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The characteristic properties of the inverted-population-forming processes in lasers with ionizing pumping are considered. Results
obtained from research of active laser media concerning the p-s transitions of atoms of neon, mercury, and cadmium are presented.
The feasibility of ion-ion recombination in lasers with nuclear pumping is discussed. The excitation kinetics of the first negative
system of CO, heteronuclear ionic molecules of inert gases, and halogenides of inert gases under ionizing radiation are considered.

1. Introduction

The study of the optical (laser or spontaneous) radiation of
nuclear-excited plasmas is of interest for the development of
a method to extract energy from nuclear reactors and also
to control and adjust the nuclear reactors’ parameters. It is
assumed that in the future, nuclear-pumped lasers will be
used for a wide range of applications [1-3], especially in cases
when powerful compact lasers must be placed at autonomous
remote sites. The direct pumping of active laser media is
generally achieved by means of products of nuclear reac-
tions involving thermal neutrons from the nuclear reactor:
3He(n,p)3H, YB(n,a)’Li, 2°U(n,f)E and others. Such active
laser media containing 235U, 3He, or B or compounds that
contain these isotopes are applied to the walls of the laser
chamber. There is also substantial research interest in this
field related to the difference between the level-population
mechanisms under nuclear pumping and the population
processes in a common gas-discharge laser. Current lasers
with nuclear pumping [2] radiate in the spectral band of
391-5600 nm, at approximately 50 transitions of Xe, Ar, Kr,
Ne, C, N, Cl, O, I, and Hg atoms, Cd*, Zn", and Hg" ions,
CO molecules, and N,* molecular ions. Lasers with nuclear
pumping at the xenon atomic transitions have been explored
most thoroughly, and record-breaking pulsed power values of
1.3 MW and pulse energies of 520 joules have been achieved
for lasers with nuclear pumping [4].

In this work, the experimental research efforts concerning
the optical radiation of nuclear-induced plasmas performed
at the Kazakhstan Institute of Nuclear Physics (INP) are
analysed. In contrast with the majority of the scientific com-
munity, who have conducted their research regarding direct
nuclear-pumped lasers by using pulse nuclear reactors with
high neutron fluxes [1, 2], the research at the INP has been
conducted using the stationary nuclear WWR-K reactor,
which can produce thermal neutron fluxes up to 10** n/cm’s.
In this regime, the power density of the nuclear-reaction
products that are transformed into gas does not exceed a few
W/cm?, necessitating a search for active media with very low
lasing thresholds. The advantage of experiments conducted
using stationary nuclear reactors lies in the possibility to
perform more detailed research concerning nuclear-induced
plasma [5].

At INP, the study of lasers with direct nuclear pumping
began in 1980 after the appearance of several publications
regarding the creation of low-threshold lasers: these publi-
cations concerned an Ar-Xe mixture with a lasing threshold
of 8 - 10" n/cm?s [6] and continuous helium-neon lasers
at neutron fluxes of 2 - 10" n/em?®s [7]. According to the
most optimistic forecasts, the power of the gas mixtures used
for pumping (nuclear-reaction products from both *He and
uranium fission fragments were used) in our experiments was
sufficient to achieve laser action at the infrared transitions of



xenon. However, under the extreme conditions of a stationary
nuclear reactor core (sound uniformity of temperature, high
temperature, sputtering, and precipitation of impurities from
the layer containing uranium), this proved to be insufficient
[8]. The work of Carter et al., which was also performed
using a stationary nuclear reactor, is worthy of special note.
In our experiments, the neutron flux density was smoothly
varying from 10'" to 10" n/cm?s, but the lasing threshold
in the *He-Ne mixture was not reached [5, 8]. Moreover, in
mixtures containing neon under ionizing pumping, emission
at A = 632.8 nm is nearly absent [9, 10]. The negative results
of these early experiments revealed the necessity of searching
for novel active media and novel schemes of level population,
taking into account the characteristic properties of nuclear

pumping.

2. Characteristic Properties of Processes in
Lasers with Ionizing Pumping

In a quantum system, the gain (absorption) coefficient of a
medium is described by the following expression [11]:
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Here, the indices 1 and 2 refer to the upper level (2) and the
lower level (1), N is the level population, and g is the statistical
weight of the level. The cross-section of stimulated transition
is calculated as follows:
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where A is the transition wavelength, Aw is the line width, and
A is the transition probability. In an amplifying medium (« >
0), it is necessary to maintain a state of population inversion:
the population of the upper level must exceed the population
of level one (with the appropriate correction for degeneracy
multiplicity). Either a favourable upper level population or
the deactivation of the lower level is essential for the creation
of an inverted population. Inversion may be achieved not
only by preferential population of the upper level but also by
selective deactivation of the lower level.

Gas lasers are distinguished by a variety of pumping
methods: they may be based on electrical discharge, chem-
ical reactions, gas-dynamic excitation, optical pumping, or
pumping by electron beams or nuclear-reaction products,
among other methods. In the vast majority of gas lasers,
population inversion is generated by electrical discharge.
The fundamental distinctive feature of lasers that operate
via pumping by nuclear-reaction products or electron beams
compared with gas-discharge lasers is that the population in
many active media is determined not by electron impact at
the lower levels but in the process of plasma recombination
(“from the top downward”). In the first stage, the energy
transfer from the atoms and ions of the easier buffer gas A
to the atoms (molecules) of gas B occurs through one of the
following processes:

(1) recharging: A" + B — A + (B")";
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(2) Penning reaction: A* + B — A+ (B")" +e;

(3) excitation transfer: A* + B — A + B".

The upper laser level may be populated either in one of these
processes or in subsequent processes of plasma relaxation:

(4) cascade transition from high-lying levels: B** — B*
+ hy;

(5) dissociative electron-ion recombination: B, + e —
B* +B;
(6) ion-ion recombination: A* + B~ — A + B™.

In gas-discharge lasers of low pressure, the lower laser level
is typically deactivated in optical transitions to the low-
lying levels; in lasers with nuclear pumping at atmospheric
pressure, such depopulation occurs through collisions with
medium atoms or plasma electrons and through Penning
reactions with additional gas particles. In excimer lasers,
where the excimer molecule transitions to the lower diver-
gence or loosely bound state through photon emission, there
is no problem with lower-level depopulation.

The characteristics of laser radiation under pumping by
hard ionizers depend on the power and duration of the energy
deposition into the active medium but do not depend on
the type of ionizer [3]. This means that the kinetics of the
processes in the active media of lasers excited by electron
beams and lasers excited through nuclear pumping will be the
same. Experiments concerning beam pumping may be used
to model the properties of active media for nuclear pumping.
The results of research regarding lasers with nuclear pumping
may be applied in implementations of electron or ion beams
[12,13]. There is some difference between these two pumping
methods because of the possibility of obtaining short and
powerful beams of electrons. In pulse nuclear reactors, the
pulse duration is in the order of tens of microseconds or more,
which is much longer than the spontaneous lifetime of the
laser levels (usually tens of nanoseconds). An electron beam
provides an energy-deposition power of several MW/cm®,
whereas in pulse nuclear reactors, at maximum neutron
fluxes of 10" n/cm®s, the pumping power does not exceed
5kW/cm’ [2]. Therefore, laser action under nuclear pumping
has a continuous or quasicontinuous nature (i.e., the duration
of the laser radiation pulses is much longer than the lifetime
of the laser levels).

