ = ρ ◦H−1 holds. As a consequence, in

the symplectic case, invariant sets of H(x, y) are related to invariant sets of H−1 by the

transformation ρ.

Generalized Hénon maps have attracted a lot of attention in the literature. For

example, in [13] the dynamics of H(x, y) is studied, where p(y) is a polynomial of third

degree, while in [22] bifurcations of homoclinic tangencies are considered, involving

intersections of invariant manifolds, for a mapping that has many similarities with (9)
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above. Furthermore, we note that in [27] sufficient conditions are given for hyperbolicity

in generalized Hénon maps for arbitrary polynomials p(y).

In the present work we study a class of maps (9) that corresponds to the choice

of a cubic polynomial p(y) and generalize our results to the case of 4–D maps, as dis-

cussed in section 1 in connection with applications to discrete breathers in systems of

1–dimensional Hamiltonian particle chains [31, 14, 15, 16].

2.2. The 2–dimensional cubic map

Let us focus now on the dynamics of the recurrence relation:

An+1 = cAn − δAn−1 + 3A3
n. (10)

which follows from (5) by a simple rescaling of the Fourier coefficients, while a

parameter 0 ≤ δ ≤ 1 has been introduced to account for dissipation effects. Setting

An−1 = x, An = y, we define the following cubic map of the plane x, y onto itself

f : R2 → R
2, (x, y) 7→ (y,−δx+ cy + 3y3), (11)

which corresponds to the generalized Hénon map (9) for p(y) = cy + 3y3. Its inverse is

given by

f−1(x, y) =

(

c

δ
x− 1

δ
y +

3

δ
x3, x

)

. (12)

For δ = 1 the mapping f is a symplectomorphism and is invariant under the symmetry

σ(x, y) = (−x,−y), i.e. the relation f ◦ σ = σ ◦ f holds.

2.3. Existence of a hyperbolic set in the symplectic case δ = 1

The generalized Hénon map is known to have rich dynamics. In fact, in [27] the existence

of hyperbolic sets for such maps has been proven for a wide range of parameter values.

2.1 Definition. Let g : M → M be a diffeomorphism and Λ a compact subset of M ,

invariant under this diffeomorphism. Λ is said to be a hyperbolic set for g if ∀x ∈ Λ the

following is true:

(i) TxM = Es
x ⊕ Eu

x ,

(ii) dxg(E
s,u
x ) = Es,u

g(x),

(iii) ‖dxg|Es
x

‖ < λ, ‖dxg−1|Eu
x

‖ < µ−1, for 0 < λ < 1 < µ.

These conditions imply that the tangent space of M at every point of Λ is the direct

sum of two subspaces Es
x and Eu

x which are invariant under the action of the differential

of g. Moreover on these subspaces the differential acts as a contraction and dilation,

respectively.

In what follows we will be interested in the diffeomorphism f defined by

equation (11) for the particular choice of c = −5
2
which yields a saddle point at the
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origin and will be kept fixed in the remainder of this paper. This choice is pictorially

convenient, since c values in that range produce large scale manifolds that are clearly

visible in the figures. Let us now demonstrate the existence of a hyperbolic set for this

system:

2.2 Proposition. Let f be the diffeomorphism (11), with c = −5
2
and δ = 1. Then,

there exists a hyperbolic set Λ on which f is topologically conjugate to the two–sided

shift on three symbols. Moreover, Λ consists of all those points whose orbits are bounded

under successive iterations of (11).

Proof. The proof utilizes theorem 3.3 of [27]. However, since it is not directly applicable

to f , we first perform a coordinate change by defining h1, h2 : R2 → R
2 as h1(x, y) =

( 1
a
x, y) and h2(x, y) = (x, 1

a
y). Then, f is left–right equivalent to f̂ : R2 → R

2, defined

by f̂(x, y) = (y,−δx+ 3a3y3 − 5
2
ay), that is, h1 ◦ f = f̂ ◦ h2. Note that this is nothing

more than a coordinate transformation of both the domain of definition and the image

of f , so, qualitatively, the behavior of f remains unchanged.

Let us now set a = 5 in this example. Following the notation used in [27], we notice

that f̂ is of the form f̂(x, y) = (y,−δx+ p(y)), where p(y) = 375(y3− y/30) = 375g(y),

with g(y) = y3 − y/30. Determining the roots of g(y) as α1 = −1/
√
30, α2 = 0, α3 =

1/
√
30, we consider the intervals V1 = (−1.03,−0.149), V2 = (−0.05, 0.05), V3 =

(0.149, 1.03). Having thus chosen the neighborhoods of the map that are of interest,

it is easy to verify that all conditions required for the application of Theorem 3.3 in [27]

are satisfied, therefore the proposition holds.

Figure 1 shows the first few steps of the construction of the hyperbolic set for the

above map f̂ .

