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OUTLINE

1. Introduction to Global Optimization

2. Introduction to ANSYS-DesignXplorer™ (ANSYS-DX™)
3. Design of Experiments (DoE)

4. Parameters Correlation to support DoE

5. Response Surface Methods (RSM)

6. Six Sigma Analysis (SSA) and Robust Design

7. Multi-Objective Optimization
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LEARNING OUTCOMES

At the end of this workshop, participants will gain basic knowledge on:
1. Optimization Analysis in Computer Aided Engineering applications.
1.1. Optimization premises
1.2. Design of Experiment
1.3. Response Surface
1.4. Pareto Optimization
2. Creating a complex geometry in ANSYS-DesignModeler (DM).
3. Parametrizing a geometry in DM.
4. Parametrizing Boundary Conditions in CFX-Pre.

5. Defining an Objective Function with Output functions.

6. Setting up and running Optimization algorithm in ANSYS-Workbench.
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1. Introduction to Global Optimization
Optimization of Complex Systems

Input Output
variables variables

* N0 analytical solution

» possibility of +1 solution

 only numerical solution

* numerical solver becomes an
ad-hoc “laboratory” to explore the
system.

How to optimize the system
performance?
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1. Introduction to Global Optimization
Optimization of Complex Systems

=

* X,y,Z,etc. are continuous Vvariables;
thus infinite possible inputs!!... and
outputs!

* PDE system of equations requires a
large computational effort. It's not
viable to run too many case studies to
find optimum.

How to reduce the optimization effort? 5
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1. Introduction to Global Optimization
Optimization of Complex Systems. Schematics

[ Optimization ]

I

Surrogate model or Response

DeS|gn of EXpe”mentS D ——————
(DOE) Surface Methodology (RSM)
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1. Introduction to Global Optimization
Optimization of Complex Systems. Schematics

: : Questions to address
[ Design of Experiments ]
(DoE) L :
« What are the objective functions to
l max/min? (are there more than 17?)

* What are the constraints?

« What is the min set of Design Points to
guarantee enough information to get a
satisfactory RSM? How to test it?

1 « What is the appropiate (accurate/fast)
Surrogate model or Response method to max/min the RSM? How to
Surface Methodology (RSM) check Local vs. Global max/min?

1 * What if input variables have Ilow
[ Optimization ] precission? 7
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2. Introduction to ANSYS-DesignXplorer™

(ANSYS instructional slides)

Source: http://www.itl.nist.gov/div898/handbook/pmd/section3/pmd31.htm
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ANSYS

Chapter 1

Introduction

Design Exploration

ANSYS, Inc. Proprietary
@2009 ANSYS, he. Al rights reserved.
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What is Design Xplorer? ANSYS

Training M anwal

« DX Provides a tool for designing and understanding response
of complex models, including uncertainties in input parameters.

« Supports optimization analysis via the use of Response
Surface (Surrogate Model).

* Uses parameters from DesignModeler (DM) and ANSYS-CFX
Pre to explore a wide range of scenarios, based on limited solver
executions.

AMEYE, Inc. Proprigtany

nc. Al rights resenved. 1-4 hrvento
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NANSYS

Parameter Definitions ...

Training Manuaf

DX uses:
 Input parameters. Example:
« Geometry-related (DM)
*BC’s
* Physical properties

* Response (Output) parameters. Example:
» Heat flux
« Stress
» Mass flow rate
* Pressure drop

» Derived parameters. Example:
* CEL functions (cannot reference other derived param.)
» Cost function (mass x cost/mass)
» Average or normalized parameters.

AMEYS, Inc. Proprietany q = hday 28, 2004

E2009 ANSYS, he. Al rghts resened. = Fventory #O0267 0



AN ‘U
v, /77N

l.1)\lK\\|l>l OF k.”(\lA\ NNAZARBAYEV

DEPARTMENT OF TECHNICAL EDUCATION
MECHANICAL ENGINEERING DEPARTMENT UU N IV ER S 1TY

(.()‘I:I‘ Hl()lyl\(l\’llkl‘\( SCHOOL OF ENGINEERING

Method Definitions ... I\NSYS

Training M anua

* Design of Experiments (DOE) method:
*Uses a limited set of input (design) points to build
Response Surface.

» Default DOE in DX uses Central Composite approach to
choose parameter values to be solved.

* Once required solutions are completed, Response Surface
s created (fitted) to find solutions in conditions not
evaluated. See 2D example below.

Curve fit respunse\

AMEYE, Inc. Proprietany

o

Design Points

E2009 ANSYE, he. Al rghts reserved.
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3. Design of Experiments (DoE)

What is the min set of Design Points to guarantee enough
iInformation to get a satisfactory System Surrogate or RSM?

Design of Experiments (DoE). Definition.

. approach for data collection in engineering
problem-solving.

» Uses to ensure collected data
provide valid and supportable engineering conclusions.

 DoE is carried out under the premise of a
(experiments or simulations), time and money.

* For modeling and optimization purposes, DoE aims to provide a
function (RSM).

13
Source: http://www.itl.nist.gov/div898/handbook/pmd/section3/pmd31.htm
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3. Design of Experiments (DoE)

What is the min set of Design Points to guarantee enough
iInformation to get a satisfactory System Surrogate or RSM?

Design of Experiments (DoE). Steps.
 Define the and questions to be answered.

* Define the of interest (range of independent variables and
discretization).

* Find the appropriate (technique and size). A sample is a

scientifically drawn group of that possesses the same

characteristics as the population. This is true if the sample is drawn in a
manner.

14

Source: http://support.sas.com/resources/papers/sixsigmal.pdf
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3.

Design of Experiments (DoE)

Sequence-sampling
Latin Square & Hypercube and Monte Carlo sampling
Full Factorial & Reduced Factorial
Central Composite Design (CCD) (ANSYS-DX™)
Optimal Space-Filing Design (ANSYS-DX™)

Box-Behnken

15
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3. Design of Experiments (DoE)

Latin Hypercube y Monte Carlo Sampling

n Latln Hypercube (LHS) and Monte Carlo algorithms generate
" sampling, according to several statistical distributions
( , etc.).

m LHS is the generalization of Latin Square sampling extended to an
arbitrary number of dimensions. Latin Square is a square grid with
sampling positions such that there is only

m LHS is a (restricted) Monte Carlo sampling. Sometimes, further
improved by introduction of

Source: Course “Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,Soutf]v6
America ANSYS Users Conference, November 2009, Floriandpolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.
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3. Design of Experiments (DoE)

Uniform Latin Hypercube sampling

Pseudo-random (Monte Carlo) Uniform Latin Hypercube

n=10 il

The uniform statistical distribution
n values are chosen independently, s divided in "n” intervals with
according to the function of same probability. Thus, a
value is chosen in each
interval.
Uniformity is guaranteed !

