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1. Introduction to Global Optimization

2. Introduction to ANSYS-DesignXplorerTM (ANSYS-DXTM)

3. Design of Experiments (DoE)

4. Parameters Correlation to support DoE

5. Response Surface Methods (RSM)

6. Six Sigma Analysis (SSA) and Robust Design

7. Multi-Objective Optimization



LEARNING OUTCOMES
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At the end of this workshop, participants will gain basic knowledge on:

1. Optimization Analysis in Computer Aided Engineering applications.

1.1. Optimization premises

1.2. Design of Experiment

1.3. Response Surface

1.4. Pareto Optimization

2. Creating a complex geometry in ANSYS-DesignModeler (DM).

3. Parametrizing a geometry in DM.

4. Parametrizing Boundary Conditions in CFX-Pre.

5. Defining an Objective Function with Output functions.

6. Setting up and running Optimization algorithm in ANSYS-Workbench.



1. Introduction to Global Optimization
Optimization of Complex Systems
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• no analytical solution

• possibility of +1 solution

• only numerical solution

• numerical solver becomes an

ad-hoc ¨laboratory¨ to explore the

system.

How to optimize the system 

performance?



1. Introduction to Global Optimization
Optimization of Complex Systems
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Complex system, 

described by 

PDE´s + BC´s + 

IC´s 

X1, Y1, Z1, etc.

• x,y,z,etc. are continuous variables;

thus infinite possible inputs!!... and

outputs!

• PDE system of equations requires a

large computational effort. It´s not

viable to run too many case studies to

find optimum.

X2, Y2, Z2, etc.

X3, Y3, Z3, etc.

X4, Y4, Z4, etc.

u1, v1, w1, etc.

u2, v2, w2, etc.

u3, v3, w3, etc.

u4 v4, w4, etc.

How to reduce the optimization effort?



1. Introduction to Global Optimization
Optimization of Complex Systems. Schematics
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1. Introduction to Global Optimization
Optimization of Complex Systems. Schematics
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Complex system, 

described by 

PDE´s + BC´s + 

IC´s 

Surrogate model or Response 

Surface Methodology (RSM)

Optimization

Design of Experiments

(DoE)

Questions to address

• What are the objective functions to

max/min? (are there more than 1?)

• What are the constraints?

• What is the min set of Design Points to

guarantee enough information to get a

satisfactory RSM? How to test it?

• What is the appropiate (accurate/fast)

method to max/min the RSM? How to

check Local vs. Global max/min?

• What if input variables have low

precission?



2. Introduction to ANSYS-DesignXplorerTM

(ANSYS instructional slides)
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Source: http://www.itl.nist.gov/div898/handbook/pmd/section3/pmd31.htm
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• DX Provides a tool for designing and understanding response

of complex models, including uncertainties in input parameters.

• Supports optimization analysis via the use of Response

Surface (Surrogate Model).

• Uses parameters from DesignModeler (DM) and ANSYS-CFX

Pre to explore a wide range of scenarios, based on limited solver

executions.
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• DX uses:

• Input parameters. Example:

• Geometry-related (DM)

• BC´s

• Physical properties

• Response (Output) parameters. Example:

• Heat flux

• Stress

• Mass flow rate

• Pressure drop

• Derived parameters. Example:

• CEL functions (cannot reference other derived param.)

• Cost function (mass x cost/mass)

• Average or normalized parameters.
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• Design of Experiments (DOE) method:

• Uses a limited set of input (design) points to build

Response Surface.

• Default DOE in DX uses Central Composite approach to

choose parameter values to be solved.

• Once required solutions are completed, Response Surface

is created (fitted) to find solutions in conditions not

evaluated. See 2D example below.



3. Design of Experiments (DoE)
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Source: http://www.itl.nist.gov/div898/handbook/pmd/section3/pmd31.htm

Design of Experiments (DoE). Definition.

• Systematic and rigorous approach for data collection in engineering

problem-solving.