-0

0

0

−0.5 0.0 0.5

(a)

x

y

−0.5 0.0 0.5

(b)

x −0.5 0.0 0.5

(c)

x

Figure 1. (a) The square Q = [−1/2, 1/2]× [−1/2, 1/2]. (b) The area within the three

vertical strips represents all points in the set Q ∩ f̂(Q) generated after one forward

iteration of all points of Q. (c) The points of Q that are still inside Q after one forward

and one backward iteration of the map lie in the intersection of the vertical strips of

(b) and the horizontal strips shown here. This set, f̂−1(Q) ∩Q∩ f̂(Q), represents the

first step in the construction of the hyperbolic set of f̂ .
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Hyperbolic sets persist for small perturbations of the mapping, thus we expect to

find hyperbolic behavior of f for other values of δ as well. In later sections we show

that the hyperbolic set established by the above proposition owes its existence to a

transverse homoclinic point of f . Then we shall follow the intersections of the invariant

manifolds of f emanating from the origin to locate the critical value δc < 1 at which

these manifolds are tangent to each other. This means that for δ < δc homoclinic orbits

no longer exist and the chaotic behavior of the map about the origin disappears [7]. To

determine the invariant manifolds and compute their intersections, we make use of the

so–called parametrization method, which we now briefly outline.

3. Overview of the Parametrization Method

Let f : Rn → R
n denote a C∞ diffeomorphism, having a hyperbolic fixed point at p ∈ R

n.

Assume that Es is the eigenspace of dpf : Rn → R
n, corresponding to eigenvalues that

have norm less than one. The stable manifold theorem [3] asserts that the stable set of

p, W s(p) := {x ∈ R
n | limn→+∞ fn(x) = p}, is a smooth immersed submanifold of Rn,

tangent to Es at p (an analogous statement holds for the unstable manifold of p).

Knowing how these two manifolds evolve in the phase space of the map offers

crucial insight in the dynamics of the diffeomorphism f . Consequently, a number of

methods have been developed to compute and visualize these manifolds. see [21] for

a survey of these methods and more recently [29] for the 2–D case. Here we choose

the parametrization method for the computation of such manifolds, which presents a

number of advantages (see [20] for more details).

Let us now demonstrate how to compute stable (and unstable) invariant manifolds

using the parametrization method. This method offers a simple and straightforward

procedure for computing invariant manifolds of vector fields and diffeomorphisms as

explained in detail in [18, 19, 20]. In fact, its applications go far beyond the topics we

examine in this paper (see [23, 32, 33, 40, 28, 42] and references therein, for applications

in a wide variety of problems).

The parametrization method builds on the following fact: Under the assumptions

imposed on the diffeomorphism f , there exists a C∞ injective immersion S : Es → R
n,

such that:

(a) S(p) = p,

(b) the derivative of S at p is the inclusion map Es →֒ R
n, and

(c) f ◦ S = S ◦ f s, where f s stands for the restriction of dpf to Es.

This version of the stable manifold theorem may be found in [1], and the immersion S

is to be thought of as the parametrization of W s(p), considered as a submanifold of Rn.

Central to the implementation of the parametrization method is the equation

f ◦ S = S ◦ f s, (13)

which from now on we shall call the defining equation of the stable manifold. Here f

stands for the diffeomorphism of interest, while f s represents its linear part determined
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by the stable eigenvalues of the fixed point. S denotes the parametrization of the

invariant manifold that we wish to compute.

To proceed with this computation, we first need to expand the map S as a power

series. Inserting this power series into the defining equation, we shall arrive at relations

giving the coefficients of terms of degree n as a function of coefficients of terms of lower

degree. What is especially convenient here is the fact that these relations are linear

and are thus easily solved, provided all coefficients of lower order terms are given (for a

specific application see section 4.1).

Making use of the facts (a) and (b) above, one immediately finds that the constant

terms of the power series are none other than the coordinates of the fixed point p, while

the coefficients of the linear terms are given by the eigenvectors of the stable eigenvalues.

Thus, solving a set of linear equations as explained above, we may compute one by one

the coefficients of our power series up to arbitrary (but finite) order. This series does

indeed converge under mild assumptions on f , as explained in detail in [20].

In a completely analogous way the unstable manifold of p can also be computed.

To accomplish this one simply has to replace f s in the defining equation (13) by fu,

that is, the restriction of dpf onto the unstable subspace Eu of p. From here on, the

procedure explained above is employed in precisely the same way to provide us with a

parametrizion of the unstable manifold of p.

Let us now apply this technique to construct the invariant manifolds of the cubic

2–D diffeomorphism of interest here.

4. Invariant manifolds for the cubic diffeomorphism of the plane

Returning to the cubic mapping given in equation (11), let us note that it possesses

three fixed points: The first one is the origin and exists for all parameter values, while

there are also two symmetric ones, with coordinates
(

±
√
1−c+δ√

3
,±

√
1−c+δ√

3

)

. Focusing at

the (0, 0) fixed point, we first determine the eigenvalues of the linearized map

1

2

(

c−
√
c2 − 4δ

)

,
1

2

(

c+
√
c2 − 4δ

)

, (14)

and proceed to study its invariant manifolds, beginning with the δ = 1 case and

continuing with δ < 1, where f becomes dissipative. Our purpose is to locate the

homoclinic points which are part of the hyperbolic set of f . In fact, it suffices to locate

the primary one at which the manifolds first meet, since it “generates”, under repeated

application of f and f−1, all other points of the associated homoclinic orbit.

4.1 Definition. [9] Let p ∈ W s(0, 0)∩W u(0, 0), and denote by S[(0, 0), p] the segment

of W s(0, 0) with endpoints (0, 0) and p and by U [(0, 0), p] the segment of W u(0, 0) with

endpoints (0, 0) and p. The point p is called a primary (homoclinic) intersection (point)

if S[(0, 0), p] intersects U [(0, 0), p] only at the points p and (0, 0).