Source: Course “Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,Soutf]v7
America ANSYS Users Conference, November 2009, Floriandpolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.
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3. Design of Experiments (DoE)

Factorial sampling

Full factorial: Number of designs = m"

m = base of each variable (number of possible values)
n = number of design variables

It gives all the information related to the

The number of experiments increases by a per variable
added.

Source: Course “Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,Soutf]v8
America ANSYS Users Conference, November 2009, Floriandpolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.
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3. Design of Experiments (DoE)

Example of Factorial DoE

2-level Full Factorial, n variables or factors

permit to calculate 1st-order interactions

n. design x1 X2 x3 fit

+ + f1
f2 Function with 3 input

f3 variables (X1,X5,X3) 0<x;<1
: - f4
+ f5
- f6
- - + f7
- - - f8 range [0.5,1] = +

+ + + +
"
+I

+ +

range [0,0.5] = -

ONO O~ WN -
1

Source: Course “Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,Soutf]v9
America ANSYS Users Conference, November 2009, Floriandpolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.
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3. Design of Experiments (DoE)

Factorial DoE. 3-level, n variables.

3-level Full Factorial

3" Experiments  permit '/‘/-

calculation of 2"d-orden
interactions

3 variables
27 experiments

Source: Course “Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,Sout}%O
America ANSYS Users Conference, November 2009, Floriandpolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.
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3. Design of Experiments (DoE)

Factorial DoE. Pros and Cons

Full Factorial Pros:

o For each variable, we have the same number of designs in
and

o Gives knowledge about interaction among all variables.
Full Factorial Cons:

o For a large number of variables, the number of required designs
becomes really huge.

Source: Course “Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,Sout}%1
America ANSYS Users Conference, November 2009, Floriandpolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.
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3. Design of Experiments (DoE)

(Box-Wilson) Central Composite Design (CCD) (ANSYS-DX™)

* Original CCD. Expands original design limits and
requires 5 levels for each variable (factor). Also
called circumscribed or rotatable.

» Face Centered with star points at center of each
face. Requires only 3 levels.

e Inscribed CCD, used when limits have to be
strictly respected. Also requires 5 levels.

22
Source: http://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm
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3. Design of Experiments (DoE)

Optimal Space-Filling Desigh (ANSYS-DX™)

Scatter - x1 %2 an Doe Table

1.0000ED

Real
O Feasible

Unfeasible
—+ Error

Wirtual
M Feasible
Unfeasible
] > Error

] Categories
| uSF
W RNDDOE

0.0000E0 -
0.0000E0 1.0000E)

#l

Existing design points
(previously generated)

*2

1.0000EQ -— = - -
u -
| |
m = u -
] |
| u u 1
| | |
= = L . "
| | | n 1
] u u Real
n - L] u O Feasible
[ ] n Unfeasible
u | | u u ! + Error
|
u ™ = u [ ] u u Virtual
- L 1 W Feasiblz
™ | Unfeasible
| | | = | < Error
(] [ -
b - M u 1 Categories
] u m W GF
| m § = - W RNDDOE
a H m
[ ] - u -
[ L n [
. " n g
- [ ] "y
| H m |
- |
0.0000EQ A—B = - - || - - |
QLOOOOED 1. O000ED
%1

New points are
uniformly fill gaps.

added to

Source: Course “Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,Souﬂ%3

America ANSYS Users Conference, November 2009, Floriandpolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.
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4. Parameters Correlation to support DoE

Before building a definitive DoE table for RSM and/or Optimization
purposes, we may find that our problem has too many input
parameters.

Two many input parameters may turn the problem intractable in
terms of sampling points. Then, a previous Parameters Correlation
exercise may help us to answer:

What are the most important ?
Can we the variables space?

What is a reasonable number of to
be defined?

24
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4. Parameters Correlation to support DoE

Parameters Correlation in ANSYS-DX™

m It is a preliminary DoE exercise. Sampling is based in Latin
Hypercube sequence, with correlation of input parameters smaller
than 5%.

m If Auto Stop is enabled, simulations (DP’s) stop when levels of
Mean and Standard Deviation error reach the specified level or
maximum number of samples is reached.

m  An exhaustive examination of DoE ( : , etc.)
accelerates the optimization process, by reducing de number of
variables in the parametric analysis.

m The statistical tools though, need DoE tables that
represent the design space.

25
Source: ANSYS-DX™ Manual
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4. Parameters Correlation to support DoE

Dependence and Correlation

Dependence: refers to any statistical relationship between two
variables or sets of data.

Correlation: refers to any of a broad class of statistical relationships
involving dependence. Mostly, related to standard deviation, variance
and co-variance.

26
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4. Parameters Correlation to support DoE

Pearson and Spearman Correlations

M Standard deviation : measures the variation or dispersion for a
given variable, from its mean value.

400 Average = 100

= SD=10

1 mm S0 =50
]

350

300

]
w
(=]

Number per bin
8]
[=]
(=]

=0 0 10 20 3040 50 60 70 80 90100110120130140150160170180190200210220230+

27

Source: http://en.wikipedia.org/wiki/File:Comparison_standard_deviations.svg
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4. Parameters Correlation to support DoE

Pearson and Spearman Correlations

Covariance o,,: measures how two statistical variables change
together. Its value depends on the units used for the variables.

If X grows when Y grows and X decays when Y decays, then
covariance is positive and large; and viceversa.

If there is no relation between X and Y, then

28

Source: http://en.wikipedia.org/wiki/File:Comparison_standard_deviations.svg
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4. Parameters Correlation to support DoE

Pearson and Spearman Correlations

Pearson correlation p,,: normalizes the covariance and takes
values [-1,1]. 1 means a perfect linear relationship with positive
slope; while, -1 means the opposite. 0 means no linear relationship
at all (i.e., no correlation or a nonlinear relation may exist).

n

> (6 =xXy; - y))

Xy _ =t

T IS (x-S (y, - 5)

29

Source: http://en.wikipedia.org/wiki/File:Comparison_standard_deviations.svg
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4. Parameters Correlation to support DoE

Geometrical interpretation of Pearson Correlation:

Given two variables V and T, for example, measured over a universe of n”
points within the space, treating both variables as vectors in the n-dimensional
space: V (V, V,, ...V,) and T(T,, T,, ..., T,). these vectors around

the mean:

Source: Wikipedia 30



G 0 ~
== ININAZARBAYEV
.8 MECHANICAL ENGINEERING DEPARTMENT b UNIVERSITY

) COLLEGE OF ENGINEERING U

SCHOOL OF ENGINEERING

4. Parameters Correlation to support DoE

Pearson and Spearman Correlations

m Spearman correlation:

2

OX:
Pry = _n(nz—l)

s Once the first variable is ordered from small to large (rank),
then the rank to the second variable is established. Then,

m For samples larger than 20, it can be approximated with the

31
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4. Parameters Correlation to support DoE
Pearson and Spearman Correlations
M Spearman correlation p,,: measures the statistical dependence

between two variables. If the dependence is perfectly monotonic with
positive slope, then p, =1, -1 means the opposite.

