
Estimation and application of best ARIMA model for
forecasting the uranium price.

Medeu Amangeldi

May 13, 2018

Capstone Project
Superviser: Dongming Wei

Second reader: Zhenisbek Assylbekov

Abstract

This paper presents the application of an iterative approach for prediction of uranium price by
model identification, parameter estimation and diagnostic checking which are designed by Box and
Jenkins. In particular, the autoregressive integrated moving average model is used to predict the
future values of monthly uranium price. As the analysis of structural dependence in observations is
one of the key features of time series analysis, the past values, which were taken as monthly values
from January 2000 to June 2017, are used for forecasting. As a result, ARIMA(2,1,0) became one
that met all the criteria and predicted the increase of uranium price over time within 95% confidence.

1 Introduction
The autoregressive integrated moving average model, ARIMA, is one of the statistical and forecasting

models in time series analysis[5].
The data [3] of monthly uranium price from January 2000 to June 2017 of 210 data points is used as

the object of the statistical investigation.
In order to build an appropriate model for forecast, mainly, the iterative approach suggested by Box

and Jenkins[1] was used as follows

1. Model Identification Stage:

• Apply logarithmic transformation to uranium price in order to stabilize its variance

• Assess the stationarity of logarithmic price and use differencing in case of detecting the non-
stationarity.

• Identify possible ARMA models of order (p,q) by using two criteria, AIC and BIC, for wt =
(1−B)dyt

such that,
φ(B)wt = θ(B)εt

where,
B - backward shift operator, (i.e. Byt=yt−1)
d - order of differencing
yt - uranium price at time t
c - constant term
εt−l - residual term for l = 1, 2, . . . , q , (yt − yt−1)
εt - random shock ∼ N(0, σ2)

φ(B) = 1− φ1B − φ2B2 − . . .− φpBp (polynomial operator)
θ(B) = 1− θ1B − θ2B2 − . . .− θqBq (polynomial operator)

2. Parameter Estimation Stage:
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• Estimate parameters φ and θ by using the conditional sum of squares and maximizing the
log-likelihood function.

3. Diagnostic Checking Stage:

• Analyze the residuals of each model, which were selected from previous stage, for no autocor-
relation and that they are white noise with Ljung-Box and Box Pierce tests, respectively.

4. Use the best ARIMA(p,d,q) model that passes the diagnostic checking to forecast future values of
uranium price within 95% confidence interval.

All listed procedures were implemented in Python (in Appendix)[4, 6].

Figure 1: Monthly uranium price from Jan, 2000 to Jun, 2017

2 Model

2.1 Autoregressive model
Autoregressive model is the model in which the equation represents the linear dependence of the value

from its p past values; written as AR(p) and defined as follows [5]

yt = c+ φ1yt−1 + . . .+ φpyt−p + εt

where,
c - constant term
φ1, . . . φt−p - coefficients
yt - observation at time t
εt - random shock ∼ N(0, σ2)

2.2 Moving average model
Moving average model is the model in which the equation represents the linear dependence of the

value from its q past residuals; written as MA(q) and defined as follows

yt = c+ θ1εt−1 + . . .+ θqεt−q + εt

where,
c - constant term
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θ1, . . . θt−q - coefficients
εt−l - residual term for l = 1, 2, . . . , 1, (yt − yt−1)
εt - random shock ∼ N(0, σ2)

2.3 Mixed ARMA(p,q) and ARIMA(p,d,q) models
ARMA model is the model in which both autoregressive and moving average models are considered

and used for stationary time series; written as ARMA(p,q) and defined as follows

φ(B)yt = c+ θ(B)εt

While Autoregressive Integrated Moving Average (ARIMA) of order (p,d,q) stands for the model used for
non-stationary time series and use difference in order to produce stationary condition; rewriting difference
form wt = ∇dyt = (1−B)dyt gives the ARMA form:

φ(B)wt = c+ θ(B)εt

φ(B)(1−B)dyt = c+ θ(B)εt

where,
B - backward shift operator, (i.e. Byt=yt−1)
yt - uranium price at time t
c - constant term
εt−l - residual term for l = 1, 2, . . . , q, (yt − yt−1)
εt - random shock ∼ N(0, σ2)
φ(B) = 1− φ1B − φ2B2 − . . .− φpBp

θ(B) = 1− θ1B − θ2B2 − . . .− θqBq

3 Order Identification and Parameter Estimation
Stationarity assumption states that the time series process, i.e. (yt), and the value from that process

at time t has the same mean and variance as at time t + n or t − n, for n=1, 2, . . .. It is important for
data to be stationary as the Box and Jenkins methodology, especially ARMA model is applicable to fit
such time series.

This is because under stationarity assumption, statistical equilibrium is held, in other words, the
process yt has constant mean and variance throughout the time and its future values can be predicted
taking into account these properties.