As before, to fix ideas we set c = −5/2 and proceed in what follows with the

computation of the primary intersection points for f , using the parametrization method.
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4.1. The symplectic case δ = 1

Since c = −5/2 and δ = 1, the eigenvalues of the origin are λu = −2 and λs = −1/2 with

normalized eigenvectors (−1/
√
5, 2/

√
5) and (−2/

√
5, 1/

√
5). The origin is therefore a

saddle, with a 1–dimensional stable and a 1–dimensional unstable manifold, which we

now proceed to determine.

Let Su : R → R
2 be the parametrization of the unstable manifold emanating from

the origin expressed by the expansion

Su(t) =

(

+∞
∑

n=0

ant
n,

+∞
∑

n=0

bnt
n

)

. (15)

The defining equation of this manifold becomes

f(Su(t)) = Su(λut) (16)

so that in the case of our 2–D map we obtain













+∞
∑

n=0

bnt
n

−δ

+∞
∑

n=0

ant
n + c

+∞
∑

n=0

bnt
n + 3

(

+∞
∑

n=0

bnt
n

)3













=













+∞
∑

n=0

anλ
n
ut

n

+∞
∑

n=0

bnλ
n
ut

n













. (17)

This gives, after equating terms of the same power of t, the following system

−λn
uan + bn = 0 (18a)

−δan +
(

c+ 9b20 − λn
u

)

bn = sn−1, (18b)

where sn−1 is defined by

sn−1 := −3

(

n−1
∑

j=1

b0bn−jbj +

n−1
∑

i=1

i
∑

j=0

bn−ibi−jbj

)

. (19)

The above is a linear system of equations for the coefficients an, bn of the power series,

whose zero-th order terms (a0, b0) are both zero since they represent the coordinates of

the fixed point at the origin. The first order terms (a1, b1) on the other hand are simply

the coordinates of the unstable eigenvector. Thus, we are now ready to compute the

constants an, bn for every, finite, value of n > 1.

To perform the numerical computation of Su(t) we first truncate the series up to

a polynomial P u(t) of degree N which is evaluated using Horner’s method. Still this

polynomial will only be a good approximation of the unstable manifold for a restricted

range of values of t. The range of validity can be quantified as follows:

4.2 Definition. Let ε > 0. Define τ > 0 to be an ε-radius of validity of the polynomial

approximation P u(t) of Su(t) if maxt∈[−τ,τ ] ||f ◦ P u(t)− P u(λut)|| < ε.
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10−18

10−15

10−12

10−9

10−6

10−3

0.0 0.5 1.0 1.5

N = 34

N = 50

N = 100

t

|E(t)|

Figure 2. Plot of the error E(t) = ||f ◦ P u(t) − P u(λut)|| for different degrees N of

the polynomial for δ = 1.0. This shows that with 100 coefficients and t up to 1.5 the

error is below 2 · 10−14.

Using this prescription, we shall keep terms up to order N = 34 of our series, for

which we numerically obtain that τ = 0.75 provides an ε-radius of validity, when we

choose ε = 10−15, see figure 2. For t > τ the error strongly increases. As also shown in

this figure, increasing the order to N = 100 we can go as far as τ = 1.5 for ε = 2 · 10−14,

which turns out to be sufficient for accurately locating the primary (and all subsequent)

homoclinic intersections, as explained below. Note, that in the definition of the error

determining the ε-radius of validity, the difference between points at λut is considered.

Thus, for practical purposes we may assume that the parametrization method provides

satisfactory results up to λuτ .

To obtain an equally good polynomial approximation P s(t) for the stable manifold

W s(0, 0) of the origin, we repeat the above steps, replacing λu with the stable eigenvalue

λs in equation (16), and proceed to solve for the coefficients of the parametrization of the

manifold. First, we replace the coefficients of the first order terms with the coordinates

of the stable eigenvector. Actually, in the δ = 1 case one may exploit the fact that

f is differentially conjugate to its inverse under ρ(x, y) = (y, x), and obtain its stable

manifold as the image of its unstable manifold under ρ.

This symmetry is directly reflected in the coefficients of the polynomials of the

parametrization method:

4.3 Lemma. Let Su(t) =
(
∑+∞

n=0 ant
n,
∑+∞

n=0 bnt
n
)

be a parametrization of the unstable
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manifold at the origin of the symplectomorphism f above. Then, a parametrization of

the stable manifold of f at the origin is Ss(t) =
(
∑+∞

n=0 bnt
n,
∑+∞

n=0 ant
n
)

.

Proof. Following from the system of equations (18) with δ = 1 and b0 = 0, the

coefficients an, bn of Su(t) satisfy the following system of equations

− λn
uan + bn = 0 (20)

− an + (c− λn
u)bn = −3

n−1
∑

i=1

i
∑

j=0

bn−ibi−jbj , (21)

Let us now suppose that Ss(t) = (
∑+∞

n=0Cnt
n,
∑+∞

n=0Dnt
n) represents the

parametrization of the stable manifold of the origin. Note that, since f is a

symplectomorphism, the stable eigenvalue λs equals λ
−1
u . Clearly, the coefficients Cn, Dn

satisfy the following system:

− λn
sCn +Dn = 0 (22)

− Cn + (c− λn
s )Dn = −3

n−1
∑

i=1

i
∑

j=0

Dn−iDi−jDj . (23)