Spearman correlation=1 Spearman correlation=0.35

10 Pearson correlation=0.88 3 Pearson correlation=0.37
. 2_ & g... .
B @ L]
: 1k & ey - [
T o %;.%ga?goﬁm @
: > 0f 8 @ ooy F @
® U ogeo ° 8
: -1} °. . %%0 00 00 .
- o ©°g® o @
: -2 b @ °
: @

_ i ; ; i _3
1560 02 04 06 08 Lo -3 -2 -1 0 1 2 3
X X

32

Source: http://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient



r—1
=
f-)

DEPART \II \I ()l TEC H\I:’\'l lH)l( ATION NNAZARBAYEV
MECHANICAL ENGINEERING DEPARTMENT UUNIVERSITY
C "."”,.f .u‘ E VI\: lkl\( SCHOOL OF ENGINEERING
4. Parameters Correlation to support DoE
Pearson and Spearman Correlations
M Spearman and Pearson correlations vs. range dependence
3 ' ' 5]
° 0.89/0.88 .
2t © 0.51/0.48 o
o @ o
1t gg @
> 0 %@@80
.l % cg%
O‘D’D
-2t ® e °
R T — 0 1 2

X

Pearson/Spearman correlation coefficients between

X and Y for unrestricted ranges and when the range

of X is restricted to (0,1).

Source: http://en.wikipedia.org/wiki/File:Correlation_range_dependence.svg
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4. Parameters Correlation to support DoE

(Linear) Correlation Matrix in ANSYS-DX™

O Shows correlation (between -1 y 1) among all variables.
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o If Pearson, it measures linear relation; if Spearman, it measures
monotonic dependence.

Linear Correlation Matrix

P1 - inDia

P2 - in2Angle

PG - InMassFlow

P4 - OutTempRange
P5 - OutTemphve

Pl -inDia

P2 -in2&ngle

P& - InMassFlaw

PGS - QutTemphAve

l P4 - OutTermnpRange

1
.
0.6

04
0.2
0.1

-0.1
-0.2

-0.4
-0.6
-0.8

-1

Source: Course "Optimization Techniques using modeFrontierFundamentals and Applications"and ANSYS-DX Manual.
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4. Parameters Correlation to support DoE

(Non-linear/Quadratic) Correlation in ANSYS-DX™

O Sometimes, we’d like to evaluate the non-linear dependence between
two parameters.

o ANSYS-DX™ performs a quadratic least-square fitting (Y; = a + b.X +
c.X?) and calculates the Regression Coefficient R and the Coefficient
of Determination RZ:

Sum of Squared Errors: SSE:Z(Yi_Yfi
= 20
/ 10
Sum of Squared (Value-Mean):  ssT=Y'(f,~Y —
i=1 REERAARERAREERERRERERRRRRERRER
0 5 10 15
Correlation Coefficient and )
Coefficient of Determination: SSE , SSE
R=/1-—=R =1-——
(the closer to 1 the larger SST SST

guadratic dependence)

Source: http://ocw.usu.edu/Civil_and_Environmental_Engineering/Uncertainty_in_Engineering_Analysis/Regression_DataFitting_Part2.pdf
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4. Parameters Correlation to support DoE

(Quadratic) Determination Matrix in ANSYS-DX™

O The Coefficient of Determination R? is displayed for every pair of
parameters. The closer to 1, the better the quadratic regression is.

o The Determination Matrix (R?) is not symmetric:

Quadratic Determination Matrix * X

o
. o 1
= e 3 £ 06

o = m a v 0.4

s 8 £ 5 8

£ = £ L= o )

' ' ' ' : 0.1

— o o =t Ln

o o o o o 0

Pl - inDia

:

P2 - in2Angle
PG - InMassFlow

P4 - OutTempRange -

PS5 - OutTem pive -

36
Source: ANSYS-DX Manual.
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4. Parameters Correlation to support DoE

Determination Histogram in ANSYS-DX™

0 Might be based on linear or quadratic Determination Coefficient R? of
the full model for a given output parameter vs. input parameters.

0 User sets the linear/quadratic, threshold to show influence and output
parameter.

Coeffident of Determination:P4 - CutTempRange * o ox

Pl-inDia  s—
a0 - | PE - InMassFlow

P2 - inZAngle

R2PE[ =F2F - ZukTempIsnge

P4 - OutTempRange
Full Model R2 = 96 %

37
Source: ANSYS-DX Manual.



1 GOVERNMENT OF KERALA
T |

o~ DEPARTMENT OF TECHNICAL EDUCATION NAZARBAYEV
/33\\ MECHANICAL ENGINEERING DEPARTMENT UU NIVERSITY
> ":\;, A (l()'l HIVJ":(\; ; ; “(v‘h :

SCHOOL OF ENGINEERING

website : www me.cetacin. e-mail : mechasicalia cetacin

Problem Overview

ANSYS-DX Tutorial: Optimizing Flow in a Static Mixer

What are the combination of m, D

and a to obtain an optimum stream
mixing?

"

...... m, D

Nater at
315 K

Initial values
m: 1500 kg/s
D: 1m

a: O degrees

4m

1 Qutlet

Figure 1. Static Mixer with 2 Inlet Pipes and 1 Outlet Pipe

Source: ANSYS-CFX support material, 2010. 38
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5. Response Surface Methods (RSM)

Response Surface Methodologies (RSM), with special attention to
ANSYS-DX™

Source: Course "Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,South 62

America ANSYS Users Conference, November 2009, Floriandpolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.
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5. Response Surface Methods (RSM)

= RSMis typically an empirical relationship between a
variable y and a set of independent variables X1,
X2, etc.).

= Typically used in engineering to build approximate
surrogates of higher-order analytical tools (e.g.,
FEA, CFD, ect.).

= Predictions within the space design are called
interpolation, while those outside it are called
extrapolations and require caution from user.

63

Source: Course "Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Floriandpolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.
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5. Response Surface Methods (RSM)

RSM in ANSYS-DX™

Standard Response Surface or Full 2"d Order Polynomial (default)
Kriging (accurate interpolation method).

Non-parametric Regression: provides improved RS and requires
from a previous DoE.

