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Abstract

Heterogeneity between workers, firms or regions is an aspect in macroeconomics that

has been largely overlooked. Typically, a representative agent approach is followed, like

the respresentative firm or worker in an economy. However, this approach potentially

misses a lot of what may be important drivers and transmission mechanisms in the

economy at large. In other words, it misses the underlying granularity of the economy.

Rather than taking the average firm or worker or region, it is therefore important

to study the entire distribution. This allows a better assessment of how firm-specific

idiosyncratic shocks may affect the overall economy. This is particurlarly relevant given

that recent work has demonstrated that many economic variables, such as firm size and

city size, follow a power law (with respect to the number of employees). This paper

first documents power laws in economics and then estimates power laws for firms and

cities in Kazakhstan.
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1 Introduction

Scholars have assimilated a number of things by studying statistical distributions of empirical

datasets, such as populations of bacteria, lifetimes of a physical particles, stock market prices,

the worldwide seismicity activity rate, and so on. Many, if not the most, of such observations

are distributed around some value, which turns out to be an average value, or the mean.

Alternatively speaking, such distributions put the lesser amount of probability the further

away from the mean, and therefore the mean is a representative for majority of observations.

For example, an information that the most female Kazakhs are about 160 cm tall would be

a valuable statement, since large deviations from this norm are very exceptional.

However, there are many other distributions that can not be simply described by the

mean and standard deviation. While such distributions are considered to be puzzling, many

scientists find them some of the most challenging and interesting observations. Exactly

because these distributions are not easily defined by their mean and variance makes scholars

conduct more studies of the topic.

The power-law, which belongs to the group of such distributions, with its mathemati-

cal properties, is of specific interest for the scientific community. The power law distribu-

tion tends to appear in the remarkable number of regularities in both natural and human-

influenced phenomena in Finance and Economics. Some examples include U.S. firms size

(employment level) and market capitalization (Axtell 2001, Gabaix & Landier 2008), dis-

tribution of wealth and income (Atkinson & Piketty 2007), etc. For instance, according to

U.S. Census Bureau data for 1997, the average U.S. firm size was 19.0 employees. However,

this fact would not tell us much about the distribution of the firm sizes since the significant

number of employees work in companies whose sizes differ from the mean by several orders

of magnitude.

One importance of this paper comes from the fact that there is a lot of heterogeneity

in underlying macroeconomic fluctuations. Even within narrowly defined sectors: there is

a difference between firm sizes, a difference within a city sizes, etc. This heterogeneity

is an aspect in macroeconomics that has been largely overlooked. Mostly, the scientists
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concentrate on the representative structure that has typical parameters. However, while

looking on the averages, i.e. on ”representative” of the data, we miss a lot of what potentially

could be going in the economy, the underlying granularity of the economy. That is why it is

interesting to start thinking about the implications of this heterogeneity, and look not only

on average but also on the entire distribution of firms to see then how shocks may affect

individual firms.

Acemoglu (2010) looks at propagation of shocks through networks in the economy. The

main result of his paper is that one shock of some large enough firm will affect other firms

and cause the “cascades” of effects. This result is in line with the search for the power-law

behavior in many of the macro(-micro)economic structures. The reason behind that is the

so-called “fat tail” of the power-law distribution where a significant part of the whole data

lies. Thus, if the power-law behavior is being observed, then in the case of some economical

instability the governing authority would like to concentrate more on the firm in the fat tail

of the distribution.

Literature on the the power-law behavior with its applications in Economics and Finance

is abundant. Axtell (2001) found the evidence of the Zipf’s law (a special case of the power

law with exponent α ≈ 1, to be discussed in section 3) for US firms. City sizes in most of the

countries also turn out to exhibit the power-law behavior (Gabaix 2009). However, to the

best of my knowledge, there was no previous research on power-law behavior in countries with

centralized governance. It may be due to the fact that government has a strong influence on

the much of the macroeconomic structures like firms. This paper will identify the power-law

behavior in Kazakhstani cities and firms with respect to their sizes (population for the cities

and number of employees for firms).