• Uses statistical principles and techniques to ensure collected data

provide valid and supportable engineering conclusions.

• DoE is carried out under the premise of a minimal expenditure of

engineering runs (experiments or simulations), time and money.

• For modeling and optimization purposes, DoE aims to provide a good-

fitting (accurate) mathematical surrogate function (RSM).

What is the min set of Design Points to guarantee enough

information to get a satisfactory System Surrogate or RSM?
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Source: http://support.sas.com/resources/papers/sixsigma1.pdf

Design of Experiments (DoE). Steps.

• Define the problem and questions to be answered.

• Define the population of interest (range of independent variables and

discretization).

• Find the appropriate sampling (technique and size). A sample is a

scientifically drawn group of ¨individuals¨ that possesses the same

characteristics as the population. This is true if the sample is drawn in a

random manner.

What is the min set of Design Points to guarantee enough

information to get a satisfactory System Surrogate or RSM?

3. Design of Experiments (DoE)



Sequence-sampling

• Latin Square & Hypercube and Monte Carlo sampling

• Full Factorial & Reduced Factorial

• Central Composite Design (CCD) (ANSYS-DXTM)

• Optimal Space-Filling Design (ANSYS-DXTM)

• Box-Behnken

15

3. Design of Experiments (DoE)



Latin Hypercube y Monte Carlo Sampling
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 Latin Hypercube (LHS) and Monte Carlo algorithms generate
¨ramdom¨ sampling, according to several statistical distributions
(Normal, Cauchy, Weibull, etc.).

 LHS is the generalization of Latin Square sampling extended to an
arbitrary number of dimensions. Latin Square is a square grid with
sampling positions such that there is only one sample in each row
and each column.

 LHS is a (restricted) Monte Carlo sampling. Sometimes, further
improved by introduction of uniformity.

Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.

3. Design of Experiments (DoE)



Uniform Latin Hypercube sampling
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n = 10

Pseudo-random (Monte Carlo) Uniform Latin Hypercube

n values are chosen independently,

according to the function of global

uniform density

The uniform statistical distribution

is divided in ¨n¨ intervals with

same probability. Thus, a quasi-

random value is chosen in each

interval.

Uniformity is guaranteed !
Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.

3. Design of Experiments (DoE)



Factorial sampling
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Full factorial: Number of designs = mn

m = base of each variable (number of possible values)

n = number of design variables

 It gives all the information related to the interaction among

variables.

 The number of experiments increases by a factor of m per variable

added.

Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.

3. Design of Experiments (DoE)



Example of Factorial DoE
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n. design          x1          x2        x3     fit

1  +           +         + f1

2 +           +         - f2

3 +            - + f3  

4 +            - - f4

5 - +         + f5

6 - +         - f6

7 - - + f7

8 - - - f8

2-level Full Factorial, n variables or factors

2n Experiments permit to calculate 1st-order interactions

Function with 3 input 

variables (x1,x2,x3)   0<xi<1

range [0,0.5]  -

range [0.5,1]  +

Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.

3. Design of Experiments (DoE)



Factorial DoE. 3-level, n variables.
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3-level Full Factorial

3n Experiments permit

calculation of 2nd-orden

interactions

3 variables

27 experiments

Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.

3. Design of Experiments (DoE)



Factorial DoE. Pros and Cons
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Full Factorial Pros:

 For each variable, we have the same number of designs in (+)range
and (-)range.

 Gives knowledge about interaction among all variables.

Full Factorial Cons:

 For a large number of variables, the number of required designs
becomes really huge.

Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.

3. Design of Experiments (DoE)



(Box-Wilson) Central Composite Design (CCD) (ANSYS-DXTM)
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Source: http://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm

• Original CCD. Expands original design limits and

requires 5 levels for each variable (factor). Also

called circumscribed or rotatable.

• Face Centered with star points at center of each 

face. Requires only 3 levels.

• Inscribed CCD, used when limits have to be 

strictly respected. Also requires 5 levels.