Neural Network: non-linear statistical approximation inspired from
biological neural network operation. Number of Cells controls the quality of
the RSM. Typically, it should range from 1 to 10; 3 is the default.

User Response Surface (analytical expression).

64
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5. Response Surface Methods (RSM)

Standard Response Surface or Full 2" Order Polynomial

It should be always the first to try due to its low cost and simplicity.

This method finds coefficients that minimize the sum of
between DP’s and fitted curve.

It requires at least 6 DP’s. , min number of DP’s:

Linear metamodels (3); Quadratic (6); Cubic (10).

Source: Course "Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,South

America ANSYS Users Conference, November 2009, Floriandpolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.
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5. Response Surface Methods (RSM)

Kriging*

. methodology, belonging to least squares fitting
methodologies.

* Not very computational expensive.

* Can a given field with limited DP’s but keeping the
theoretical spatial correlation.

* QOriginally developed for geosciencies, but currently widely used in
hydrology and other earth sciences.

66

(*) Named after Daniel Krige’s Master Thesis, under the advisorship of Professor Georges Matheron (France)
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5. Response Surface Methods (RSM)

Non-Parametric Regression (NPR)

It is recommended for predicted high between input and
output variables.

Assumes a between output and minimum number of
iInputs given at chosen hyperplanes, assuming that such DP’s represent the
output properly.

Once this reduced set of DP’s is chosen, a IS
used to fit the RS.

67
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5. Response Surface Methods (RSM)

Neural Network

* Neural Network (NN) is inspired in the human brain neural
system operation. NN's are widely used to solve

* The behavior of a NN is defined by the way its are
connected.

* A NN may , but also may be to perform a specific
task.

* NN’s are not limited by normality or linearity.

Source: Course "Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,South 68

America ANSYS Users Conference, November 2009, Floriandpolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.
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5. Response Surface Methods (RSM)
Goodness to Fit Analysis (1/4)

Once a RSM has been performed, clicking on any Output Parameter will
give the Goodness-to-fit option to its RSM, based on current DP’s, but
also, we can create Verification Points (VP’s) to test the fitness. Fitness
can be assessed by:

« Coefficient of Determination R?(CD): o -
Ty - Hi¥
where, - TJ
| T ivi- Wil
Yi' = value of the output parameter at the i-th sampling point i=1

¥i' = value of the regression model at the i-th sampling point

¥ s the arithmetic mean of the values ¥i

Y 5 the standard deviation of the values ¥i
N = number of sampling points

P = number of polynomial terms for a quadratic response surface (not counting the constant term)

70
Source: ANSYS-DX™ Manual
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5. Response Surface Methods (RSM)

Goodness to Fit Analysis (2/4)

» Adjusted Coefficient of Determination (ACD): [
z [y~ ;)
1— M —1 i=1
N-P-1HN _
T (v —¥i)2
=1
« Maximum Relative Residual (MRR): ¢ =
M @ ADS[F' _F'D
i=T.M U
« Root Mean Square Error: N
— IR,
Y E“IWI Wil

Relative Maximum Absolute Error: 1
M Ak [ Absiy: — v
o, i=1:H[ (Y ".'-"'Ijl:l

71
Source: ANSYS-DX™ Manual
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5. Response Surface Methods (RSM)
Goodness to Fit Analysis (3/4)

Physical meaning or application:

Coefficient of Determination (CD). Determines if the Response Surface
were to pass through the DP’s. In such a case,

Adjusted Coefficient of Determination (ACD). Appropriate if there are

Maximum Relative Residual. Maximum distance from all DP’s from
calculated DP’s out of the Response Surface.

Root Mean Square Error. Square root of average square of residuals at
DoE points for regressions. For Kriging, it is O.

Relative Maximum Absolute Error. Absolute max.

Relative Average Absolute Error. Similar as before, but uses average.

72
Source: ANSYS-DX™ Manual
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5. Response Surface Methods (RSM)

Goodness to Fit Analysis (4/4)

» Rating is divided in 6 scales: ™***" ™*" TR T4 T+,
* While ™**" is the best possible result, “+++" is the worst.

* The rating is used only for bounded features. For example, the root mean
square error is not rated graphically because it is not bounded.

» Between the ™" and "+" scale ratings there is a "-" (neutral) rating.
« Calculation is as follows:

Given a feature that goes from 0 to 100, being 100 the best, if we have
the actual value of it equal to 70, then:

((Abs(70-100)/(100-0))*6) — (6/2)=-1.2 = -1 (= ™*"). Negative means better!
If "0 is the best, then the equation changes to: "...Abs(70-0)..."

73
Source: ANSYS-DX™ Manual



jr—1 I)F.I‘\RT\I'l:,(\)fl"(’();";"li\(l‘I;:I:":\“Ifll'.;)l CATION ~ NAZARBAYEV
@UNIV ERSITY

{
W MECHANICAL ENGINEERING DEPARTMENT
: o '\”\\f',“f“ SCHOOL OF ENGINEERING

website : www me.cetacin. e-mail : mechasicala cetacin

5. Response Surface Methods (RSM)
Plots (1/3)

se Chart for P4 - QutTempRange

2.1 -
DIOE Points
Pd = DutTempRange

L |
HE 1

19 - =
=]

18 -
L]
17 -
-
16 - -—
]

15 - =

P4 - OutTempRange [K]
\

14 -

1 1.05 11
P1 - inDia

0o 0.95

Response Chart for P4 - OutTempRange

. .

2D RSM fitting ot
P4 - QutTem pRange

2.05

195
185
175
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155
145
135

[N

-
o

=
o

P4 - {‘Jut’TempRange [K]
oo
-

3,
"5, 145 .

‘9’ '} .
%4 155 My v | 105 1
‘?fr‘)- 165 0.9 0.95P1 - inDi&
%
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4]

3D RSM fitting 4

Source: ANSYS-DX™ Manual
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5. Response Surface Methods (RSM)

Plots (2/3)
—»

035 - — PL-inDia pey
P& - InMazsFlow

0.3 -

Local Sensitivity
o - o
& " i3

o
-

=
o
o

=1

P4 - DutTem pRange ' P5 - DutTempave
Output Fararreters

Local Sensitivity (around a given Response Point) |dministration - > Marketing

—— Allocated Budget

ActualSpending

Information |

=¥ Devel t
Technology evelopmen

Customer
Support

Spider Plot (multivariate data)
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Source: http://en.wikipedia.org/wiki/File:Spider_Chart.jpg
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Properties of Schematic B3: Response Surface * o ox

A B
! i) Value Preserve DP’s
:
3 Component ID Response Surface
= Directory Mame GDO
& Preserve Design Points After DX Run Standard an'order
7 E.:EQ Files for Preserved Design 0]0) |y nomial RSM
8 E  Meta Model \ (Defau It) <
E " )
Tl = Refinement Optional Verification
£ emeneree s Points, set to 1
12 2 Verification Points ~ o
13 Generate Verification Points
14 Mumber of Verification Points 1 i

Let’s first start with 2" order polynomial RSM and 1 Verification Point (VP). VP’s
are located by the algorithm as far as possible from DP’s, but not used to build
the RSM. After the RSM is generated, the VP’s are run and compared to RSM
predictions to check the Goodness of Fit.