Economic papers on trying to detect a power law use a simple Ordinary Least Squares

(OLS) regression. OLS is the method of measuring unknown parameter. However, it requires

specific assumptions of the data to hold. The objective of this paper is to use more advanced

tools (which will result in more general outcomes) like Kolmogorov-Smirnov test statistic in

searching for the power-law behavior in Kazakhstan.
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The paper is organized as follows: section two will provide a brief introduction to the

power-law theory. The next section will present the estimate of the power-law parameters.

Afterwards, section four will detect the existence or absence of the power law behavior in

Kazakhstani distributions of city and firm sizes. I find that the city sizes do follow power-law

statistical regularity, while only the upper-tail of the fim-size distribution does so. Finally,

section five will test for the fraud detection in our obtained data with concluding remarks

followed.

2 Power-law properties

The variable of interest X follows a power-law if it is drawn from a distribution with the

following probability function

p(x) = Cx−α,

where α ∈ Q is a power-law exponent, and C ∈ Q is some unostentatious constant.

Power law, like many other distributions, might come in one of two types: continuous dis-

tributions governing continuous real numbers, and discrete distributions where the variable

of interest takes on only natural values.

Let’s assume that we have some empirical dataset xi = {x1, x2, . . . , xn}. Then, a contin-

uous power-law distribution, p(x) has the following form:

p(x) dx = Pr(x ≤ X ≤ x+ dx) = Cx−α dx,(1)

where X ∈ xi , and C is a normalization constant (which reduces the function to pdf with

total probability being equal to one). We could clearly see that this probability function

diverges as x → 0, which in turn means that (1) does not work ∀xi ≥ 0. Thus, there has

to be some threshold value xmin, starting from which the powel-law starts to behave. Then,

given that α > 1, and calculating the normalizing constant, we find that

p(x) =
α− 1

xmin

(
x

xmin

)−α
(2)
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Coming to a discrete case, the observed values can take only integer values, therefore,

probability distribution function will be of the following form:

p(x) = Pr(X = x) = Cx−α.(3)

As in continuous case, this function diverges at zero. Thus, there has to be some lower

bound xmin for the power-law bahavior. Calculating the normalizing constant, we obtain:

p(x) =
x−α

ζ(α, xmin)
,(4)

where

ζ(α, xmin =
∞∑
n=0

(n+ xmin)−α(5)

is Hurwitz zeta function (for more details see Clauset 2011).

3 Procedure

As we have seen from the previous part, the pdf of power-law distribution depends on two

parameters, the power-law exponent α, and the threshold value xmin, from which the power-

law starts to behave. Thus, we need to find these two parameters in order to see whether

the data fits power-law or not.

3.1 Estimating the power-law exponent α

It is relatively easier to find the value of α rather than that of xmin. Let’s for a second

assume that we know xmin (which we will in fact estimate later in this paper). Then for

the continuous power-law case, the way we derive the power-law exponent is by using the

maximum likelihood estimation (MLE). We begin by stating the pdf of the power-law first:

p(x) =
α− 1

xmin

(
x

xmin

)−α
.
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The log-likelihood function is then

L = ln
[ n∏
i=1

α− 1

xmin

(
x

xmin

)−α ]
(6)

Simplifying (6),we get

lnL = ln
[ n∏
i=1

α− 1

xmin

(
x

xmin

)−α ]
(7)

= n ln

(
α− 1

xmin

)
− α

n∑
i=1

ln

(
xi
xmin

)
= nln(α− 1)− nln(xmin)− α

n∑
i=1

ln

(
xi
xmin

)
Now we set partial derivative of (7) with respect to parameter α equal to zero, and solve

for α:

∂L
∂α

=
n

α− 1
−

n∑
i=1

ln

(
xi
xmin

)
= 0

α = 1 + n
[ n∑
i=1

ln
xi
xmin

]−1
.

Standard error of the MLE is σ̂ = (α̂ − 1)/
√
n. Since α depends on xmin, so does the

standard error (Clauset, 2007).