3. Development of Experimental Methods

Spectral analysis of the luminescence of gas mixtures is
the primary method that is applied in research of nuclear-
induced plasmas. Under radioisotope pumping, 18 sources
with 2'°Po placed on the surface of each cylinder, which had
a diameter of 25mm and a length of 70 mm, were installed
in a stainless-steel chamber [14]. The maximum ranges of «
particles with an energy of 5 MeV in helium, argon, and xenon
under normal conditions are 183, 37, and 25 mm, respectively.
The chamber was heated and outgassed to vacuum of ~10~> Pa
prior to the installation of the sources. After the installation
of the « sources, the chamber was pumped without heating
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for 2-3 weeks until well-reproducible (variation of no more
than 3-7% in intensity, depending on the gas) spectra of
luminescence were achieved. The gas pressure was monitored
using a vacuum manometer and a VDG-1 vacuum meter, and
spent gases had the following purities: Ne—99.996%, He—
99.99%, Ar—99.992%, and Kr—99.999%. Hydrogen and
deuterium (D, enrichment of 99%, nitrogen-impurity level
of ~0.1%, and oxygen ~0.05%) were passed through silica
gel and active copper for purification. The emission spectra
were analysed by means of an SPM-2 monochromator with
a quartz prism and an FEU-106 photomultiplier operating in
photon-counting mode. The total activity of the & sources was
9.6 GBq, which corresponds to an average energy deposition
of W ~3-10°W-cm™ in 2atm of helium and a “mean”
ionisation rate of § ~ 4 - 10"* cm™ s with respect to the gas
volume.

Studies of the luminescence spectra at higher pumping
power and experiments with laser installations were con-
ducted using a stationary nuclear reactor, WWR-K. WWR-K
is a thermal neutron pool-type reactor. Its coolant, moderator,
and reflector consist of desalted water. Uranium enriched
to 36% in the isotope uranium-235 is used as reactor fuel.
During the experiments, the maximum thermal-neutron
flux density in the central channel of the reactor was 2 -
10" n/cm’s.

A diagnostic experimental installation (Figurel) was
arranged in the form of a stainless-steel tube that had been
polished inside (1) with an outer diameter of 36 mm, a
wall thickness of 2 mm, and a length of approximately 6 m,
assembled from separate sections. The lower portion of the
experimental installation, 700 mm in height, consisted of two
concentric tubes with a gap of approximately 2 mm between
them. The presence of such a double casing, the outer side of
which was cooled by reactor water while the inner side was
subjected to radiation heating, allowed the temperature of the
ampoule that contained the gas mixture (2) to be adjusted by
varying the pressure of the *He in the gap. The temperature at
the bottom of the channel was controlled by a chromel-alumel
thermocouple. This diagnostic experimental installation was
loaded through a hole for a stopper in a rotating cast-iron
reactor cover (3) and placed into the central channel of the
core (4) of the nuclear reactor.

For the reactor research, gas mixtures were loaded into
the core in vacuum-sealed glass ampoules, each of which had
awindow of radiation-resistant cerium glass [15]. The spectral
range of measurement (350-830nm) was determined by
the transmission cut-off threshold of the window and the
photomultiplier sensitivity. For measurements in the UV
band, metal ampoules with sapphire windows were used.
Tests have demonstrated that sapphire may be used as an exit
window for lasers and for the investigation of the spectra of
gas-mixture luminescence in the wavelength region from 0.2
to 7um and at neutron fluences of up to 10'*+ 10" n/cm?
[16]. For this purpose, it is preferable to use sapphire that
does not contain chromium impurities, as when leucos-
apphire is used, the chromium R-line luminescence under
intense y radiation, even at a stalled reactor, impedes the
measurement.

FiGure 1: Installation for spectral studies on nuclear reactor. 1—
experimental channel, 2—ampoule, 3—cast iron lid of the reactor,
4—the reactor core, 5—rotating mirror, 6—SPM-2 monochromator,
7—photomultiplier, 8—radiometer, 9—unsalted water, and 10—
concrete protection.

Three structures for laser installations inside the reactor
core were developed and tested [17]. One structure was
designed for testing xenon laser mixtures with pumping
by uranium fission fragments; another was designed for
testing lasers with inert gas mixtures excited by products
of the *He(n,p)*H reaction, and the third was designed
for the creation of a laser at the mercury triplet lines. As
discussed below, the pumping power under the experimental
conditions at the WWR-K reactor proved to be insufficient to
achieve lasing.

4. Active Media of Lasers at the p-s
Transitions of Atoms

4.1. Mechanisms of Populating the p Levels of Inert Gas
Atoms. The creation of a quasicontinuous laser pumped
by an electron beam at the 3p-3s transitions of neon [18]
inspired research on direct nuclear pumping. We conducted
experiments to search for lasing at the neon transitions
[8, 17] and researched a wide variety of 3He-Ne-Kr(Ar)



mixtures at pressures of up to 7.5atm. Our system made it
possible to detect even spontaneous radiation of a mixture
passing through the exit mirror. The lasing threshold was
not achieved. Further theoretical research [19, 20] and exper-
iments conducted by other organisations [21-23] indicated
that the lasing threshold for the line at 585nm exceeds
10" n/cm’s.

The processes involved in the active media of lasers
at the 3p-3s transitions of Nel are considered to be well
studied [19, 24]: the population of the upper laser level occurs
primarily because of the dissociative recombination of Ne,
and HeNe" molecular ions. Under relatively weak pumping,
HeNe" ions also form Ne," ions through the following
substitution reaction:

HeNe' + Ne — Ne, " + He 3)

Assuming that the dependence of the luminescence intensity
of the line at 585 nm under radioisotope pumping is deter-
mined by the competition between processes involving the
charge exchange of Ne,” ions with the quenching additive
and the recombination of electrons with Ne, ", we can obtain
the additive concentrations at which the intensity drops by a
factor of 2:

VB xS (4)

where k is the coefficient of the Ne, " charge exchange with the
impurities and 3 is the coefficient of the Ne, " recombination.
Then, for k ~ 10" cm®s ™! and S ~ 4 - 102 cm™>s7}, the
presence of impurities at a level of 10 % in an He-Ne mixture
is sufficient to markedly decrease the intensity. In fact, the
intensity at 585 nm in an He-Ne mixture decreases by a factor
of 2 at an admixture pressure 0.4 + 1.3kPa [8, 25].

Apparently, the population of the 3p'[1/2], level of Nel
under excitation by heavy particles does not occur through
the dissociative recombination of molecular ions. Adding
up to 13.3kPa of nitrogen with 2% O, impurities to an
He(200 kPa)-Ne(6.7 kPa) mixture led to the same drop in
intensity as for pure Ar and Kr [8, 25], indicating that
the attachment of electrons to electronegative impurities
had no effect on the population of the 3p’[1/2], level of
neon. A similar result, also under radioisotope pumping,
was obtained in [26]; the line intensity at 585nm in a
Ne(100 kPa)-0,(0.3 kPa) mixture was only 2 times lesser than
the intensity of this line in neon at a pressure of 100 kPa, and
the intensities of the lines at 703 and 725 nm were 4 times
lesser. For comparison, in mercuric mixtures under nuclear
pumping, the population of the Hgl levels occurs through the
dissociative recombination of the Hg, * ions. Adding 10 Pa of
oxygen to an *He-Hg mixture results in the attenuation of the
triplet lines and the resonance line of mercury by a factor of
~500 [27]; this effect is attributed to electron attachment to
0,.