We claim that Cn = bn, Dn = an. Indeed it follows from (22) that:

− 1

λn
u

Cn +Dn = 0 ⇔ − 1

λn
u

bn + an = 0, (24)

which is equivalent with (20), while from (23) we get

−Cn + (c− λn
s )Dn = − 3

n−1
∑

i=1

i
∑

j=0

Dn−iDi−jDj (25a)

⇔ −Cn + (c− 1

λn
u

)Dn = − 3

n−1
∑

i=1

i
∑

j=0

Dn−iDi−jDj (25b)

⇔ −bn + (c− 1

λn
u

)an = − 3
n−1
∑

i=1

i
∑

j=0

an−iai−jaj (25c)

⇔ −bn + (c− 1

λn
u

)an = − 3
n−1
∑

i=1

i
∑

j=0

1

λn−i
u

bn−i

1

λi−j
u

bi−j

1

λj
u

bj (25d)

⇔ −an + (c− λn
u)bn = − 3

n−1
∑

i=1

i
∑

j=0

bn−ibi−jbj , (25e)

leading us back to (21). Thus, Cn = bn and Dn = an as claimed.

So, either by solving the defining equation, or making use of Lemma 4.3, we arrive

at a polynomial P s(t) of degree N = 34, which is a satisfactory approximation of the

stable manifold Ss(t), in the sense of Definition 4.2 and with the same radius of validity.
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Figure 3. (a) Stable (blue) and unstable (red) manifolds computed using the

parametrization method for δ = 1. The inset shows a magnification around the primary

homoclinic intersection at (xh, yh) ≈ (0.54527107,−0.54527107) which is indicated by

a cross. (b) Regular orbits (red curves) around the periodic points of period 2 (black

triangle) and several irregular orbits (blue dots) escaping via the homoclinic tangle.

Now, since the polynomial curve P u : [−τ, τ ] → R
2 provides a good approximation

of the local unstable manifold of the origin, we may iterate it using the mapping f to

produce an approximation of the unstable manifold. The same holds for P s(t), from

which the corresponding stable manifold W s can be obtained by iteratively applying

f−1.

Figure 3(a) shows the stable and unstable manifolds of the origin for δ = 1. To

obtain this plot, the parametrization method was used up to t = tmax with tmax = 0.42.

For example, for the unstable manifold, the segment obtained for t ∈ [tmax/λu, tmax]

is iterated up to 6 times using f and then the corresponding segment of the stable

manifold was obtained by symmetry. Note that, as the fixed point is inverse hyperbolic,

one obtains alternatingly segments lying in the second and fourth quadrant.

Since a homoclinic point of transverse intersection between the stable and unstable

manifolds exists, the Birkhoff-Smale theorem can be invoked to guarantee the existence

of an infinity of transverse intersections, a phenomenon known as homoclinic chaos

[8]. This explains the scattered points shown in the phase space of the mapping at

δ = 1, plotted in figure 3(b), where several orbits started in the region close to the

hyperbolic fixed point at the origin eventually escape to infinity after a few iterations

via the homoclinic tangle. Some elliptic periodic orbits as well as tori encircling the

stable period–2 points in the 2nd and 4th quadrant are also shown.
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4.2. Homoclinic intersections

We now wish to compute an approximation of the homoclinic intersection, i.e. the point

(xh, yh) at which W s(0, 0) and W u(0, 0) intersect transversely. This means, that there

are natural numbers nu, ns, along with tu, ts ∈ R such that fnu(P u(tu)) = f−ns(P s(ts)) =

(xh, yh). Furthermore, since the intersection is transversal, the vectors ∂
∂tu

fnu(P u(tu))

and ∂
∂ts

f−ns(P s(ts)) are independent.

To evaluate such homoclinic points, we define the map Φ : R × R → R
2, as

Φ(tu, ts) = fnu(P u(tu))− f−ns(P s(ts)) and search for its zeros. One solution, of course,

is the point (tu, ts) = (0, 0) corresponding to the origin. Non–trivial roots (tu, ts) of this

map for (nu, ns) ∈ N × N correspond to transverse homoclinic points of the mapping

f . Validated computations can now be used to analytically prove the existence of such

solutions for fixed parameter values, as described in [32, 40, 36]. Here however, we are

more interested in accurately obtaining these solutions, while permitting the parameters

to vary, until they no longer exist. Note that this is also the subject of reference [41],

where the authors mention the possibility of applying the parametrization method, along

with their technique, to obtain computer–assisted proofs of transversal intersections of

manifolds. Here we proceed as described below.

To determine the homoclinic intersections for a sequence of decreasing values of

δ it is convenient to start from an already computed homoclinic intersection at one δ

value and use the corresponding (tu, ts) as a starting point for finding the solution of

Φ(tu, ts) = (0, 0) for a slightly smaller δ. If no solution is found, the step size is reduced,

so that effectively a bisection in δ is performed, approximating the critical value δc for

which no homoclinics exist.