3.2 Estimating xmin

Using MLE for estimating xmin will not bring us the desired result, because as we increase

the value of xmin, we decrease the number of observations in our sample. As we could see

from (6), the likelihood function gets smaller as number of observations gets larger, that is

why the likelihood will never decrease when we truncate our sample. As a result, the MLE

approach will converge to the value of xmin = maxixi, and will make the size of our sample

n equal to one.
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3.2.1 Hill Plot

One of the methods of estimating xmin is the Hill plot, which was often used by scientists

in the past (Clauset, 2007). The idea behind this method is to construct a graph of the

function α(xmin) against the domain xmin ∈ {xi}. The value of xi, where the region of

α(xmin) function starts to be more or less flat, would become our xmin. Thus, in the past

scholars were visually estimating the value of xmin to observe a power-law. The downside of

this method is that the estimation of the threshold value occured to be quite subjective. We

will refer to Clauset (2011) who provided a Hill plot for n = 500 observations, with α = 2.5

(see figure 1).

Figure 1: Hill Plot

Retrieved from http://tuvalu.santafe.edu/ aaronc/courses/7000/csci7000-001 2011 L3.pdf

From the figure above we could see the Hill plot for n = 500 i.i.d. observations from a

shifted power law, with parameters α = 2.5, and C = 15; inside there is also a plot of counter

cumulative distribution function (ccdf) of this sample. The diagram suggests that stability

starts approximately from xmin = 20, which, using the maximum likelihood approach, gives
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us α̂ ≈ 2, which makes the right tail of the distribution much heavier that it actually is.

For smaller values of xmin the deviations from the true value of α is evoked from fitting a

power-law model to non-power-law-data. For larger values of xmin, the deviations from the

true value of α is caused by the noise in sample (Stoev et al. 2006).

3.2.2 Theoretical Approach

Several theoretical approaches have been proposed in order to estimate the value of xmin.

Handcock and Jones (2004) presented the general model of the discrete case which was

considering the data above and below xmin, where the values of xi > xmin would exhibit a

power-law behavior, and the values below xmin would follow some probability distribution

px. Then they search for the best fit of the model to the sample data, letting xmin vary.

Their model, however, has some downsides. The most important one is the fact that it can

not be generalized to the continuous power-law type (Clauset 2007).

The method that I will use in this paper, and which works for both discrete and continuous

cases, was presented by Clauset et al. (2007). The idea behind the method is choosing

the value xmin such that probability distribution of the observed data above xmin and the

theoretical power-law distribution is as congruent as possible. Choosing x̂min lower than the

true value of xmin will bring us statistical fluctuations due to differences in the samlpe and

the model describing it. On the other hand, choosing x̂min greater than the actual value of

xmin will reduce the efficiency of the data because observations between xmin and x̂min would

have fitted the power-law model, and as a result our dataset became poorer. What is in

beetween these two cases is what we are looking for.

I will rely on the most widely used measure of estimating the distance between two distri-

butions - Kolmogorov-Smirnov Statistic (KS) (Press et al. 1992). KS statistics calculates the

maximum distances between the cumulative distribution functions of the theoretical model
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and the data:

D = max
x≥xmin

|S(x)− P (x)|,(8)

where P (x) is the CDF of the theoretical power-law model with the best fit for all xi ≥ xmin,

and S(x) is the CDF of our data where observations are at least equal to xmin. Now, since

we are looking for the minimal distance between two distributions, our aim is to minimize

KS statistic D by finding an appropriate value of x̂min. The theoretical CDF is given by the

following equation:

F (x) =

(
x

xmin

)(−α+1)

.(9)

We compare (9) to the empirical CDF, which is simply the vector (1,(n-1)/n,. . . , 1/n). It is

so because empirical CDF turns out to be a step function, which shows the part, or fraction

of the whole sample less than some x. For each point of our observation data, we find KS

statistic by comparing these two CDFs. Then, after getting the vector of these KS statistics,

we choose the minimum one. The value of xj corresponding to this minimum KS statistic

point will be our xmin.