It was concluded that the population of the neon levels
occurs under direct excitation by nuclear particles and
secondary delta electrons. In He-Ne mixtures the population
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also occurs through excitation transfer from metastable states
of helium:

He™ + Ne + He — Ne (3p) + 2He (5)

These conclusions were drawn on the basis of studying the
spectral-temporal characteristics of pure neon and helium-
neon under pumping by heavy charged particles [28].

From our point of view, the more probable channels for
the population of the 3p levels in helium mixtures are cascade
transitions from the 4s levels:

He™ + Ne — Ne (4s) + He (6)
Ne (4s) — Ne (3p) + hv (7)

It is known that the Ne(4s) levels are close to the He(2’S,)
level, and indeed, helium-neon laser operation at 1.15 um is
based on excitation transfer to neon atoms from He(23SI).
The absence of the 4s-3p transition lines in high-pressure
mixtures [28] is related to the fact that this transition is
located in the IR region of the spectrum, beyond the photo-
multiplier sensitivity limit. In one study [29], in which mea-
surements were made at up to 1,100 nm, aline at 966.5 nm cor-
responding to the 4s[3/2],-3p[1/2], transition was observed
in neon and He-Ne mixtures under excitation by uranium
fission fragments. Moreover, in the same study [29], more
than 10 lines at the 3d-3p transitions were identified. The
main conclusion of [25, 28] is that for neon-containing gas
mixtures under pumping by heavy particles, the predominant
mechanism for the population of the 3p levels of neon is not
associated with the dissociative recombination of Ne,*.

The excitation transfer to neon atoms from metastable
atoms of helium and the direct excitation of neon by nuclear
particles and secondary electrons are assumed [25] to be the
most probable channels for Ne(3p) population. In neon, the
3d, 4s, and 5s levels are excited by secondary electrons, and
the population of Ne(3p) occurs through cascade transitions
from these levels. The 3d, 4s, and 5s levels, which are
radiatively bound to the basic state, are effectively excited
by electron impact. The lack of transition lines from the
5s levels observed in [10, 28] is attributable to the fact
that the probability of 5s-3p transitions is much lower than
the probability of 5s-4p transitions in the IR band of the
spectrum. The 5s-4p, 4p-4s, and 4s-3p cascade transitions
may also contribute to the population of the 3p levels of Nel.
In helium-neon mixtures, the population of the 3p levels also
occurs through the nonresonant transfer of excitation from
the He(2381) and He(ZISO) metastable atoms to the 4s and 5s
levels of neon and the subsequent cascade transitions.

Similar conclusions may be drawn with respect to mech-
anisms of level population in lasers with ionizing pumping
at the nd-(n + 1)p transitions of inert gases (n = 3, 4,
and 5 for argon, krypton, and xenon, resp.). According to
[2, 30, 31], through the recombination of the molecular ions
of argon, krypton, and xenon, the nd levels of atoms are
populated, and the (n + 1)p levels are populated through
the subsequent cascade transitions of these nd levels. In
[29], the luminescence spectra of the inert gases and their
mixtures under pumping by uranium-235 fission fragments
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were measured; the pumping power was 40 W-cm >, which
corresponded to a gas-ionisation rate of 10" cm™s™". When
1kPa of krypton was added to 64 kPa of argon, the intensities
of the lines at the 4p-4s transitions of argon atoms were
lessened by a factor of 1.5; when 1kPa of xenon was added,
these intensities decreased by a factor of 2. At the 4p levels
of the argon atom; the lifetime 7 =30ns corresponded to
quenching by atoms of krypton and xenon, where the rate
constant of quenching was approximately 10'° cm®s™". In the
case of the recombination mechanism for the population of
the 3d or 4p levels, the line intensities were decreased by 50—
100 times as a result of the charge exchange of Ar, " ions with
the admixed impurities; the rate constants of the recharge of
Ar," ions on atoms of Kr and Xe are reported in [32, 33].

The total line intensity of the 4p-4s transitions of argon
atoms in the range of 696.5-842.5nm decreased by only a
factor of 1.5 upon the addition of 200 Pa of electronegative gas
(NF;) to 45 kPa of argon [34], confirming the conclusion that
the recombination of molecular ions with electrons is not the
basic mechanism of the population of the 4p and 3d levels of
argon. The same conclusion may be drawn in relation to the
5p-5s transitions of krypton, as the lines intensity decreased
only by a factor of 2 when 1kPa of xenon was added to 32 kPa
of krypton [29].

Therefore, the dissociative recombination of argon and
krypton molecular ions with electrons is not the basic
mechanism of the population of the (1 + 1)p levels of atoms
nor, correspondingly, the #nd levels. The obtained results are
consistent with the data [35, 36] concerning the predominant
formation of Ar, Kr, and Ne atoms in the (1 + 1)s or ground
(np) state upon the dissociative recombination of Ar,", Kr, ",
and Ne, " ions.

4.2. Lasers at the 7s-6p Transitions of Mercury Atoms. The
relatively high efliciency of lasers at the 3p-3s transitions
of neon atoms under pumping by ionized radiation with a
low specific power of energy deposition (~10 + 100 W/cm®)
motivated the search for novel collision lasers at allowed
bound-bound electronic transitions. The triplet lines of the
7°S,-6’Py, transition of the mercury atom (A = 546.1,
435.8,and 404.7 nm, Figure 2) suggest themselves as prospec-
tive lines for lasers in the visible range because the upper
level is sufficiently well excited by ionizing radiation [37, 38].
However, an attempt to depopulate the 6°P, state by means of
N, molecules following the scheme used in continuous lasers
at A = 546.1 nm under optical pumping by ionizing radiation
was unsuccessful [37].

Another scheme for population inversion in lasers at the
mercury triplet lines was proposed in [39]. It was shown
that the population of the 7°S, level of the mercury atom
occurs through the dissociative recombination of ions but
not through stepwise excitation by electrons [40]. When the
partial pressure of deuterium in an He-Xe-Hg-D, mixture
was increased to 13 kPa, the intensity of the resonance line
of mercury weakened by more than a factor of 300, while
the triplet line intensity fell by only a factor of 2.5. This
finding indicates that the population of the Hgl levels cannot
be explained by stepwise excitation via resonance levels.
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FIGURE 2: Scheme of the mercury atom levels. Wavelengths in nm
are specified for the lines observed in spectrum of the *He-Hg
mixture, excited by a-particles. Lines in the area of 313 nm are not
shown.

The intensity of the mercury triplet lines was nearly indepen-
dent of the pressure of the mercury vapour, which was in the
range of 0.1 + 40 Pa in the radioisotope installation and in
the range of 0.1 + 13 kPa in the installation inside the reactor
core, thus excluding any possibility of the direct excitation
of the 7°S, level from the ground state via electron impact.
Based on these results, it is possible to conclude that electron
impact is not the predominant mechanism for the population
of the 7°S, level of the mercury atom under excitation by
hard ionizers. We believe it is most probable that dissociative
electron-ion recombination is the primary channel for the
population of the 7°S, level in Hgl under ionizing pumping.
The most essential processes for this channel in an Xe-Hg
plasma are as follows (where M represents the third type of
particles):

Xe+p(a) — Xe" +p(a)+e (8)
Xe" +Xe+M — Xe," + M 9)
Xe," + Hg — Hg" + 2Xe (10)
Hg" + Xe + M — HgXe" + M 1)
HgXe" + Hg — Hg," + Xe (12)
Hg," +e — Hg(7°S;;7°P) + Hg (13)

The 7°S, level is populated through the process described by
(13) or through cascade transitions from the 7°P, , levels.
However, the wavelengths of these transitions lie beyond
the sensitivity of the FEU-106 photomultiplier. The lack of
cascade transitions from the 10°P and 9°P levels was reported
in [37]. We have also determined that 8 P0)1)2—73 S, transitions
are essentially absent [40].