To determine the non–trivial roots of Φ it turns out to be particularly convenient to

use polynomials of degree N = 100 as, under these circumstances, the range for tu, ts can

be extended to [−1.6, 1.6] while the manifolds are still computed with sufficient accuracy,

namely with |E(t)| < 4 · 10−14. Thus, we do not have to worry about the possibility of

non-intersecting segments, noting also that segments of each manifold get mapped to

the other quadrant across (0, 0) due to the inverse hyperbolicity of the fixed point. For

δ = 1.0, for example, we obtain a zero of Φ(tu, ts) for (tu, ts) ≈ (1.5849,−1.5849) and

nu = ns = 0. This means that the manifolds can be represented up to the homoclinic

point with high enough accuracy, using the parametrization method, while no additional

application of the mapping f or its inverse is necessary. The corresponding homoclinic

point is located at (xh, yh) = (0.545271067753899,−0.545271067753900). The fact that

both tu + ts = 0 and xh + yh = 0 within our numerical accuracy is already a good test

of the quality of the numerically determined homoclinic point, particularly because the

symmetry of the mapping for δ = 1.0 has not been used in the computations.

To test the accuracy of the computed homoclinic intersection (xh, yh) we determine

the distance dn of fn(xh, yh) from the origin for both positive and negative n. For

positive n the iterates of the homoclinic point approach the origin along the stable

manifold W s, while, for negative n the approach is along the unstable manifold W u.
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Figure 4. Plot of the distance dn of the iterates fn(xh, yh) from the origin. Note that

the iterates of our computed homoclinic point (xh, yh) pass by the origin but stay away

from it by an amount that provides a measure of the inaccuracy of the calculation. (a)

δ = 1.0 and (b) δ = 0.9714375.

Any inaccuracy of the determined homoclinic intersection point (including additional

round-off errors when applying fn) implies that dn eventually will increase again. This

means that the inaccurate orbit will depart again from the origin along W u for positive

n and along W s for negative n. The smallest distance to the origin thus gives a measure

of the inaccuracy of the numerically determined homoclinic intersections, see figure 4(a)

for δ = 1.0 and (b) for δ < 1.

So far we have relied on a graphical verification that the homoclinic intersection

is actually transversal, i.e. that the vectors ∂
∂tu

fnu(P u(tu)) and ∂
∂ts

f−ns(P s(ts)) are

independent. Due to the parametrization this can be easily checked by computing

the determinant of the vectors Dfnu ∂
∂tu

(P u(tu)) and Df−ns ∂
∂ts

(P s(ts)) for nu = ns = 0.

This is shown in figure 5. With decreasing δ the determinant becomes smaller which

means that the area spanned by the two tangent vectors becomes smaller and smaller

until it becomes zeros at δc. The plot at figure 5 behaves like
√
δ − δc. This suggests

that at the critical parameter value δc the tangency of the stable and unstable manifolds

is quadratic, which is a manifestation of the genericity of their intersection. A fit to

a
√
δ − δc gives for the critical parameter δc = 0.9713965579.

4.3. Homoclinic tangency: the δ ≃ 0.971397 case

Let us now follow the primary homoclinic intersection of the two manifolds as we

decrease δ. Numerically we find a solution of Φ(tu, ts) = (0, 0) as long as δ ∈ [δc, 1] with

δc = 0.971397, meaning that below this δc homoclinic orbits no longer exist. Indeed, for

δ < δc we do not obtain zeros of Φ(tu, ts) with the required accuracy, i.e. components of

|Φ(tu, ts)| become larger than 10−15. Figure 4(b) shows the corresponding distances dn
for δ = δc and demonstrates that the numerically determined homoclinic intersection is

of comparable accuracy as in the case δ = 1.0.

For the above mentioned value of δ = δc we compute the invariant manifolds using

the parametrization method (followed by iterating the local manifolds). The result is
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Figure 5. Plot of the determinant of the two vectors tangent to the stable and unstable

manifolds at the homoclinic point, as a function of δ. The determinant is zero below

the critical parameter value δc, while it tends to zero in a manner implying a quadratic

tangency at this point. The red line is a fit to a
√
δ − δc.

shown in figure 6(a) and visually confirms that this is approximately the parameter at

which the manifolds become tangent. For even smaller δ = 0.96 one clearly finds that

the stable and unstable manifold no longer intersect, as seen in figure 6(b).

We now turn our attention to linearly coupled 2–D mappings of the type studied

above. Our objective is to calculate efficiently and accurately primary homoclinic orbits

in the phase space of 4–D maps approximating breathers in coupled Hamiltonian chains.
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(a)

x

y

−0.75

0.00

0.75

−0.75 0.00 0.75

(b)

x

y

Figure 6. (a) Tangency of the stable and unstable manifolds shown at δ = 0.971397.

(b) For δ = 0.96 the stable and unstable manifolds no longer intersect.
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We wish to find out how computationally demanding is this task, and compare the results

with analogous findings in the 2–D case.

5. Two coupled cubic systems

To investigate breather interactions in two linearly coupled chains of 1–dimensional

Hamiltonian systems, the approach discussed in the introduction leads to the

identification of homoclinic orbits of a 4–D map of the form:

An+1 − cAn + δAn−1 = 3A3
n + b(An − Bn) (26a)

Bn+1 − cBn + δBn−1 = 3B3
n − b(An −Bn). (26b)

where An and Bn are the leading terms of the Fourier coefficients corresponding to the

discrete breathers in the first and second chain respectively. Setting An−1 = x1, An =

y1, Bn−1 = x2, Bn = y2, we define the mapping f : R4 → R
4

f(x1, y1, x2, y2) =











y1
cy1 − δx1 + 3y31 + b(y1 − y2)

y2
cy2 − δx2 + 3y32 − b(y1 − y2)











, (27)

which is a diffeomorphism with inverse f−1 : R4 → R
4 given by

f−1(x1, y1, x2, y2) =











1
δ
((c+ b)x1 + 3x3

1 − bx2 − y1)

x1
1
δ
((c+ b)x2 + 3x3

2 − bx1 − y2)

x2











. (28)

This map possesses a number of fixed points. However, we are only interested in the

origin, which must be a saddle fixed point as in the 2–dimensional case. Thus, we choose

parameter values for which the origin of the above 4–D map possesses a 2–dimensional

stable manifold, and a 2–dimensional unstable manifold, corresponding to pairs of real

eigenvalues with |λ1,2| > 1 and |λ3,4| < 1 respectively.