Clauset et al (2007) describes other test statistics in order to estimate the lower bound

xmin. They include: Reweighted KS, Kuipers, and Anderson-Darling statistic. However, it

the author claims these test statistics do not bring much different results from the regular

KS statistic.

3.3 Power-Law Hypothesis Test

In the previous section we showed how to fit a power-law distribution to some sample data

by finding appropriate threshold value xmin, and the power-law exponent α. However, we

do not know how well the data actually fits to a power-law distribution. For instance, if

the data is generated from exponential, or lognormal distribution, whose shape even slightly

resembles that of the power-law distribution - could always fit to the power-law. Even if the

fit is very poor, it is still a fit.
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In the literature there are few tests that would identify whether the data fits the hy-

pothesized distribution. However, following Clauset (2007) I will rely on the test based on

KS statistics. As described in section 3.2, the KS statistics was giving us back a number

which was used as a quantity to test how close the data to the hypothesized distribution

is. The method would be to calculate the value of D defined in previous section, and then

if the returned number is small enough, the powel-law distribution is a suitable model for

our observations sample; otherwise if it is large, then power-law is not a good enough fit.

Consequently, the appropriate question would be how large it should be so we can rule-out

the hypothesized distribution. Clauset et al (2007) suggest that the best option would be to

pick up the significance level equal to ten percent. That is, if p-value is greater than 0.10,

then we would accept the null hypothesis that both data sets are coming from the same

distribution, otherwise we reject it.

Since we want to detect a power-law behavior, we will compare our data set with a

randomly power-law generated data. Clauset et al (2007) suggest to generate 2500 random

points in order to get correct p-value within two decimal points, and thus to perform 2500

KS-tests.

3.4 Competing distributions

A high number of p-values larger than our siginficance level does not guarantee that the

power-law is the best fit. It just tells us that our data set fits it plausibly well. Thus, we

need to test for lognormal and exponential distributions that have approximately the same

shape as the one of the power-law. If these two other distributions also would fail to reject

the null hypothesis, then we will have to perform likelihood ratio test. This test that would

help us to determine which of two distributions is the better fit for our data points. The

idea behind this test is to compute the likelihood ratio of two distributions, and then the

distribution with a higher likelihood ration would be chosen as a better fit.
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4 Power-Laws in Kazakhstan: City and Firm Sizes

This section establishes the existence or absence of the cases of power-law behavior for

city and firm sizes in Kazakhstan. To the best of our knowledge, the test for power-law

behavior has not been conducted in Kazakhstan. Previous line of research has concentrated

on developed economies (Segarra & Terruel, 2010). Therefore, it is of particular interest

to detect statistical regularity in the state because Kazakhstan is a young country with

emerging economy.

4.1 City Sizes Distribution

4.1.1 Literature Review

Auerbach (1913) was the first one to propose that the city sizes distribution could be ap-

proximated by the power-law distribution (Ioannides 2003). In other words, if we rank the

cities in terms of their sizes from the most populated (rank=1) to the least populated one

(rank=N), then the resulted distribution of city sizes would approximately follow a power

law. Thus, if we denote the variable Y to represent the rank of the city, and the variable X to

represent its size, then we would have a relationship of the type Y = kX−α, or equivalently

log(rank) = log k − α log size

Zipf (1949) made a further extension of the work done by Auerbach, and stated that the

power-law exponent α of the city size distributions should be approximately equal to one.

Gabaix (2009) analyzed the largest 135 US metropolitan areas for the power-law behavior.

He put the cities in descending order in terms of their population (New-York as first, followed

by Los-Angeles, etc.). Afterwards, a graph of the log of the rank of the city on the y-axis

was put against the log of the population of the repsective city on the x-axis. Surprisingly,

the graph revealed a straight line.The linear regression of Gabaix’s data set yielded:

ln Rank = 10.53− 1.005 ln Size

12
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The graph below shows the emerging plot for the 135 US metropolitan areas taken from

the Statistical Abstract of the United States for the year 1991.”