Because the pumping is achieved through the ion chan-
nel, it is necessary to use xenon, whose charge exchange with
hydrogen is slow, as a buffer gas. The use of krypton is less
feasible because of the small value of the charge-exchange
rate constant between Kr, " ions and mercury atoms [41]. The
high selectivity of the dissociative recombination of Hg, " [38]
is, to a large extent, conditioned by the low temperature of
the electrons participating in recombination. Therefore, at a
pumping power that is sufficiently high for laser operation, it
is advantageous to use helium to cool the secondary electrons.
It has been proposed that H, should be used for the lower-
level depopulation at the 7°S,-6°P, transition and that H,
and D, should be used at the 7°S,-6°P, transition. Therefore,
the optimum operating mixture for a laser at the mercury
triplet consists of four components: He, Xe, Hg, and H, [42].
At the WWR-K reactor, a mixture with a composition of *He
(1 Amagat)-Xe (1 Amagat)-H, (0.04 Amagat)-Hg (1 Amagat,
corresponding to gas density under normal conditions) was
tested. The outlet temperature of the mercury was varied
from 50 to 250°C (the partial pressure of the mercury vapour
ranged from 1Pa to 10 kPa), but the lasing threshold was not
reached [8,17].

Quasicontinuous lasing at the 7°S,-6°P, transition of the
mercury atom using this type of scheme has been achieved at
a pulse nuclear reactor [43]. A similar scheme has also been
implemented for mixtures of mercury and inert gases under
excitation by an electron beam [44]. In this study, an He-
Ne-Ar mixture at a total pressure of 305 kPa was used as a
buffer gas. An attempt to use H, for the population of the
6°P, level was unsuccessful, and at a hydrogen pressure of
2.7 kPa, the laser action was lost. We believe that this occurred
because molecular ions of helium that form in plasma are
effectively recharged on Ar and Ne atoms (whose atomic
ions are rapidly converted into molecular ions), Ar,” and
Ne," ions are recharged on H,, and the Ar," and Ne,"
charge-exchange rate constants with respect to Hg are small
(5-10" em’s™ for Ne," and <107 cm’s™" for Ar,* [41]).
Because the mercury vapour pressure was only ~0.13 kPa, the
beam energy was mostly consumed in the ionisation of H,,
not the mercury atoms. The primary channel for mercury
ionisation in such a mixture is the Penning process, which
involves excited argon atoms. An interesting aspect of this
study was the lack of lower-level quenching caused by the
addition of dopant molecules. Depopulation of the lower
laser level appeared to occur in the process of forming the
excimer molecules (HgR)":

Hg(6°P,) + R+ M — (HgR)" + M (14)

where R represents Ne or Ar.

In [43, 44], the recombination of the molecular ions of
mercury with electrons is also considered to be the basic
mechanism of the population of the 7°S, level under ionizing
pumping.

4.3. Population of Levels through Ion-Ion Recombination. In
[45], it was proposed that the recombination of positive and
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negative atomic ions can be used for laser pumping. Ion-
ion recombination makes it possible to achieve high pump-
ing selectivity, notably higher than that achievable through
electron-ion recombination. Levels in the 0.3 + 0.4 eV range
of energies are effectively populated, and at more widely
spread energies, the cross-section diminishes rapidly. The use
of ion-ion recombination under nuclear excitation is espe-
cially promising, as in this case, ions are primarily formed
rather than excited states of atoms and ions. The possibility
of creating a laser with direct nuclear pumping by exploiting
ion-ion neutralisation was theoretically considered in [46].
Efforts were made to research the kinetics of populating
the levels of atomic oxygen (nitrogen) through O~ + OF
(O™ + N¥) neutralisation in *He + N,O + O, (N,) mixtures.
Negative ions of oxygen are formed through the attachment
of electrons to molecules of nitrogen oxide. Although cross-
section for ion-ion recombination decreases with increasing
gas temperature, the cross-section of attachment grows much
more rapidly with increasing temperature. Thus, an increase
in the gas temperature should increase the effectiveness of the
excitation of ion-ion recombination [46], which is essential
in the radiation-heating conditions created in the presence of
nuclear reactor radiation.

Experiments were conducted to investigate the popu-
lation of the nitrogen molecule in the C’ITu state in the
following process:

N,' +F (CI) +M — N, (C'ITu) + F(CH + M (15)

These experiments produced negative results [8, 27]. We also
considered two processes involving negative ions of oxygen
[27, 47]:

Hg"+0 +M — Hg" +0+M (16)
Hg"+0, +M — Hg"" +0, +M (17)

The emission spectra of *He + Hg + CO,(O,) gas mixtures
under excitation by « particles of 2'’Po were studied. In the
experimental conditions, the predominant channel for the
formation of negative ions in mixtures containing CO, was
dissociative attachment:

CO,+e— CO+0O" (18)

In mixtures containing O,, the predominant channel was
attachment through triple collisions:

O,+e+He — O, +He (19)

The line intensities observed in mixtures of >He(200 kPa) and
Hg(0.2kPa) with the addition of O, and CO, are presented
in Table1. The strengthening of the lines in the range of
366 + 1 nm that was observed with increasing CO, pressure
can be explained by the increase in the CO," ion transition
intensity at A = 367 nm (the intensity of the band at 351 nm
is provided for comparison). The significant reduction of the
line intensity of the transitions from the 6D levels and the
moderate increase in the line intensity of the mercury triplets
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TABLE 1: Relative line intensities in mixtures containing mercury.
Wavelength (nm) and transition
Mixture 253 297 313 365 + 367 436 351
6'S,-6’P, 6°P,-6°D, 6°P,-6D 6°P,-6D/(CO,") 6°P,-7°S, (CO,"
‘He + Hg 14000 540 930 1000 (365 nm) 25500 2000
2200 (366 nm)
*He + Hg + CO, (13 Pa) 8000 150 400 7400 32000 5800
3He + Hg + CO, (130 Pa) 1400 20 50 650 9700 600
’He + Hg + O, (13 Pa) ~30 907 ~60 926
*He + Hg + O, (130 Pa) ~0 ~0 ~0 0
observed with the increase in the partial pressure of CO, lead 10
to the following hypotheses. i Cd 11 (8.991eV)

The rapid attenuation of the mercury triplet lines in | 77777 TTTTTTIOTTTI oA Ao
the oxygen-containing mixtures can be explained by the sk 3 °F,
attachment of electrons to molecules of O, (and, partially, by 51D 6 Pro 1648 5°D,
the level quenching caused by the oxygen molecules). This - : - g 143
finding once again confirms the population mechanism of the = oL ) 6°S,
7°S, level of the mercury atom to be dissociative electron-ion S . © | | e 2
recombination. L 5h gllls

<t
4.4. Emission of *He-Xe-Cd Mixtures. The energy-level 4 5P 2=
scheme of the cadmium atom is similar to that of mercury L
(Figure 3). Therefore, the study of the feasibility of quasicon-
tinuous lasing at the 6s-5p transitions of Cd is of some interest 2

[15]. The quantum-efficiency coefficient of such a system (the
ratio of the photon energy to the energy required to form an
electron-ion pair with Xe or Kr) is greater than 10%, which
is notably higher than that of the cadmium-ion transitions
in He-Cd mixtures. The laser effect at the cadmium triplet
lines was achieved through transverse discharge in an He-
Cd-H, mixture [48]. Hydrogen quenches the 5°P, level of
the Cd atom. Laser action was achieved in the discharge
afterglow, indicating that a recombination mechanism drove
the population of the upper laser level.