Monthly uranium price from January 2000 to June 2017 is shown in Figure 1.
The way Box and Jenkins suggests to check the stationarity is to plot the autocorrelation function

and see if the function dies-out quickly.
Important note: Generally, a time series has non-stationary behavior if it consists a unit root. Aug-

mented Dickey Fuller test examines if a time series has a unit root. For instance, imagine AR(1) process
and we assume that εt is zero-mean stationary.

yt = c+ φ1yt−1 + εt

Assuming that this time series has a unit root, φ1 = 1:

yt − yt−1 = c+ εt

(1−B)yt = c+ εt

yt =
c+ εt
1−B

=

t∑
j=0

1jc+

t∑
j=0

1jεt−j = ct+ εt + εt−1 + . . .

So, above the time series has a mean that changes over time (ct) and it contradicts the stationarity
assumption. Generally, unit root series refer to the fact that the autocorrelation decays very slowly to
zero (nearly linearly). So slow decay of ACF is a signal for non-stationary behavior.
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Figure 2: ACF of monthly uranium price

It can be seen that the autocorrelation function is nearly linear and dies-out very slowly, so the
monthly uranium price is non-stationary, Figure 2

Moreover, the Augmented Dickey Fuller test gives the p-value more than 0.05, we fail to reject the
null hypothesis of non-stationarity of data.

Applying the Box and Jenkins approach of taking logarithm and difference the observations (Figure
3), lnyt − lnyt−1, helps to produce stationarity.

Figure 3: d=1 difference

The autocorrelation function of log differenced data is shown in Figure 4.

It can be seen that the ACF dies-out very quickly, suggesting that the autocorrelation after the first lag
is insignificant at 95% confidence interval[2]. Moreover, Augmented Dickey Fuller test gives the p-value
less than 0.05 and we reject the null hypothesis that the data is non-stationary.

As the stationarity condition was achieved after taking 1st difference, the order d is known, and can
be labeled as I(1).

Next, I set upper bounds, P and Q, for AR and MA order, respectively. Then, I fitted all possible
models for p ≤ P and q ≤ Q: (0,1,0), (1,1,0), (2,1,0), (2,1,1), (2,1,2), (0,1,1), (0,1,2), (1,1,2), (1,1,1)
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Figure 4: ACF log differenced monthly uranium price

Figure 5: AIC values for different possible models
and the model with the least criterion

Figure 6: BIC values for different possible models
and the model with the least criterion

In addition, by Box and Jenkins approach [2], the information criterion values may be used to choose
possible appropriate models, which are Akaike Information Criterion (AIC) and Bayesian Information
Criterion(BIC); the least value is better[2]. I used BIC to assess the quality of the model and it is defined
as follows:

AIC = ln(σ2
a) + 2r/n

BIC = ln(σ2
a) + rln(n)/n

where,
σ2
a - estimated variance of at
r - number of parameters with constant term, p+ q + 1
n - number of observations.

By implemented code (in Appendix) in Python, I estimated values of AIC and BIC for possible models
in Figure 5 and 6.

By above, I considered models of orders ARIMA(0,1,1) and ARIMA(2,1,0), as they have the least
criterion.

In order to check the goodness-of-fit of the models, diagnostic checking was performed, particularly,
Ljung-Box test for no autocorrelation and Box-Pierce test for white noise of residuals.
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4 Model Diagnostics
Ljung-Box test for no autocorrelation performed by Python code (in Appendix) showed interesting

results for ARIMA(2,1,0),(Figure 4). No p-values are less than 0.05 with which we fail to reject the null
hypothesis of no autocorrelation. It means that there is no autocorrelation between series up to 40 lags.

After performing the Box-Pierce test for the white noise of residuals, no p-values were less than 0.05
with which we fail to reject the null hypothesis that the residuals are white noise.

Figure 7: LB and Box Pierce tests results (statistic and p-values for each test, respectively)

5 Forecasting ability
As ARIMA(2,1,0) successfully passes the diagnostics stage, it can be used to predict the uranium

price. However, the model must be checked for forecasting ability and was used to predict the uranium
prices in last five months by calculating the margin of error of predicted prices which is defined as follows:

MEt =
FPt −APt

APt
× 100

where,
MEt - margin of error for forecasted uranium price at time t
FPt - forecasted uranium price at time t
APt - actual uranium price at time t

Plot of the prediction is shown below as well, Figure 8.
It can be seen that out-of-sample forecast shows the increase of uranium logprice over time within

95% confidence interval. Indeed, this suggests that the price of uranium will increase over time.
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Table 1: Actual and forecasted (ARIMA(2,1,0)) uranium prices with margin of errors for the last five
months data

Month Actual price ($) Forecasted price ($) Margin of Error (%)
Feb 2017 25.06 23.74 -5.27

March 2017 24.55 26.26 6.97
April 2017 23.17 23.87 3.04
May 2017 21.56 22.59 4.77
June 2017 19.68 20.98 6.61

Figure 8: ARIMA(2,1,0) model prediction for logprice

6 Conclusion
Non-stationary time series of monthly uranium price between January 2000 and June 2017 was taken

as an object of statistical investigation. Particularly, most appropriate ARIMA model was estimated by
Box and Jenkins approach and used for prediction of the future values.

Finally, ARIMA(2,1,0) became relatively most preferable model to forecast the uranium price for
future and showed the forecasting ability within 7% margin of error, as a result, the model predicted the
rise of uranium price in the future. Further investigations can be done on modification of linear ARIMA
model, particularly, using recurrent neural networks.
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