Let us suppose that Su : R2 → R
4 is the parametrization of the unstable manifold

of the origin, corresponding to the eigenvalues λ1, λ2. If

Su(u, v) =

(

+∞
∑

n=0

+∞
∑

m=0

anm1 unvm,
+∞
∑

n=0

+∞
∑

m=0

anm2 unvm,
+∞
∑

n=0

+∞
∑

m=0

anm3 unvm,
+∞
∑

n=0

+∞
∑

m=0

anm4 unvm

)

(29)

represents its power–series expansion, where anmi , i ∈ {1, 2, 3, 4}, are coefficients of the

mononomials unvm, the defining equation of the manifold becomes

f ◦ Su(u, v) = Su(λ1u, λ2v). (30)
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The left–hand side of this equation reads






























∑

n,m

anm2 unvm

(c+ b)
∑

n,m

anm2 unvm − δ
∑

n,m

anm1 unvm + 3

(

∑

n,m

anm2 unvm

)3

− b
∑

n,m

anm4 unvm

∑

n,m

anm4 unvm

(c+ b)
∑

n,m

anm4 unvm − δ
∑

n.m

anm3 unvm + 3

(

∑

n,m

anm4 unvm

)3

− b
∑

n,m

anm2 unvm































while the right–hand side equals
























∑

n,m

anm1 λn
1λ

m
2 u

nvm

∑

n,m

anm2 λn
1λ

m
2 u

nvm

∑

n,m

anm3 λn
1λ

m
2 u

nvm

∑

n,m

anm4 λn
1λ

m
2 u

nvm

























,

where by
∑

n,m we denote double summation over n and m ranging from 0 to ∞.

Equating now, as before, terms of the same degree, we arrive at the following system

of equations for the coefficients

−λn
1λ

m
2 a

nm
1 + anm2 = 0, (31a)

−δanm1 + (c+ b− λn
1λ

m
2 )a

nm
2 − banm4 =− 3

n
∑

k=0

m
∑

l=0

k
∑

i=0

l
∑

j=0

an−k,m−l
2 ak−i,l−j

2 ai,j2 , (31b)

−λn
1λ

m
2 a

nm
3 + anm4 = 0, (31c)

−banm2 − δanm3 + (c+ b− λn
1λ

m
2 )a

nm
4 =− 3

n
∑

k=0

m
∑

l=0

k
∑

i=0

l
∑

j=0

an−k,m−l
4 ak−i,l−j

4 ai,j4 . (31d)

Note that the sums on the right side contain terms of the form anmi , i ∈ {2, 4},
as well. Although these terms should be isolated and transferred to the left side of the

equations, we prefer to write them more “compactly” in the above form.

Cumbersome as they may seem, these equations are again linear with respect to the

unknown anmi , and may be solved immediately provided the terms of lower degree are

known. The above equations will be crucially used in what follows to locate homoclinic

points of the 4–D map f .

5.1. Error estimates for the parametrization of the manifolds

To study the 4–D map (27) we shall start from the uncoupled case b = 0, δ = 1,

and continue with the coupled case for small positive values of b. In this study, we
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Figure 7. Evaluation of the error function E(r, θ) vs. r for the parametrization

method for different values of θ and (a) b = 0.0, N = 34, (b) b = 0.0, N = 50, (c)

b = 0.1, N = 34, and (d) b = 0.1, N = 50. Note how the accuracy of 10−15 extends to

longer segments of the manifolds as N increases.

set b = 0.1 and continue the homoclinic intersections for δ < 1 until they completely

disappear. The question is whether these intersections persist as robustly as they do

in the 2–dimensional case. To find out, we shall first consider an error estimate for the

polynomial approximation of the series representing the (un)stable manifold.

Let us, therefore, define an analogous error function as in the 2–dimensional case

E : [−2, 2]× [−2, 2] → R, E(u, v) = ‖f ◦ P u(u, v)− P u(λ1u, λ2v)‖, (32)

where P u stands for the polynomial approximation of the unstable manifold, consider

polar coordinates (u, v) = (r cos θ, r sin θ) and plot |E(r, θ)| as a function of r ∈ [0, 2],

for various values of θ, see figure 7.

We first observe that, for all b ∈ [0, 0.1], keeping terms up to order 50 in the

polynomial representation P u of the unstable manifold yields a region of validity with

r = 1 corresponding to an error magnitude of order 10−15. An analogous statement

holds for the stable manifold as well. We thus keep the interval r ∈ [0, 1] as the domain

of definition of our approximations P u(uu, vu) and P s(us, vs). Our aim is to locate non-

trivial zeros of the mapping

Φ(uu, vu, us, vs) = fnu(P u(uu, vu))− f−ns(P s(us, vs)). (33)

Note, that as we will be using a sufficiently high order for the polynomials P u and P s,

the homoclinic intersections already occur for values of uu, vu, us, vs < 1.16 when using
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nu = ns = 0. As in the 2–D case we assume that the parametrization method provides

accurate results for this slightly extended range.