The excitation spectrum of an *He-Cd mixture in a
nuclear reactor core [15] is generally consistent with that
described in [37], although the relative intensities of certain
lines differ. A continuous spectrum is formed by radiation
from Cd," molecules. In addition to lines associated with the
cadmium triplet and the 643.8 nm (5'D,-5'P,) line of atomic
cadmium, the 361.0 nm (5°D;-5°P,) line was also observed.
Its intensity reached a maximum (at 350°C) of approximately
5.5 units. For comparison, the maximum intensity of the ion
line of 441.6 nm, the brightest line under our experimental
conditions, was 110 units at 360°C.

In an *He-Xe-Cd mixture, the intensity of the line at
361.0 nm is below the sensitivity threshold of the experimen-
tal setup (~0.1 units); thus, as expected, the Cd II lines were
not observed. The population of the cadmium levels 6°S, and
5'D, may occur both directly, through the recombination of
Cd," ions with electrons and through cascade processes from
higher levels. The wavelengths of such transitions lie beyond
the photomultiplier sensitivity by approximately. Lasing at
the 6°P,-6°S,, 4°F,-5°D; transitions under the pumping of

FIGURE 3: Scheme of some levels of cadmium atom.

an He-Cd mixture by uranium fission fragments was reported
in [49], and similarly, laser action under pumping by an
electron beam at A = 361 nm was reported in [50]. The
absence of the 361.0nm line in the radiation spectrum
indicates that in (He)-Xe-Cd mixtures, either the population
of the 4°F, and 5°Dj levels is not essential or these levels are
strongly quenched by xenon. The temperature dependence of
the intensities of the lines at 508.6 and 643.8 nm indicates that
the recharging of Xe," on Cd is slow. The dependence of the
intensity at A = 508.6 nm upon the density of cadmium atoms
(N) is illustrated in Figure 4. The dependence of the intensity
on N, similar to the case for Hg, is described by the following
expression [15, 47]:

I—k—NI
kN + VaS

where I, is the intensity at a high density of cadmium atoms,
k is the rate constant for the recombination of Cd, " ions, and
« is the coefficient of electron-ion recombination, which is
accepted to be the same as for basic ions (=10 % cm’s7!). The
rate of gas ionisation (S ~10'% cm™ s7!) was evaluated based
on known cross-sections of nuclear reactions and the ranges
of protons and tritons in gas. The correlation between (20)
and the experimentally observed dependence (see Figure 3)
yields I, =200 units and k ~ 107" cm® s™".

Therefore, the rate constant for the recharging of Xe," on
cadmium atoms is insignificant compared to the constant for

(20)
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FIGURE 4: Dependence of intensity of the 508.6 nm line on the vapor
density of cadmium in the *He-Xe-Cd mixtures. Open circles—

calculation by formula (20) for I, = 200 units, k =107 cm® s ™",

recharging on mercury atoms. A cadmium vapour density
that is sufficiently high for charge exchange with Xe," ions
(~3 - 10" cm™) is created at temperature of approximately
700°C. At such a cadmium density, it is necessary to take
into consideration the quenching of the 6°S, state by atoms of
cadmium itself, although in the density range we investigated,
no significant quenching was detected (see Figure 3). It is
quite possible that in krypton, recharging on Cd will occur
more rapidly. Furthermore, in krypton, cadmium atoms may
ionize through the Penning process.

5. Emission of Nuclear-Induced Plasma at
Molecular Transitions

Wide molecular-transition bands lead to high values of the
threshold pumping power, making it difficult to create a
molecular laser based on nuclear pumping at the stationary
reactor. Spectral research was conducted to determine the
kinetics of the plasma-induction process in gas mixtures that
were considered to be candidates for the active media in
molecular lasers excited by pumping from pulse nuclear reac-
tors or electron beams. Radioluminescence at the molecular
transitions in gas mixtures is also of interest with respect
to nuclear sources of incoherent radiation and radiation
photochemical synthesis.

The most important results at INP were obtained by
studying the spectrum of the first negative system of CO, the
radiation of heteronuclear ionic molecules of inert gases, and
the luminescence of halogenides of inert gases. Following a
publication concerning the creation of an efficient (efficiency
coeflicient of ~2%) quasicontinuous laser at high pressure
based on the first negative system of nitrogen [51], efforts
commenced to research the corresponding system of CO [52,
53]. A pulse discharge laser based on the 1™ system of CO was
first implemented in 1975 [54], but no further investigations
of the active medium of a CO" laser were conducted. The
molecular bands of Ar-Xe and Kr-Xe mixtures under excita-
tion by electron beams were first detected half a century ago
[55, 56], but at that time, they were not correctly interpreted.
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FIGURE 5: Scheme of electronic terms and transitions of the CO™
molecule.

Research has also been conducted under pumping by «
particles [57]. In our work [58], the high efficiency of (ArXe)*
and (KrXe)* luminescence was observed for the first time.
In a later study, we conducted detailed research concerning
Ar-Xe and Kr-Xe emission under nuclear pumping [14, 59].
The luminescence of inert-gas halogenides was researched
[16, 60] in connection with attempts to create an excimer laser
based on pumping by a pulse nuclear reactor [61, 62].

5.1. Kinetics of Excitation of the First Negative System of CO.
The creation of a quasi-continuous laser in the UV range
based on the first negative system of CO (Figure5) is of
interest because the quantum-efficiency coefficient for the
0-1 (A = 230nm) transition is 12.7%, and the population
efficiency of the upper laser level of B’Z," is significant
[52, 53]. Hydrogen and deuterium molecules and krypton
atoms have high rate constants for the depopulation of the
lower level, X?Z,* [63]. It should be noted that ions of

COH" (similar to COD") form through transitions of heavy
particles:

CO" (X)+H, — COH' +H (21

These COH" ions do not absorb radiation in the first negative
system of CO [64]. Consequently, ~400 Pa of hydrogen or
krypton is quite sufficient for the depopulation rate of the
lower laser level to exceed the rate of spontaneous decay of the
upper level (v =1.92- 107 57! [64]) by an order of magnitude.
Thus, the possibility of creating a quasicontinuous laser at
the B-X transition of CO™ is determined by the correlation
between the depopulation rates of the upper and lower laser
levels associated with H, and D, molecules and Kr atoms. To
determine the efficiency of population and the rate constants
of depopulation attributable to such quenching dopants, it
is first necessary to determine the self-quenching rate of
CO"(B) and the quenching attributable to buffer gases.