Figure 2: The figure shows the log size vs log rank for

135 US metropolitan areas, 1991. Obtained from Gabaix (1999).

Gabaix, one of the prominent researchers in this series of literature, showed a validity

of the Zipf’s law for cities using stochastic processes (Gabaix, 1999). Among other things,

he shows that under assumption that distinct cities’ growth is a random process but with

the same variance and with the same expected growth rate (Gibrat’s Law), then the city

size distribution in its limit converges and tends to follow the special case of the power-law

- Zipf’s law. The support for Zipf’s law has been validated for a number of countries (Rosen

and Resnick, 1980).

However, cases where the power-law has been refuted for cities is also not a new for the

literature (Brakman, 1999). This kind of deviations from the power-law regularity is a source

of inspiration for this paper. Since the line of research concentrated mostly on developed

countries, it possesses an interest whether developing country like Kazakhstan is one more

exception from such deviation or not.

13
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4.1.2 Case of Kazakhstan

I have obtained the data for Kazakhstani cities from Committee on Statistics of the Ministry

of National Economy of the Republic of Kazakhstan (stat.gov.kz) for the year 2014. In

total there are eighty seven (87) populated localities that have a status of the city. The mean

size of the city was 107942.6, with standard deviation being equal to 211836.5. The largest

city inside this data is Almaty with population of the city equal to one and a half million,

while the lowest populated city is Zhem city (2033 people living there).

I applied procedures described in sections two and three. Kolmogorov-Smirnov (KS) test

returned that 2459 out of 2500 data points, or equivalently saying, 98% of the whole data set

fail to reject the null hypothesis (which states that two data sets are coming from the same

distribution). Thus, we can claim the existence of the power-law behavior in Kazakhstani

city sizes. The overall city size distribution in Kazakhstan fits the power law with parameters

α = 1.53, and xmin = 24302. This result is in line with many other papers detecting the

power-law behavior in city sizes (Rosnick & Resnick, 1980). Figure 3 below shows the plot

of Kazakhstani city sizes distribution, obtained by regressing the log of the rank (y-axis) on

log of population (x-axis), as Gabaix (1999) did in his work. The fitted power-law line is

marked green.

As was mentioned above, Gabaix (1999) showed that the the city size distribution should

converge to the “Zipf’s line” in its limit, given cities’ identical expected growth rate and

variance. Thus, according to the theory, we might expect continual population reduction in

the middle size cities. Consequently, six data points below the theoretical line, referring to the

group of the biggest cities in terms of population (Almaty, Astana, Shymkent, Karaganda,

Aktobe, and Taraz) are expected to approach the theoretical Zipf’s line. Again, the latter

is going to happen due to the size reduction of the middle size cities.

Another year I have picked up for the test of the power-law behavior in Kazakhstani cities

is 1999. The reason behind looking for this particular year was motivated by the transfer

of the state capital from Almaty to Astana in 1997. It posed a specific interest of how

that event influenced the city size distribution after a couple of years. Applying the same

14
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Figure 3: City sizes distribution in Kazakhstan, 2014

techniques, I found that the power-law behavior failed to exist in 1999. KS-test returned

that 0% of the whole data set fail to reject the null, impying that the power-law is not a

good fit for the city size distribution of Kazakhstan in 1999. City sizes distribution for the

year 1999 is given in Figure 4 below.

Such deviation from the statistical regularity might be explained by the resettlement of

considerable part of population during the years 1998-1999. For example, the total number

of people migrating in years 1998-1999 was close to 450,000. This number is only four times

less than the total number of internal migrants in Kazakhstan in the next ten years period

(2000-2009).

I also want to find the support for the theory of Gabaix (1999) about the city size

distribution convergence to the Zipf’s law. For this reason, the data of Kazakhstani cities

for the year 2018 was used. Applying the same techniques, I find that KS-test returned that

2418 out of 2500 data points (approximately 97% of the whole data) failed to reject the null

(two data sets are of the same distribution). Therefore, there is a one more evidence of the

power-law behavior. What is more important, I find that the power-law exponent α is equal

15
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Figure 4: City size distributions for the years 1999 (on the left) and 2018 (on the right)

to 1.49. In a four-year period there was a slight decline in the exponent, from 1.53 in 2014

to 1.49 in 2018.