5.2. Homoclinic points for b = 0

For b = 0 our system reduces to two uncoupled 2–D maps of the form studied in

previous sections. Thus the geometry in phase space is given by the direct product

of two independent maps in (x1, y1) and (x2, y2). In each of these 2–D maps the

origin is a fixed point and (xe, ye) = (±1/
√
6,∓1/

√
6) are the coordinates of an elliptic

periodic point of period 2. This implies that for b = 0 the 4–D map has: (i) The

origin (x1, y1, x2, y2) = (0, 0, 0, 0) as a hyperbolic-hyperbolic fixed point, (ii) two elliptic-

hyperbolic period–2 orbits at (x1, y1, x2, y2) = (±xe,±ye, 0, 0) and (x1, y1, x2, y2) =

(0, 0,±xe,±ye), (iii) two elliptic-elliptic period–2 orbits, one at (±xe,±ye,±xe,±ye)

and another at (±xe,±ye,∓ye,∓ye).

In order to visualize the regular dynamics occurring in the 4–dimensional phase

space we use a 3–dimensional phase space slice [35]. As a convenient condition for

−y1

x1

x2

W u

W s

−0.61 0.54

y2

Figure 8. Homoclinic intersection shown by a small cyan sphere on the left part of the

figure in the uncoupled case b = 0. Shown are the 2–dimensional stable and unstable

manifolds as projections onto (x1, x2, y1) space, with y2 encoded in color. The black

dots show some regular tori in a 3–dimensional phase space slice representation. For

a rotating view see http://www.comp-phys.tu-dresden.de/supp/.

http://www.comp-phys.tu-dresden.de/supp/
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determining our slice we set y⋆2 = ye, since it includes the domain surrounding one point

of each elliptic-elliptic orbit of period 2. Whenever a point (x1, y1, x2, y2) of a trajectory

fulfills the slice condition |y2 − y⋆2| < 10−4 the remaining coordinates (x1, y1, x2) are

shown in a 3–D plot.

Figure 8 shows for the uncoupled case several regular orbits (black dots) surrounding

the points of the elliptic-elliptic orbit of period 2. The 2–dimensional manifolds W s and

W u have been computed using the parametrization method. They are embedded in the

4–dimensional phase-space and shown as projections onto (x1, x2, y1). The projected

coordinate y2 is encoded in color. Thus a homoclinic intersection of W s and W u occurs

at an intersection of the two surfaces, if and only if at the same point the color, i.e.

the y2 coordinate, also agrees. This point is indicated by a small cyan sphere on the

left side of figure 8. In this case, the coordinates of the homoclinic points are given by

(xh, yh, 0, 0) and (0, 0, xh, yh), where (xh, yh) are the coordinates of the homoclinic point

of the corresponding 2–D mapping studied in section 4.

5.3. Homoclinic points for b > 0

In order to determine the homoclinic intersection for different parameters b and δ we

start from the uncoupled case b = 0, δ = 1 and follow the homoclinic intersections

with increasing b until b = 0.1. Numerically it is convenient to use the homoclinic

intersection, described by the parameters (uu, vu, us, vs), at one value of b as a starting

point for finding the new root at a slightly different value for b. Subsequently, after we

have found the homoclinic intersection at b = 0.1 with δ = 1, we fix b = 0.1 and proceed

to determine intersections at lower values of δ.

It turns out that the last intersection of the manifolds, at homoclinic tangency,

occurs at about δ = 0.99601, which is considerably larger (closer to the conservative case)

than in the single 2–D map. To test the accuracy of our computations we again consider

the distance dn of fn(xh
1 , y

h
1 , x

h
2 , y

h
2) from the origin for both positive and negative n, see

figure 9, for δ = 0.997. Interestingly enough, the magnitude of the observed minimal

distance is comparable to the results for the 2–D case.

Analogously to the 2–D case, we calculated the determinant of the tangent vectors

provided by the parametrization method at the homoclinic points, as a function of

δ. Similarly to figure 5 the determinant approaches zero like
√
δ − δc, which is a

manifestation of the quadratic tangency of the invariant manifolds for δ = δc.

Figure 10 shows a visualization of the two-dimensional manifolds W s and W u as

projections onto (x1, x2, y1) with y2 encoded in color. The homoclinic intersection at

(x1, y1, x2, y2) = (0.46521450,−0.49858860,−0.08725131, 0.08972831) corresponds to an

intersection of the manifolds in (x1, x2, y1) and simultaneously in y2, which means that

the colors corresponding to the y2 coordinate also agree. This point is indicated by

a small cyan sphere at the left part of the figure. While both the above conditions

hold for the example in figure 10, the illustration for b = 0.1 and δ = 0.99 in figure 11

clearly shows that while the two manifolds intersect at several points in the projection
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Figure 9. Plot of the distance dn to the origin of iterates fn(xh
1 , y

h
1 , x

h
2 , y

h
2 ) of

numerically determined homoclinic intersection of the 4–D map for b = 0.1 and

δ = 0.997.

onto (x1, x2, y1), the corresponding y2 coordinates are different, as can be deduced from

the different colors of the manifolds at their intersections in the projection. Thus the

homoclinic intersection ceases to exist very quickly as δ decreases from 1 for fixed b = 0.1.