Quenching of the B-State of CO™ by Helium, Neon, and CO.
The rate constants of CO"(B) quenching were determined
based on the dependence of the luminescence intensity of the
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FIGURE 6: Intensity on 230nm versus pressure of CO in He
(400 kPa) + CO and Ne (122 kPa) + CO.

first negative system of CO on the partial pressures of gases in
the mixture. The maximum radiation intensity at 230 nm in
an He(400 kPa)-CO mixture was achieved at a CO pressure of
0.1 + 0.8 kPa (Figure 6). The dependence of the luminescence
intensity on the CO pressure indicates significant quenching
of CO"(B) in two- and/or three-particle collisions with CO
and He. The intensity of the bands of the 1" system of CO in
an Ne(120 kPa) + CO(0.53 kPa) mixture is approximately 2.5
times lower than the intensity of the bands in an He (400 kPa)
+ CO(0.53 kPa) mixture (see Figure 6); the pressures of the
mixtures were selected to ensure equal a-particle ranges and,
correspondingly, equal mixture pumping powers. In addi-
tion, in the Ne-CO mixture, there were no B-X transitions
of CO* from the v' > 0 levels. The obtained values of the rate
constants of CO"(B) quenching are presented in Table 2.

It can be seen from the data that the lower intensity of
the luminescence at the B-X transition of CO" in the Ne-CO
mixture compared with that in He-CO is attributable to the
drastic quenching of the B state by neon, not by the weakness
of the following process:

Ne,” + CO — CO" (B) + 2Ne (22)

The absence of v/ > 0 lines in the emission spectrum of the
Ne-CO mixture is related to the fact that the rate constant
of the quenching of the B’ ;" state by neon for v/ = 1, 2 is
approximately 5 times higher than that for the main vibration
state.

Efficiency of the Population of CO*(B). The population effi-
ciency of the B’Z,, ,_," level was determined based on the
correlation between the intensities for the first negative sys-
tem of N, and the Baldet-Johnson system. The bands under
investigation lie in a suitable range of wavelengths (391.4
and 4278 nm for N, and 395 and 420 nm for CO"), where
the response of the experimental apparatus was maximal.
The band-intensity ratio was measured for He (400 kPa) +
N, (53Pa) and He (400kPa) + CO mixtures. The P-band
branches of the Baldet-Johnson system were forbidden and

overlapped with the relevant Q-band edges. The total inten-
sity of the 1~ system of CO transitions from the v' = 0 level was
determined by taking into account the branching coefficient
of the transition for B22u+, 6 = 8% [65]. The ratio of the
number of quanta radiated by the B-A transitions of CO" ions
to the number of quanta radiated by the first negative system
of N, at the same helium pressure was determined using the
following expression:

Iy, x

 v+k, [CO] + k, [He] + k, [CO] [He]
Ico  n vy, +ki, [N] + Koy, [He] + kay, [N,] [He]

VNZ
T

"
(23)

where y = 0.75 is the population efficiency N,"(B,_)
for two- and three-particle processes of charge exchange
on nitrogen [66], vy, = 1.58 - 107 s~ [64] is the rate of
spontaneous decay of N,"(B), k;y, and k,y, are the rate con-

stants for N,"(B) quenching in two-particle collisions with
N, and He and ks, is the rate constant for the three-particle
process with N, and He [67]. By comparing the measured
value of Iy /Iy to that calculated using formula (23), we
obtained # ~ 0.2. The relative efficiencies of population of
certain CO"(B) vibration levels were determined based on
the intensities of the 0-2, 1-3, and 2-4 transitions of the
1" system. These transitions lie in a narrow range of the
spectrum (242-247 nm) where the spectral response of the
experimental apparatus could be considered to be constant.
For the He (400 kPa) + CO (5.3 kPa) mixture, the following
population efficiencies were obtained for the vibration levels:
1, = 63% for the v' = 0 level, #1,, = 27% for the v' = 1level, and
1, = 10% for the v/ = 2 level.

Recharging of He," on Hydrogen, Deuterium, Krypton, and
Carbon Monoxide. To evaluate the rates of CO™(B) quenching
caused by H,, D, and K, it is necessary to know the
constants related to “parasitic” processes. It is known that
the recharging of He" on H, and D, is nearly nonexistent
and that the rate constant for the corresponding process with
krypton, by analogy with Ar and Xe, should also be small [63].
Thus, the recharging of He,” on H,, D, and Kr should be the
predominant “parasitic” processes. Because the luminescence
of He-N, mixtures has been studied more thoroughly than
that of He-CO, the rate constants for the recharging of He,"
were determined based on the dependence of the backward
intensity of the N, " (B-X) luminescence in an He-N, mixture
on dopant pressure [67]. The results are summarised in
Table 3.

Constants k,, kj,, and k5 are in good agreement with
those obtained in [68, 69]. At the same time, we believe that
the rate-constant values for the three-particle process for the
recharging of He," on Kr and CO presented in [68, 69] are
too high for a helium-pressure range of 1 + 6 atm.

CO™(B) Quenching by Hydrogen, Deuterium, and Krypton. In
Figure 7, the dependence of the intensity of the first negative
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TaBLE 2: Rate constants of CO*(B) quenching [53].

Process

Notation, units (cm’ s~

1

,em®s™) Rate coeflicient

CO*(B,_,) + CO — products k,, 107 ~2
V=0 p 1
CO*(B,_,) + He — products k,, 107" 5+2
CO*(B,_,) + CO + He — products k,, 107 2+1
v=0 P 3
CO"(B,_,) + Ne — products k,, 107 1.5+0.5
CO"(B,_;) + Ne — products k1071 ~8
CO*(B,.,) + Ne — products k1071 ~7
TaBLE 3: Rate constants for processes involving He, *.
Process Notation, units (cm’s™!, cm®s™) Rate coefficient References
He,” + N, — products k;, 107" 11+3 [68]
He," + N, + He — products k,, 107 16 +3 [68,70]
+ ~11 8+3 *
He,” + Kr — products k;, 10 <8 [69]
+ -30 3x1 *
He," + Kr + He — products kg, 10 713 [69]
10+3 *
+ _10 41+12 [69]
He," + H, — products ky, 10 53 (200K) 63]
24 +4 [70]
155 *
He,” + H, + He — products Ky, 107%° 9+5 [68]
1 (71]
He," + D, — products k107 8+3 *
He,* + D, + He — products Ky, 107 <2 *
13+4 *
He," + CO — products k310710 il [68]
14 [63]
+ ~30 2+1 *
He," + CO + He — products k4, 10 36 48 [68]

*Data from [67].

Here and in Table 4, the constant values marked in bold were used as references.
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FIGURE 7: Dependence of the intensity at 230 nm on the pressure
of hydrogen or krypton. I*—modified intensity, estimated by the
formula (24).

system of CO on the pressure of H, or Kr is depicted. For Kr,
the modified intensity is also given:
k; [Kr] + kg [Kr] [He] + k;5 [CO] + k4 [CO] [He]

I"=1
k5 [CO] + ky4 [CO] [He]

(24)

This quantity accounts for the competition between the He,
recharging processes on CO and Kr. It can be seen that the
decrease in intensity that accompanies the increase in dopant
pressure to 2.7kPa can be explained (within ~15% error)
by the influence of parasitic processes. Then, when the rate
constants for CO™(B) quenching in collisions with CO and
He (see Table 2) are known, it is possible to evaluate the upper
limit on the rate constant for CO(B) quenching by H, and
D, molecules or atoms of krypton: k, < 107" cm®s™".