76
Source: ANSYS-DX™ Manual
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Goodness of Fit results

Table of Outline A13: Goodness Of Fit
A B C .
1 MName P4 - DutTempRange | P5 - OutTempAve GOOdn,eSS Of Flt
for DP’s
3 Coefficent of Determination (Best Value = 1) **# 0.99284 xxx 0.33904
4 Adjusted Coeff of Determination (Best Value = 1) ‘)fr*)f( 0.93045 xxx 0.24462
5 Maximum Relative Residual (Best Value = 0%g) T 23038 *** 0.01322
5 Root Mean Square Error (Best Value = 0) 0.021202 0.016364
Relative Root Mean Sguare Error (Best Value = 4
7 - ¥ 13425 Hk O
Relative Maximum Absolute Error (Best Value = »
8 0%) X 12,239 K 185.81
9 Relative Average Absolute Error (Best Value =0%) | == 7.056 xxx 43,575
10 B Goodness Of Fit for Verification Paints
. 1 Maximum Relative Residual (Best Value = 0% = B.55 LS ]
Goodness of Fit ® ) * %
fOI’ VP'S (O n |y 1 \ 12 Root Mean Square Error (Best Value = 0) 0.12726 0,0020325
. . Relative Root Mean Sguare Error (Best Value =
in this case) 13 == . B ~ 6.5 A
Relative Maximum Absolute Error (Best Value = »
14 0%) wx 48.016 X 10.047
15 Relative Average Absolute Error (Best Value = 0%%) xxx 43.016 woo10.047
S I anee CFX results
7 1 1.0502 1574.8 1.9429 300.01 <
= Mew Verification Point
Verification Point automatically generated and calculated (via ANSYS-CFX) 77

Source: ANSYS-DX™ Manual
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Goodness of Fit results

Predicted vs Observed - Normalized Values * B X
1.1 A
& Verification points for P5 - OutTempave
1 &  Verification points for P4 - QutTempRange
O PS5 -OutTempave
0.9 - B Pd- OutTempRange
0.8
0.7 A
E 0.6 -
n
0 os -
g o
O o4
—
ECER
—
[8)
5 0z
(O]
S
O o1
0 -
R - - - - - - - - - -
a 0.1 0.z 03 0.4 0.5 0.6 o7 0.8 0.9 1 . .
. VP intr in h
Observed from DP’s troduced to the
RSM to obtain
4 = Response Points I
I predicted output
5 Respanse Point 1 1500 1.6232 300.02 =
[+ Response Point 1 1.0502 1574.8 1.8157 300.01
= MNew Response Point
9 1 1.0502 1574.8 1.9429 300.01
= New Verification Point -

Results may suggest to include further Refinement Points close to the location of
the VP, until all errors are within 1%. 78
Source: ANSYS-DX™ Manual
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Plots of RSM
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DOE Points [} .

Response Chart for P4 - OutTempRange
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2.05
195
1.85
175
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1.55
145

135

2D (OutTempRangevs. Inlet Diameter)

3D (OutTempRangevs. Inlet Diameter, Mass Flow)

2D results suggest that a Kriging fitting might improve the RSM, since

apparently, there are significant non-linearities (non-fitted DP’s).

Source: ANSYS-DX™ Manual
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Plots of RSM

Outline A17: Local Sensitivity *+ @ x
— ] PL-inDia  —
1 Property Value Enabled PG - InMassFlow
0.3 4
Display Parameter Full =
: MName %‘
4 Mode Bar = = o
[ = - .
5 B Input Parameters 2
0.996 =| =
& P1 -inDia o
_._ -1 0.1 -
1487
7 P& - InMassFlow
_._ u - —————————————
8 B Output Parameters P4 - QutTempRange P5 - OutTempdve
9 P4 - QufTempRange 1.6157 ‘- Outpet Farammeters
10 P5 - QutTempAve 300.02 ]l ik

Local Sensitivity Plot. It shows the relevance of the Inlet Diameter

Properties of Outline A18: Spider * o x M
B C 1. P4 - OutTempRange @ Response Point
1 Pr + Value Enabled 2. P5 - OutTemplve L,
2 =
Display Parameter Full —
& Name
4 =
1.06
5 P1 -inDia
—_— —
1487
6 P8 - InMassFlow
. S
7 = Cufy
3 P4 - QutTempRange 1.8518
] P5 - QuiTempAve 300.01
@
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Spider Plot at RP, shows highest influence on OutTempRange
Source: ANSYS-DX™ Manual
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6. Multi-Objective Optimization

Single vs. Multi-Objective Optimization

Single Objective Optimization (example: minimize F(X)). Then A is the
best design point obtained at the moment. Then we have a Simple

Optimization.

Objective

01

0.06 [ID = 1570]

0 262 524 786 1048 1310

Design ID

81
Source: Course "Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,South America
ANSVYS |leere Conference November 2000 EloriandAnolic Rracil
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/. Multi-Objective Optimization
Multi-Objective Optimization (example: minimize non-conflicting Z, and Z,)

When there is more than 1 Objective Function, but they do not conflict
against each other, it means that maximizing one of them lead to maximizing
the other one, and viceversa. Then, we have again a Simple Optimization

case.
- -
iy e
B L & . '_ :.'
1 — L x L . =
obj1g . . e
i LT ®
a8 ot ':.,
o piaga s
Zl Zl &8 ) '."-1.: -
5 .'l: v in =
I Wl
.A : Rt
obj1 i o+
|
. . ; ) a".I.'l (R 0z 1] i L& oo o 9.8 na 0
obj2,  Z, obj2g Z,

"A”" dominates all the solutions

Source: Course “Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,SoutI@2
America ANSYS Users Conference, November 2009, Florianépolis, Brasil.
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/7.  Multi-Objective Optimization

Multi-Objective Optimization (example: minimize conflicting Z, and Z,)

If we try to minimize two or more Objective Functions, it may happen that
there is not a unique optimum, but a compromise between both objectives or
a boundary of “optima”, name Pareto Frontier.