16
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Having considered years 2014 and 2018, I find a support of the theory proposed by Gabaix

(1999), in a way that the limit of the city size distribution will converge in a manner to obey

the Zipf’s Law. The future extension of the work might have a look on evolution of the

city size distribution after some period, and seek for the new evidence to support Gabaix’s

theory (1999).

The Table 1 below briefly summarizes findings of this section.

Year PL behavior p-value PL exponent α

1999 N - -

2014 Y 0.02 1.53

2018 Y 0.03 1.49

Table 1

17
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4.2 Firm Sizes Distribution (FSD)

4.2.1 Literature Review

Power-law behavior in the distribution of city sizes is a classical example in the line of

research. As we have seen previously, Kazakhstan is not an exemption from this wide-spread

stastical regularity. Having detected that, I now focus on the firm size distribution (FSD)

in Kazakhstan.

Gibrat’s (1931) was the first one to raise the interest in analyzing FSD. In his PhD thesis,

he proposed that the FSD can be approximated by the lognormal distribution. He aimed

to provide both theoretical and empirical base for his finding. Today’s interpretation of

Gibrat’s law is an extension of his primary argument. Loti et al. (2013) claims that the

main usage of the Gibrat’s law presented in a number of related articles is following: growth

rate of the firm is independent from its size. It has to be noted that in Gibrat’s original

work that was only an assumption.

Conventionally, it was believed that the firm size is log-normally distributed (Hall, 1987

and Evans, 1987). However, in the last decades a number of empirical studies reveal that the

FSD is better described by Pareto distribution, also known as the power-law distribution (see

Axtell, 2001). Crosato and Ganugi (2007) demonstrate that both power-law and lognormal

distributions can be derived from multiplicative random growth models à la Gibrat.

Yet, there are examples of FSD in some countries which do not exhibit a power-law

behavior. Still, most of those empirical findings estimate that at least the right-tail of the

FSD fits power-law well (Okuyama et al. 1999; Steindl, 1965; Ijiri and Simon, 1977). The

literature on this topic is abundant, because the distribution of the firm sizes is rather

important. For instance, FSD is a critical element in estimating the connection between

alteration in employment and output (Hölger et al, 2016).

However, this section’s main insipiration for looking for a FSD is coming from the rela-

tively recent research about aggregate fluctuations in the economy. Before it was established

that idiosynchratic shocks on the firm level are not able to produce aggregate movements as

18
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they “average out” as a part of the whole economy. Nonetheless, fresh line of research shows

that this is not necessarily true.

For instance, Gabaix (2011) proposes that idiosyncratic firm-level shocks can result in

aggregate fluctuations, if the firm-size is power-law distributed. Therefore, if there is some

sign of the shock in the macroeconomy, then the government would want to contribute to

the recovery of the firm located in the fat-tail of the distribution.

Also, the importance of studying the size distribution of firms aligns with the theory

of ”Cascades of Effects” in the paper “Cascades in Networks and Aggregate Volatility”

(Acemoglu, 2010). In his paper Acemoglu studies the consequence of the low productivity

of the relatively large firm on the rest of the economy. It turns out that the microeonomic

shock will originate a negative aftereffect, and may cause aggregate fluctuations. (Acemoglu,

2012 shows that this assumption strongly depends on the configuration of the networks in

the economy).

Factors mentioned in the last paragraph are not the only ones that make the study of

the firm size distribution interesting and important. Thus, the analysis of the firm-level

distribution is of vast importance.

4.2.2 Case of Kazakhstan

The firm level data being used is the 2008-20014 Bureau van Dijck’s ORBIS commercial

database. In total there are approximately 67,000 firms from all sectors of the Kazakhstani

economy (manufacturing, agriculture, and services), and from every region in the country.

The database consists of the company’s year end accounts. Almost every firm in our data

sample has information on employment (firm size), age of the firm, and the region where it

is operating.