Thus, the rate of depopulation of the upper laser level
caused by hydrogen and krypton is, at least, 20 times lower
than that of the lower laser level. The population efficiency
of the B,_, state of CO" was found to be low (5 ~ 0.2)
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in comparison with the population efficiency of N,*(B) in
the helium-nitrogen mixture. However, it is true that the
quenching of the B state of CO" by helium is lower than
that for N,"(B) by a factor of 2. Most importantly, the
population depends on the A- and X-states of CO™. Thus,
for the creation of a laser, it is preferable to consider the
0-1 and 0-2 transitions (A = 230nm and A = 242nm)
rather than the 0-0 transitions of the first negative system of
CO. We should note that in [54], amplification was observed
exactly at the 0-2 transition. Because of the relatively low
selectivity of the CO"(B) population, we expect that the
optimum dopant pressure for quenching will most likely be
considerably higher than 400 Pa.

5.2. Emission of Heteronuclear Ionic Molecules of Inert Gases.
The molecular bands that were observed in the radiation
spectra of binary mixtures of inert gases [55, 56] were
identified [72] as transitions between states of heteronuclear
ionic molecules:

M*N — MN" + hy (25)

where the molecular states M"N asymptomatically corre-
spond to the states M™ + N and MN" corresponds to the
states M + N*; here, M and N are atoms of inert gases, and
N is the heavier atom. If up to 5 such bands are observed
in a low-pressure plasma in the electric discharge of binary
mixtures of inert gases [72], then in a mixture at medium or
high pressure under excitation by ionizing radiation, there are
no transitions from levels corresponding to the *P, /2 states
of the atomic ions [57, 58]. Because of the high selectivity
of excitation, the emission of heteronuclear ionic molecules
of inert gases is of interest for the direct transformation of
nuclear energy into coherent or incoherent optical radiation
(58, 73].

Argon-Xenon. The major kinetic processes of the formation
and decay of Ar*(1/2)Xe ions in Ar-Xe mixtures are summa-
rized in Table 4.

The absence of radiation at the transitions from the
Ar*(3/2)Xe level is explained [57] by the large difference
between the rate coefficients of the process (2t) competing
with Ar"(1/2)Xe formation and the corresponding process
(9t) for Ar*(3/2) ions. The rate coefficient for the conversion
of Ar(3/2) ions to molecular ions is approximately 50 times
higher than that for Ar*(1/2) ions (see Table 4). It is possible
that the rate constants of other processes that contribute to
the formation and decay of Ar*(3/2)Xe are also significantly
different.

The high selectivity of excitation of the band at 329 nm
[58], in combination with the weak quenching of the upper
level, suggests the possibility of creating a laser at this
transition. The lower level is effectively depopulated through
the following process:

3
ArXe" (—) +Xe — Ar + Xe, ",
2 (26)

k=8-10""cm®s ™ (evaluation).

1

Let us evaluate the lasing threshold, without taking into
account the nonresonance losses. The unsaturated coefficient
of amplification can be determined from the following
relations:

At A, W
X=0N=0—T,= —5 —,
E 4m*c AA E,

u

(27)

where o is the cross-section of the stimulated transition, W
is the pumping power, E, = 78 ¢V is the energy consumed
to form one ion of Ar*(1/2), 7, is the lifetime of upper level
with taking into account the quenching by xenon atoms, AA =
2.5nm is the half-width of the band at 329 nm, and A is the
probability of the transition. Then, the threshold pumping
power for the Ar (100 kPa) + Xe (6.7 kPa) mixture is

_ 4n’cAL oyE,

Wi = =35 4 ~3kW.cm ™, (28)
u

where « is the threshold coefficient of amplification; the
value assumed here is a; = 107> cm ™. Despite the relatively
low lasing threshold, lasing at this transition was not achieved
for an Ar-Xe mixture under pumping by an electron beam
[58, 73]. It appears that the lack of any laser effect can be
explained by the strong absorption by Xe," ions and the
decreased excitation selectivity of Ar* (1/2)Xe under powerful
pumping. We believe that the upper level quenching caused
by the argon atoms [73] is insignificant (see Table 4).

Krypton-Xenon. In the luminescence spectrum of a Kr-Xe
mixture luminescence, a known band at approximately 445-
510 nm (490 nm band) was observed [59] that corresponds to
the transition between (KrXe)" states with dissociation limits
of Kr+(2P1/2) + Xe('S,) {hereafter Kr*(1/2)Xe} and Kr('S,) +
Xe*(*P, 1) {hereafter KrXe"(3/2)}. At atmospheric pressure,
there is no band at A ~ 660nm that corresponds to the
transition from the Kr*(3/2)Xe state. The remaining expected
bands lie in the infrared region (approximately 1.0 to 2.2 ym).
The wavelengths of these transitions were estimated [72] from
the energy levels of Kr" and Xe*. Two emission systems were
observed, in the 600-670 and 670-685 nm regions, when Xe
was added to a Kr flowing afterglow at a pressure of 30 Pa [74].

Intense luminescence of the band at 490 nm was observed
even after adding several hundred Pascal of krypton to xenon,
although the optimum ratio of a Kr-Xe mixture with respect
to the emission intensity is Kr: Xe = 1:1. Measurements with
« sources have demonstrated that the luminescence intensity
of a Kr:Xe = 1:1 mixture remains constant at temperatures
ranging from indoor room temperature up to = -100°C.
At lower temperatures, a rapid decrease in intensity was
observed, which was apparently related to the freezing of
the xenon. Measurements at temperatures than 40°C were
performed using the in-core experimental installation. The
initial partial pressures of the gases in the ampoule were
as follows: *He—13kPa, Kr—33kPa, and Xe—33kPa. The
luminescence intensity decreased by a factor of 2 at an
ampoule temperature of £, ~ 350°C, and the radiation at
A =490 nm disappeared at £, ~ 600°C.

Figure 8 illustrates the effects of the molecular dopants on
the radiation intensity of the band at 490 nm under excitation
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TABLE 4: Rate constants for processes in Ar-Xe-(He) mixtures.

N Process Notation, units (cm3571, cm®s™) Rate coefficient References
It Ar*(1/2) + Xe + Ar — products k5, 107 0.16 <5'2 <07 EQ
Ar(1/2) + Xe + Ar — Ar*(1/2)Xe + Ar pks ) /;f 1_ ' .
_ 0.72 [57]
2t Ar'(1/2) + 2Ar — products k61073 72 .
3t Ar*(1/2) + 2Xe — products k,,, 107 3.4 [57]
4t Ar*(1/2)Xe — ArXe'(3/2) + hv T, s 58 [73]
+ -11 3.2 (73]
5t Ar'(1/2)Xe + Ar — products ks, 10 <0.05 .
6t Ar*(1/2)Xe + Xe — products ko, 107" <~110 [7*3]
7t Ar" + Xe — Xe" + Ar Fyp, 1071 9.8 [73]
8t Ar*(1/2)Xe + He — products ky,, 10712 6+2 s
9t Ar*(3/2) + 2Ar — products kyy, 107 3 [57, 63]
*Data from [14].
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FIGURE 8: Dependence of the intensity of radiation at A = 490 nm
on the pressure additives to the mixture Kr(55 kPa)-Xe(55 kPa).