T * am " - _ For example:
.. N R —— A B dominates A because B is
1P ettty i ——;/;E:;/ . better than A for both objectives.
y co - ] ) ) C & D dominate A & B, because
Zl * L I . .
T | . the former are Pareto points.
2 N R However, C & D do not dominate
D": T each other.
i ) Which one is more important?
o T = — .| Ans. Lateron ...
2

Source: Course “Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,SoutI@3
America ANSYS Users Conference, November 2009, Florianépolis, Brasil.
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/7.  Multi-Objective Optimization

What are the Constraints and how do they affect the Optimization?

Constraints:

The constraints are quantities or limits mandatory to the project, e.g., limits
or restrictions associated to functionality, standards, etc. These, as a whole,

define the
« General constraints . Constraints on variables
* Maximum drag «  Total weight (volume)

*  Minimum lift «  Width range

«  Minimum pressure »  Explicit function of variables.
drop « etc.

*  Function of variables

 eflc.

Source: Course: modeFrontier por ESTECO 84
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/7.  Multi-Objective Optimization

How do the constraints affect the Optimization?

Constraints may be dimensional (input variable), but also they might be
associated to output variables (e.g., drag, lift, etc.)

130.00 "
- |
<
=

120.00 = 1
(n '
C !
[®]
o

110.00

00.00

80,00

Blade chord

80.00

Z,

70,00

60,00

Z, = Drag

For example:

Designs with a Drag force
larger than 100 N are NOT

viables.

Source: Course “Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,SoutI@5

America ANSYS Users Conference, November 2009, Florianépolis, Brasil.
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/7.  Multi-Objective Optimization

How to deal with conflicting Multi-Objectives?
Weighting Functions:

may be coupled as a simple objective, using weights:

F(0=2 ()

m Pros:
o Simple formulation.
o Weights depend on Decision Maker judgement.

= Cons:
o Weights depend on each problem and must be defined empirically.

86

Source: Course: modeFrontier por ESTECO
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/7.  Multi-Objective Optimization

Optimization in ANSYS-DX™: Goal Driven Optimization (GDO)

« GDO may be invoked from:

. . In this case, GDO will generate its own DP’s
using the known DoE and RSM techniques.

. . In this case, GDO
will share all data generated from the DoE.

. . In this case, GDO will
share all data generated from DoE and RSM.

* Optimization options:

» Graphical Rating of Candidates: as explained in Goodness of Fit section
(6 Scales .-***--’ .-**--’ .-*..’..+.., ..++..’ ..+++..). .
Source: ANSYS-DX Manual



BT ioaRrenT OF TECHNICALEDUCATION ININAZARBAYEV
&L MECHANICAL ENGINEERING DEPARTMENT @UN IVERSITY

coLt IH I.H‘ l‘ f(-‘l.\ul lk,\( SCHOOL OF ENGINEERING

/7.  Multi-Objective Optimization
ANSYS-DX™ GDO: Screening

» Based on shifted Hammersley sampling algorithm.

« Conventional Hammersley sampling is a quasi-random generator, with low
discrepancy (high uniformity). The quasi-random number generator uses the
“radical inverse function” to produce numbers in the range (0, 1) .

88
Source: ANSYS-DX Manual
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/7.  Multi-Objective Optimization
ANSYS-DX™ GDO. Evolutionary Design =» Genetic Algorithms
Steps:

» Select initial population (DoE-like).

* Check fithess of elements.

. according to fitness.
. between better fitted samples.
* Random according to set levels.
» Check of elements and repeat until enough

generations have been produced; then stop.

Source: Course "Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Floriandpolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.
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/7.  Multi-Objective Optimization

ANSYS-DX™ GDO. Evolutionary Design =» Genetic Algorithms
Flow diagram:
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/7.  Multi-Objective Optimization

ANSYS-DX™ GDO: MOGA (Multiple Optimization Genetic Algorithm)

« Mimics the evolutionary principles for living systems, obeying
idea of ~ )

» Genetic Algorithms belongs to the more general family of Evolutionary
Algorithms (EA) which generate solutions using a model
(based on experience-learning, rule-of-thumb, trial-and-error, etc).

» These methods have the ambition to solve optimization problems for which
we

« Based on a hybrid variant of the Non-dominated Sorted Genetic
Algorithm-1l (NSGA-II) , which is used for continuous variables.

91
Source: ANSYS-DX Manual
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/7.  Multi-Objective Optimization
ANSYS-DX™ GDO: MOGA

» Based on NSGA-II (Non-dominated Sorted Genetic Algorithm)

* NSGA-Il is a Multiple Objective algorithm based on continuous
variables, while original MOGA s for discrete spaces.

* Need to specify:

. (if want to start from new set).
Recommended , but less than 300.
. . Samples iterated and

updated at each iteration. Must be smaller than previous.

. with respect to
samples. 50-70% is recommended.

92
Source: ANSYS-DX™ Manual
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/7.  Multi-Objective Optimization

ANSYS-DX™ GDO: MOGA

* Need to specify (cont’d):
. , before the solver stops, unless
the error target is met. It gives an idea of how long would it take
for a full cycle.

. . Use if a new set of samples has to be
produced or else, use previous “Screening” samples.

« PROS: high robustness (in terms of finding global critical points)
and good at handling multi-objective problems.

« CONS: low-convergence rate if accuracy is an issue.

93
Source: ANSYS-DX™ Manual
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/7.  Multi-Objective Optimization
ANSYS-DX™ GDO. Gradient-based Algorithms (GBA)
« Local maximum/minimum (accuracy 1, robusiness |).

* It gives the direction with highest increase of function:
— convergence speed

* Itis for SINGLE-OBJECTIVE non-linear problems. Derivatives:

Forward differences: Gradient
of | _ fx,+Ax)-f(x,) A
OX " AX; 67)(1

Central differences: VE(x)=1{ b
of _ F06 + A% )— f(x, —AX) :
x| 2AX, of

Source: Course “Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,SoutI?4
America ANSYS Users Conference, November 2009, Florianépolis, Brasil.
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/7.  Multi-Objective Optimization
ANSYS-DX™ GDO: NLPQL

Can only handle ; however, other
output limits may be handled via constraints.

User needs to specify:

o Allowable Convergence Percentage. Larger — less

convergence iterations and |accuracy (but faster), and
viceversa. 1E-06 is default, as typically error is scaled.

o Maximum number of iterations.
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7. Six Sigma Analysis (SSA) and Robust Design

Six Sigma and Robust Design

« Six-Sigma (60):

- Group of best practices to
systematically improve, via reduction of
defects (Motorola, 1986).

- Processes under Six-Sigma standards,
generate less than 3.4 defective parts
per million units.

 Robust Design:
- Includes uncertainties during the

design stage to guarantee robustness.
Applies Six-Sigma principles.