The year 2014 had the most observations, so I decided to test our hypothesis for this year

first. The largest size of the firm for 2014 was 16761, with the mean and standard deviation

being equal to 60.61 and 204.4, respectively. I have applied tecnhiques described in section

three. For this year, the power-law behavior failed to exist. Kolmogorov-Smirnov (KS)
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test revealed that out of 2500 points, 837, or approximately 34 % failed to reject the null

hypothesis (which states that two data sets are coming from the same distribution). That is

why we say that there is no evidence of the power-law behavior in Kazakhstani firms levels.

Exponential distribution - 0 out of 2500, 0% of the points fail to reject the null. Figure 5

below shows Kazakhstani FSD for the year 2014. Log of the rank is placed on the y-axis,

while log of the size is on x-axis. Theoretical red line is a fitted power-law distribution line.

Figure 5: Firm Size Distribution, 2014

Yet, it would be still useful to acknowledge whether the upper-tail of the distribution

follows the power-law or not (Okuyama, 1999; Ijiri & Simon, 1977; Steindl, 1965). Applying

again procedure described in section three, we find that the upper-tail of the FSD for the

year 2014 fits the power-law with xmin equal to 99, and the power-law exponent α equal to

2.36.

One of the possible explanations behind the absence of the overall power-law behavior
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might be the year that we have picked up for analysis. So the hypothesis was tested on other

years in the data set. However, KS-test again did not support the existence of the power-law

behavior in Kazakhstani firm levels.

Thus, Kazakhstani firm-level distribution did not exhibit a power-law behavior. There-

fore, we are not able to line our results with the works of Gabaix (2011) and Acemoglu

(2010, 2012). Equivalently saying, our result about the absence of the power-law behavior

in Kazakhstan cannot follow the theory of Gabaix (2011) and Acemoglu (2010, 2012).

Possible explanation may be derived from Sutton (1997). Based on the model proposed

by Simon (1977), Sutton presents an alternative way of stating the Gibrat’s law: “The

probability that the next opportunity is taken up by any particular active firm is proportional

to the current size of the firm.” This law is not in line with results obtained by Konings (2016).

Konings (2016) showed that Kazakhstani FSD is less skewed than in typical market

economies. Therefore, a firm growth barriers like access to global markets and finance, as

well as the deficiency of high managerial skills might take place. By running a few firm

size growth regressions, Konings (2016) discovers that in Kazakhstan small firms grow faster

than large ones.

This incongruence of results obtained by Konings (2016) with Sutton’s (1997) version

of the Gibrat’s law is one of the possible explanations behind the absence of the power-law

behavior in Kazakhstani FSD.

5 Statistical Discrepancy or Made-up Data?

Earlier in this paper, we have seen that FSD for the most of the countries does follow a

power-law. The absence of such regularity in Kazakhstani firms level might be explained by

misleading in the data set collection, or some statistical errors. However, there even might

be the case that the data was made up.

Here in this chapter we will try to see whether there is a fraud in our data using one

more statistical regularity (law), the Benford’s Law. Irmay (1997) presents the evidence that
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Zipf’s law is closely related to Benford’s distribution.

Benford’s law has been applied to fraud detection: Nigrini (1996) proposed using Benfords

Law to detect the fraudulous tax returns. Also, B. Rauch and Gottsche (2011) analyzed

financial data of European Union countries using Benfords law. They found that among

these countries, Greece had the largest deviation from Benfords Law.

Since the previous section revealed the absence of the power-law behavior in the distri-

bution of Kazakhstani firm sizes, unlike in the other countries (Axtell, 2001), this section

will test the data we have for the fraudulence (using Benford’s Law).

5.1 Benford

Benford’s Law is named after Frank Benford, an American physicist and electrical engineer at

General Electric. In 1938 Benford analyzed 20 data sets, including areas of rivers, population

census data, specific heat of chemical substances, atomic weights, house address data, and

mathematical sequences. He published his findings in a paper “The Law of Anomalous

Numbers” (1938).