by « particles. During the measurements collected using the
in-core installation, hydrogen and tritium were produced in
the ampoule as a result of the nuclear reaction *He(n,p)*H.
By the time the temperature-dependence measurements
were completed, the thermal-neutron fluence had reached
~9-10"® n-cm ™. Thus, based on the known nuclear-reaction
cross- section (5400 barns), the density of the produced
hydrogen and tritium can be estimated to have been ~1.6 -
10" cm ™, which corresponds to 7 Pa at room temperature.
This number of isotopes could not have significantly affected
the intensity of the 490nm band (see Figure 8). Through
« decay, helium was produced in the mixture. Therefore,
the influence of helium-4 on the emission intensities of the
Kr-Xe mixture and, for comparison, an Ar-Xe mixture at
A = 329nm (Figure 9) were measured. The measurements

FIGURE 9: Dependence of the intensity of radiation on the helium
pressure in a mixture of Kr(55 kPa)-Xe(55kPa)-He at A = 490 nm
and in a mixture of Ar(135kPa)-Xe(15kPa)-He at A = 329 nm.

indicated that upon adding air, CO, N,, H, or D, at pressures
of up to 2.7kPa and He at a pressure of up to 400 kPa into
the Kr-Xe mixture, no luminescence appeared at A ~660 nm.
The coefficient of the transformation of nuclear energy into
photoenergy (1) was determined by comparing the intensity
of the band of interest with the intensity of the C*IT,-B’II g
band in the Ar-N, mixture. For the Kr: Xe = 1:1 mixture at
a pressure of 110 kPa, the value # = 11 + 4% was obtained.
The mechanism of the processes, similar to the case of Ar-
Xe mixtures, cannot explain the rapid increase in intensity
observed upon adding krypton to xenon [59]. The intensity
observed for the mixture with 0.7% Kr constitutes 10% of
the intensity observed for the Kr: Xe = 1: 1 mixture, although
in the latter case, almost all the energy was used to ionize
and excite the Xe atoms. The high efficiency of radiation at
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A = 490nm and the continued presence of luminescence
through a mixture temperature of ~600°C serve as strong
evidence that the bonding-energy value for Kr'(1/2)Xe (~
0.009¢eV) given in [75] is lower than the true value. The
kinetics of the processes in a Kr-Xe mixture excited by
ionizing radiation require further research.

5.3. Luminescence of Inert-Gas Halogenides. Currently,
excimer lasers based on inert-gas halogenides are the most
powerful lasers that radiate in the UV region of the spectrum.
The optimum operation mode of excimer lasers corres?onds
to pumping powers of several megawatts per cm’ and
pressures of several atmospheres. Such pumping powers are
achieved by means of electron beams or electrical discharge.
The creation of an excimer laser based on nuclear pumping is
of interest when the energy of the nuclear-reaction products
is directly transferred to the active medium of the laser but
the pumping power does not exceed 10 kW/cm® [61, 62].

We have studied the emission spectra of inert-gas mix-
tures with NF; and CCl, under excitation by « particles from
19po [60]. The emission spectra of the inert-gas mixtures
with halogenides contain several bands: the most intense
band is associated with the B-X transition. In the red region of
the spectrum, there is a wide continuum region correspond-
ing to C(2H3/2)—A(2H3/2) transitions with maxima at 475
(XeF), 344 (XeCl), 290 (KrF), and 236 nm (KrCl). At short
internuclear distances, mixing occurs between the D and
B levels, lifting the interdiction against radiative transitions
from the D level to the ground state. The maxima of these
transitions lie in near 260 (XeF), 235.5 (XeCl), and 219 nm
(KrF); the maximum of the D-X transition of KrCl was
beyond the limits of the photomultiplier response. Moreover,
in an Ar-Kr-NF; mixture, the Kr, F band at approximately 340
+ 500 nm was observed; similarly the band of Xe,ClI (420 +
600 nm) was observed in Ar-Xe-CCl,, and the band of the
Cl, (~257 nm) impurity was observed in Ar-Kr-CCl,.

For the Ar-Xe-CCl, mixture, the coeflicient of the trans-
formation of nuclear energy into radiation in the 308 nm
band (#) was measured. The value of # was determined by
comparing the estimated radiation intensity for the mixture
of interest with that of the C’IT,-B’ I1, nitrogen band in
an Ar-N, mixture. For an Ar (150kPa) + Xe (5.3kPa) +
CCl, (93Pa) mixture, the value of the coefficient of the
transformation of the a-particle energy into emission was
obtained for the band at 308 nm: # = 11 + 3%. The slight
difference between this value and the quantum efficiency
(15%) appears to be attributable to the quenching of the
B state of XeCl by CCl, molecules. The intensities of the
KrF and KrCl bands were found to be negligible compared
with the intensities of the B-X transitions of XeCl and XeF;
such finding prompted more detailed research into mixtures
containing xenon. The coefficient of the transformation of
nuclear energy into radiation in the 351 and 353 nm bands
in an *He (200kPa) + Xe (4kPa) + NF; (2.7 kPa) mixture
was estimated, taking into account the estimated energy
deposition by « particles, and a value of # ~4% was found;
this value is 3 times lower than that determined for the XeCl
band at 308 nm.
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FIGURE 10: The emission spectrum of a mixture of *He : Xe: CCl, =
1500:50:1at @ = 10" n/cm’s.

The B-X transition of the XeCl molecule is of the greatest
interest for the creation of an excimer laser with direct nuclear
pumping [76]. The high radiation resistance of the active mix-
ture of an XeCl laser in the radiation field of a nuclear reactor
was demonstrated in [16, 60]. The luminescence spectrum
of an *He-Xe-CCl, mixture under excitation by products of
the 3He(n,p)3H nuclear reaction in the core of a stationary
nuclear reactor (Figure10) is similar to the luminescence
spectrum under excitation by « particles. In the plasma of
the gas mixture, CCl, decays through the attachment of
electrons: CCl, + e — CCl; + CI™. For an *He:Xe:CCl, =
1500: 50 : 1 mixture at atmospheric pressure under a thermal-
neutron flux of 10> n/cm®s, the rate of this decay process
is =2 - 10"°cm™s™'. Nevertheless, the radiation intensity
in the band at 308 nm was found to remain constant at
integrated neutron fluxes of up to 10'” n/cm?. This result may
be related to both the presence of sufficiently fast backward
processes and the formation of other chlorine compounds.
The densities of ions and electrons in *He-Xe-CCl, and *He-
Xe-NF; mixtures in the radiation field of a nuclear reactor
are determined by the volt-ampere characteristics of the
stationary, non-self-maintained discharge [77].

6. Conclusions

The mechanisms of level population in gas lasers pumped by
ionizing radiation at the 3p-3s transitions of neon, the d-p-
transitions of inert gases, and the mercury triplet lines were
analysed. It was shown that the dissociative recombination
of molecular ions with electrons is not the basic process
underlying the population of the p levels of inert-gas atoms. It
is assumed that the most likely channel for d-level population
is the direct excitation of atoms by secondary electrons and
the excitation transfer from buffer gas atoms; in addition, the
p levels are populated through transitions from the upper
levels. The dissociative recombination of molecular ions with
electrons is the basic process underlying the population of the
7°S, level of mercury atoms and the 6°S, level of cadmium
atoms. The possibility of creating an efficient quasi-CW laser
with ionized pumping based on the first negative system
of CO was considered. The results of research concerning
the emission of heteronuclear ionic molecules of inert gases
and halogenides of inert gases under nuclear pumping were
described.
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