96

Source: Course “Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Floriandpolis, Brasil.
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6. Six Sigma Analysis (SSA) and Robust Design
What does Robust Design mean?

 In many engineering problems the design parameters may be
known only within certain tolerance.

* In many problems, parameters are described by a probabilistic
distribution.

D35

Standard —

deviation

Mean value —

Source: Course "Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianépolis, Brasil.
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6. Six Sigma Analysis (SSA) and Robust Design

Robust Designs

« The uncertainties in the input parameters is reflected on the system
outputs. For example, a good solution for deterministic input data, may not
be robust to small variations.

« The robustness of a solution is defined as the response quality to be
insensible to variation in input parameters.

* A Robust design optimization aims at robust solutions using Six-Sigma
principles.

Best solution ( )

Best solution ( )

Source: Course “Optimization Techniques using modeFrontierFundamentals and Applications”, Ing. Ana Paula Curty Cuco, 2009 ESSS,South 98
America ANSYS Users Conference, November 2009, Florianépolis, Brasil.
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6. Six Sigma Analysis (SSA) and Robust Design
Six-Sigma Analysis (SSA) in ANSYS-DX™

* Requires mean value and specify statistical distribution function of
randomness.

« Statistical distribution functions available: Uniform, Triangular,
Normal, Truncated Normal, Lognormal, Exponential, Beta and
Weibull.

« For example, if a given input variable has a histogram like this:

Uniform Distribution

fx(x)

User must specify Xmin, Xmax, and
applies for cases with similar likelihood
for all possible values of random

o variable.
min Xmax

Source: ANSYS-DX Manual
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6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) in ANSYS-DX™

Triangular Distribution « User must specify Xmin, Xmax and
Fy(x) most likely value limit Xmlv.

* Applies when for cases when actual

data is unavailable. For instance, based
on opinion of experts.

Xmin Xml‘u‘ max

100
Source: ANSYS-DX Manual
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6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) in ANSYS-DX™

(17 L

Gaussian (Normal) Distribution| . User must specify mean value “p” and
fx(x) standard deviation “o”.

* Applies for scattering of truly random
variables.

20

101

Source: ANSYS-DX Manual
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6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) in ANSYS-DX™

Truncated Gaussian (Normal) Distribution
Fy(x)

Xmin

1 7

» User must specify mean value “u
and standard deviation “0”. But also,
the user specifies lower and higher

limits, Xmin and Xmax, respectively.

» Applies for scattering of truly
random variables, when a lower and
higher limits are established by
quality control.

Source: ANSYS-DX Manual
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6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) in ANSYS-DX™

Lognormal Distribution
fx(x)

e

« User must specify the logarithmic
mean value ‘¢’ and the logarithmic
deviation “®”, calculated as:

2
fx.5.9) = \/ﬁ exp [';{mxa_ &] 1

» Appropriate for scattered data for which
the In(X) follows a normal distribution.

Source: ANSYS-DX Manual
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6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) in ANSYS-DX™

Exponential Distribution
fx(x)

Xmin

« User must specify the decay parameter
“N” and the lower limit Xmin.

* Applies to cases for which the
probability density decays as the
random variable grows. For example in
time-phenomena, among others.

Source: ANSYS-DX Manual
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Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) in ANSYS-DX™

Beta Distribution

fx(x)
A

Xmin

Xmax

« User must provide shape parameters

r’ and “t", and lower/upper limits of
variable, Xmin, Xmax, respectively.

* Applies to random variables bounded
on both sides. This case occurs mostly
on random variables that follow normal
distribution after being subject to a linear
operation (e.g., subtraction of a
geometric magnitude).

Source: ANSYS-DX Manual
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6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) in ANSYS-DX™

Weibull Distribution

fx(x)

M, Xchr

AN

Xmin

» User must provide Weibull
characteristic parameter Xchr, Weibull
exponent “m”, and the minimum value
Xmin (m=2 gives Rayleigh distribution(.

« Applies to strength/related lifetime
parameters. Used for wind velocities,
giving a 2-year data collection, for
example.

Source: ANSYS-DX Manual
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6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) in ANSYS-DX™

« Example. If a given input variable has a histogram like this:

8.05-01 Then, the most appropriate statistical
5.0E-01 distribution will be the Exponential.

4.0E-01

3.0E-01

2.0E-01

Relative Frequency

1.0E-01

0.0E+0
s & & g &
© &
Snow Helght H1

107

Source: ANSYS-DX Manual
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6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) Input-to-Output Transformation (1/2)

* Probability operation rules

. exclusive events A and B (can’t occur simultaneously).
*P(Aand B) =0
* P(AorB) =P(A) + P(B)

. exclusive events A and B (can occur
simultaneously).
« P(Aor B) =P(A) + P(B) — P(A and B) (always valid)

. events Aand B: P(Aand B) = P(A) * P(B)

e In ANSYS-DX™ are treated as
(events) in 60*.

Source: http://people.richland.edu/james/lecture/m170/ch05-rul.html 108
(*) This assumption is made on the basis that Input Parameters are independent variables by definition (note by LRRS)
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6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) Input-to-Output Transformation (2/2)

Input Parameter A

Gaussian (Normal) Distribution

fx(x) A2

DoE

Input Parameter B

Triangular Distribution

fx(x) B2

(*) CCD or another DoE sampling, as previously shown.

RSM = 6o

Ouput Parameter C

*« Each DP has a combined probability
P(A and B) = P(A)*P(B).

* Therefore, Point A1B1 produces, via
CFX, an Ouput Point C11 with
Probability: P(C11) = P(AL1)*P(B1).

» System non-linearity may stretch or
shrink location of output points in
probability density plot wrt mean input-
output location.

(**) As before. noints will lie on fitted curve when usina Kriaina

and B,

Fitted
RSM**

CFX’s calculated
points from A,
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6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) Ouptut Analysis in ANSYS-DX™
» Histogram
« Cumulative Distribution Function

* Probability Table

» Statistical Sensitivities

110
Source: ANSYS-DX Manual
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6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) Ouptut Analysis in ANSYS-DX™

Histogram (for inputs-outputs):

» Derived by dividing the global range between min-value and
max-value, into intervals of equal length.

* It shows the fidelity of the sampling process (check if loops are

enough, for example).

Source: ANSYS-DX Manual
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6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) Ouptut Analysis in ANSYS-DX™

« Cumulative Distribution Function (for inputs-outputs).
» Assesses the reliability or the of a component

or product.