Note, that the parametrization method is not only numerically convenient to

compute the homoclinic intersections of the 2–D manifolds, but also for their

visualization. In contrast to computing the manifolds based on the linearized

dynamics and application of the mapping, a simple two-dimensional uniform grid in the

parametrization variables (uu, vu) and (us, vs), respectively, leads to a well structured

representation of the 2–D manifolds embedded in the 4–D phase space whose projection

y1

x1

x2
W u

W s −0.61 0.54

y2

Figure 10. Stable and unstable manifolds computed using the parametrization

method for the 4–D map for b = 0.1 and δ = 0.997. A primary homoclinic intersection

point is shown by a cyan sphere on the left side of the map. For a rotating view see

http://www.comp-phys.tu-dresden.de/supp/.

http://www.comp-phys.tu-dresden.de/supp/
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y1

x1

x2

W u

W s
−0.61 0.54

y2

Figure 11. Stable and unstable manifolds computed using the parametrization

method for the 4–D map for b = 0.1 and δ = 0.99. No homoclinic intersection is

found. For a rotating view see http://www.comp-phys.tu-dresden.de/supp/.

can be visualized in a straightforward way. Thus, for obtaining the manifolds shown in

figures 8, 10, and 11 no further application of the map or its inverse is necessary. Note,

however, that this would be required if we were to show more lobes, as for the used

order of polynomials the approximation by the parametrization method is only accurate

until a little beyond the homoclinic intersection.

6. Conclusions

In this paper we studied 2–D and 4–D polynomial maps arising in the approximate

evaluation of the amplitudes of discrete breathers in single and double 1–dimensional

Hamitonian lattices. We began with a 2–D map, which belongs to the generalized

Hénon family, and computed its invariant manifolds using convergent series expansions

derived by the parametrization method. We used parameter values at which tranversal

intersections of the invariant manifolds of a saddle point at the origin are expected to

occur, and followed these intersections until they disappeared by homoclinic tangency.

Thus, we were able to verify independently the validity of these results by direct

iteration, showing that at the identified parameters the points we were following cease

to converge to the origin.

We then turned our attention to a 4–D map, obtained from two coupled 2–D maps

of the previous form, resulting from two linearly coupled 1–dimensional Hamiltonian

particle chains. Again we used the parametrization method to solve a system of

linear equations and obtain the invariant manifolds of the saddle at the origin. Using

continuation methods, we showed that despite the more complicated calculations,

homoclinic orbits can be located without great difficulty and with comparable accuracy

http://www.comp-phys.tu-dresden.de/supp/
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as in the 2–D map case. The validity of our findings was checked again by finding

parameter values at which homoclinic orbits disappear through a tangency of the

corresponding manifolds. What is remarkable, both in the 2–D and in the 4–D case

it was possible to accurately locate homoclinic points just using the parametrization

method without any additional application of the mapping or its inverse.

Regarding other potential applications of our techniques, it would be very

interesting to use them to approximate discrete breathers in coupled 1–dimensional

Hamiltonian lattices, for which to our knowledge no results are available. Furthermore,

the potential use of this approach to problems described by vector fields (and even

p.d.e.’s) is worth exploring, in view of the effectiveness of the parametrization method

in locating special solutions.

Moreover, higher–dimensional maps are interesting by themselves as they are known

to arise in various physical applications like e.g. in the case of colliding particle beams of

high energy accelerators, where the corresponding equations often appear in polynomial

form (see e.g. [10, 25]). Recently, we have started looking into a number of potential

applications of our methods to physical problems such as those mentioned above and

results are expected in future publications.
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[11] Lomeĺı H E and Meiss J D, “Quadratic volume preserving maps”, Nonlinearity, 11(3), 557-574,

1998.

[12] Sterling D, Dullin H R and Meiss J D, “Homoclinic bifurcations for the Hénon map”, Physica D,
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[29] Goodman R H and Wróbel J K, “High-order bisection method for computing invariant manifolds

of two–dimensional maps”, Int.J.Bifurcation.Chaos, 21, 2017-2042, 2011.

[30] Ramachandran P and Varoquaux G, “Mayavi: 3D visualization of scientific data”,

Comput.Sci.Eng., 13, 40–51, 2011.

[31] Bountis T and Skokos H, “Complex Hamiltonian Dynamics”, Springer, Berlin, 2012.

[32] Mireles James J D and Mischaikov K, “Rigorous A Posteriori Computation of (Un)Stable Manifolds

and Connecting Orbits for Analytic Maps”, SIAM J.Appl.Dyn.Sys., 12(2), 957-1006, 2013.

[33] Mireles James J D, “Quadratic volume-preserving maps: (un)stable manifolds, hyperbolic

dynamics, and vortex-bubble bifurcations”, J.Nonlinear Sci., 23(4), 585-615, 2013.



Homoclinic Points of 2-D and 4-D Maps via the Parametrization Method 25

[34] Efthymiopoulos C, Contopoulos G and Katsanikas M, “Analytical invariant manifolds near

unstable points and the structure of chaos”, Celest.Mech.Dyn.Astr., 119, 331–356, 2014.
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