Benford found that for nearly all data sets the distribution of the first digits is approxi-

mately given by

P (d) = log10

(
1 +

1

d

)
, for d = 1, 2, . . . , 9

d 1 2 3 4 5 6 7 8 9

P (d) 30.1% 17.6% 12.5% 9.7% 7.9% 6.7% 5.8% 5.1% 4.6%

Table 2: Benford’s Distribution
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5.2 Mathematical Explanation of Benford’s Law

Let d1 be the first non-zero digit of n ∈ R. Then

d110k ≤ n < (d1 + 1)10k for some k ∈ Z.

Taking the base 10 logarithm on each side of this inequality, we have

k + log10 d1 ≤ log10 n < k + log10 (d1 + 1).

From this we conclude that

log10 d1 ≤ {log10 n} < log10 (d1 + 1),

where {t} is the fractional part of t.

Assuming that the numbers {log10 n} for the n’s from our data set are distributed uni-

formly modulo 1, the proportion of n’s satisfying

log10 d1 ≤ {log10 n} < log10 (d1 + 1),

is given by

P (first digit is d1) = log10(d1 + 1)− log10 d1

= log10

(
d1 + 1

d1

)
= log10

(
1 +

1

d1

)
.

See Diaconis (1977) for more details.

5.3 Benford’s Law in Action: Firm Size Data Test

The firm level data obtained from Konings (2016) was tested against Benford’s law. Three

tests were used in order to detect statistical irregularity in the dataset: Pearson’s Chi-

Square, Mantissa Arc, and Mean Absolute Deviation (MAD) tests. For Chi-Square and

Mantissa Arc test, we tested the following null hypothesis: our empirical distribution has

no association with the Benford’s distribution. The p-value for chi-square and Mantissa
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tests is approximately the same and is low enough to reject the null (p-value < 2.2e−16).

In MAD test, we are looking for the average distance between the empirical and theoretical

data points. It turns out that the MAD test’s mean absolute deviation is also quite small

(0.008440135), so there is no significant deviation from the theoretical distribution.

Figure 4 below shows actual (firm level data) versus theoretical data points. Vertical

axes show the frequency of the first digit appearing on each data point, while horizontal axes

show the digits itself. Theoretical distribution is shown by the red dashed line, while blue

bars show first-digit distribution of our data set. It could be seen that the firm level data

distribution is not far away from Benford’s theoretical distribution.

Figure 6: Firm Level Data vs Benford’s Law

Thus, we make an inference that the data set we obtained is not a subject for suspicion,

and apparently there should be some other specific reason behind the absence of the power-

law behavior in Kazakhstani firms.

6 Conclusion & Future Work

This paper tested Kazakhstani city and firm levels for existence of the power-law behav-

ior. The procedures described in sections two and three were used in the process. Thus,
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Kolmogorov-Smirnov test revealed existence of the power-law behavior for the distribution

of city sizes in Kazakhstan for years 2014 and 2018. Moreover, our results are in line with

the work by Gabaix (1999), where he showed that the power-law exponent α should con-

verge to one, if specific assumptions hold. Future work may look on evolution of the FSD

(particluarly on its power-law exponent) after some period of time.

In regards with the firm level, we failed to find the evidence of the power-law distribution

in Kazakhstani firm sizes. The outcome of the analysis was rather unexpected, since it is

believed that the firm size distribution typically follows a power-law. However, I found out

that the upper-tail of the firm size distribution of our dataset follows a power-law, which is

in line with most of the papers (Okuyama, 1999; Ijiri & Simon, 1977; Steindl, 1965; etc).

Feasible explanation behind the deviation from the popular statistical regularity is the fact

that Gibrat’s law does not work well in Kazakhstani market.

One more reason might have been in data fraudulence. The test for Benford’s law in

detecting the fraudulence in the data was applied. According to theoretical results, the

fraudulence in the data was not detected.

The future work is to find a credible explanation of the absence of the power-law behavior

in Kazakhstan. One possible explanation might be the fact that Kazakhstani government

has a strong interference on the state-owned firm levels.
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