« Basically, evaluates the probabilty of a given output parameter of

&
>

[
)
o

L

Probability
o0
o
o

=]
»
o}

0.00 t
8.86E+4 1.09E+5 1,30E+5 1.51E+5 1.71E+5 1.92E+5

Shear Stress Maximum

exceeding or being under a

« Example: the figure shows that there is a
93% probability of having stress smaller
than 1.71E+5.

Source: ANSYS-DX Manual
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6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) Ouptut Analysis in ANSYS-DX™

Probability Table. Provides probabilities of input or output
parameters as a Table (similar to Cumulative Distribution Function).

zble of Schematic % Sk Sigma Analysk zble of Schematic C#: Sk« Signa Anakysis
- = B i - ] B i3
L | PL-DRLENGTH Frebablie = [<kmatevel - 1 Probehiity __pSignalevdl ~ | PL-DHLENGTH ~
4347 00056075 -2 46T : | oooeser— -F4fiE 43.497
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T aEazE 0. 2242 -0, 7= 7ol -L2B16 46,793
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Source: ANSYS-DX Manual
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6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) Ouptut Analysis in ANSYS-DX™

Probability Table. Analysis: « 60 (SSA) is very useful after performing
Optimization, as a tool to determine the
robustness of the chosen design.

Percentile-Quantile

shle of Schematic C4: Sk Sgma Onaksis i * X
- A B C
s e {D*Lm i * We can check, writing in lowest row-cell,
Z CLO069075 -E 46 4397 -
o e the value of Probability 60 (P=0.9999966)
e . i ~~—_ and we’ll get the the value of the Output
: o e s ‘o-dictance | Parameter (OP) at such a limit. All values
L e i from mean larger than this, will be in the "3.4/1000000
I EE 052 718 defects tolerated". Any customer
s o o specification lower than this OP, satisfies
1z 054154 1 52512 60'.
13 [uk=} 1.2316 53.228
14 0,95 16449 5+.165
;- Wil 1 i « Same for the lower bound
17 |om 2.3263 56 £64 (P:34/1000000)
18 0,259302 2452 7256
" Hzvr Prabatibby Walus | MNew Sgme Leeal

' 114

Source: ANSYS-DX Manual



INJNAZARBAYEV
@UNIVERSITY

SCHOOL OF ENGINEERING

Luis R. Rojas-Sol6rzano, Ph.D.

6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) Ouptut Analysis in ANSYS-DX™

« Statistical Sensitivities. Charts to help improving design towards a
better quality design. It's available for any continuous output
parameter.

» Changes of output parameters vs. input parameter change:

. (average of a set of values)

. (dispersion of data around the mean)
. (measure of data dispersion from the mean)
. (asymmetry of data around the mean)

. (relative peakedness or flatness of distribution)

. (complexity and predictability)

115
Source: ANSYS-DX Manual
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to perform CFD Optimization + 60-
Analysis (1/3)

Have an original design
which  you want to fPerform GDO using
“optimize” ’l Screening

y
[Define Objective Function(s) OP’s]

and constraint(s) Check/determine

manufacturing
tolerances and
input ]

Perform DoE with CCD-default as first . ,
variations for IP’s.

[ Establish initial guessed option and get 2"-order RSM

parameters (IP’s) of Design Space

- 1 Perform 6-o analysis
[ Develop 3D CAD using IP’'s as (SSA) to determine
parameters and using defaults ) robustness limits of
N optimal solution.
[Prepare 3D mesh that complies quality\

conditions. Setup (CFX-Pre) physical Discard IP’s with a low (<0.5)
properties-models, BC/IC’s and correlation “wrt” all OP’s In  Percentile-Quantile
numerical-convergence conditions. Set table, check the value
further IP’s as needed. of OP’s for 0.9999966
Run default case, check convergence (=1-3.4/1IMM) to
\and set OP’s in CFX-Post / determine if design is

within 6o standard.

Yes

Perform a Parameters Correlation Analysis using

all Objective Output Parameters (OP’s)vs. IP’s @
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to perform CFD Optimization + 60-

Analysis (2/3)

Perform a Parameters Correlation Analysis using Run DoE with CCD-default as

all Objective Output Parameters (OP’s)vs. IP's first option and get 2"d-order
RSM. Choose 2+ Verification Find on RSM, DP’s with
Points (VP’s). largest MRR™) and RAE®)

and add 2-3 DP’s or VP''s
\l( closeby.

Select limit of parameter and choose 20 Latin

Hypercube (LH) max. number of samples. Keep Explore Goodness of Fit (GoF). Check

auto-stop and click to preserve DP’s for future indexes for all OP’s for DP’s and VP’s.

needs. Choose Spearman or Pearson "p,,". Check no

results.

Are all Go
e or

no

Are there IP’
with p,, < 0.5

Kriging. Choose
\VP's

Switch to Optimal
Filling DoE and

for any OP’s?

yes

Are all Go
for VP's ™"
Qr better?

Proceed with
GDO

Increase LH sampling by 50% and check if p,
changes are less than 10%. If not, increase again
LH by 50% until p,, changes meet that criterion.

2+

/Add current\
VP’s as

L Refinement

Points (RP’s)
and choose 2+
VP’s. Update
RSM. Check
VP's GoF and
repeat up to 59

NEXT

ulmes as needed/

(+) MRR: Maximum Relative Residual; RAE: Relative Absolute Error (see GoF)/ (++) If not getting good GoF after 9 iterations, switch to NPR or NN 117
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Perform GDO
Screening

using

ININAZARBAYEV

@UNIVER&

TY

SCHOOL OF ENGINEERING

to perform CFD Optimization + 60-
Analysis (3/3)

-
Use an initial sample of

1000 . Do not click "Verify
L Candidate points™ (CP)

~

J

Increase 50%
# iterations
and check the
seed location

-
Set Optimization conditions

~

Use NLPQL and set

.

(Objective  function and
constraints) seed qlose to expect_ed
\ J max/min  and  Verify
\ Candidate Points
( N\
Update and see ranking of
candidates

|

Increase 50% #
samples

More than 1

Qbjective? yes

Use MOGA with 100-300
elements. Set Pareto

equal to 70% of sample
and Verify Candidate
Points

Perform 6-o analysis
(SSA) to determine
robustness limits of
optimal solution

N\

Open SSA worksheet. Set
variation properties for IP’s

( )

J

L in DoE
N

r

Perform DoE using CCD-
| default

N\

Verification. Refine DoE as

Increase 50%
# iterations if
% Pareto not

met

\
4 ] )
Perform RSM using 2nd-
order poly or Kriging +

\_needed to get good GoF Y,

\!

r

Choose 10000 samples to
| prepare statistical outputs

N

Vv

Perform SSA and
determine OP’s
distribution and 6o limits.
Increase sampling 50% and

repeat until it doesn’t

\

\_change more than 10%. /
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