3. Design of Experiments (DoE)



Existing design points

(previously generated)

New points are added to

uniformly fill gaps.

23Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.

Optimal Space-Filling Design (ANSYS-DXTM)

3. Design of Experiments (DoE)
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 Before building a definitive DoE table for RSM and/or Optimization

purposes, we may find that our problem has too many input

parameters.

 Two many input parameters may turn the problem intractable in

terms of sampling points. Then, a previous Parameters Correlation

exercise may help us to answer:

 What are the most important design variables?

 Can we reduce the variables space?

 What is a reasonable number of objectives and constraints to

be defined?

4. Parameters Correlation to support DoE



Parameters Correlation in ANSYS-DXTM

25

 It is a preliminary DoE exercise. Sampling is based in Latin
Hypercube sequence, with correlation of input parameters smaller
than 5%.

 If Auto Stop is enabled, simulations (DP´s) stop when levels of
Mean and Standard Deviation error reach the specified level or
maximum number of samples is reached.

 An exhaustive examination of DoE (Pearson, Spearman, etc.)
accelerates the optimization process, by reducing de number of
variables in the parametric analysis.

 The statistical tools though, need DoE tables that correctly
represent the design space.

4. Parameters Correlation to support DoE

Source: ANSYS-DXTM Manual



Dependence and Correlation
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 Dependence: refers to any statistical relationship between two

variables or sets of data.

 Correlation: refers to any of a broad class of statistical relationships

involving dependence. Mostly, related to standard deviation, variance

and co-variance.

 Pearson correlation

 Spearman correlation

4. Parameters Correlation to support DoE



Pearson and Spearman Correlations
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 Standard deviation : measures the variation or dispersion for a

given variable, from its mean value.

22
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Source: http://en.wikipedia.org/wiki/File:Comparison_standard_deviations.svg

4. Parameters Correlation to support DoE



Pearson and Spearman Correlations

28

 Covariance σxy: measures how two statistical variables change

together. Its value depends on the units used for the variables.

 If X grows when Y grows and X decays when Y decays, then

covariance is positive and large; and viceversa.

 If there is no linear relation between X and Y, then σxy = 0.

Source: http://en.wikipedia.org/wiki/File:Comparison_standard_deviations.svg

4. Parameters Correlation to support DoE



Pearson and Spearman Correlations
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 Pearson correlation ρxy: normalizes the covariance and takes

values [-1,1]. 1 means a perfect linear relationship with positive

slope; while, -1 means the opposite. 0 means no linear relationship

at all (i.e., no correlation or a nonlinear relation may exist).

Source: http://en.wikipedia.org/wiki/File:Comparison_standard_deviations.svg
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4. Parameters Correlation to support DoE



30Source: Wikipedia

Geometrical interpretation of Pearson Correlation:

Given two variables V and T, for example, measured over a universe of ¨n¨

points within the space, treating both variables as vectors in the n-dimensional

space: V (V1, V2, …Vn) and T(T1, T2, …, Tn). Centering these vectors around

the mean:
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4. Parameters Correlation to support DoE



Pearson and Spearman Correlations
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 Spearman correlation:

 Once the first variable is ordered from small to large (rank),

then the rank to the second variable is established. Then,

d = abs (Rank_x-Rank_y).

 For samples larger than 20, it can be approximated with the

t-Student parameter.
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4. Parameters Correlation to support DoE



Pearson and Spearman Correlations
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 Spearman correlation ρxy: measures the statistical dependence

between two variables. If the dependence is perfectly monotonic with

positive slope, then ρxy=1, -1 means the opposite.

Source: http://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

4. Parameters Correlation to support DoE



Pearson and Spearman Correlations
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 Spearman and Pearson correlations vs. range dependence

Source: http://en.wikipedia.org/wiki/File:Correlation_range_dependence.svg

4. Parameters Correlation to support DoE

Pearson/Spearman correlation coefficients between

X and Y for unrestricted ranges and when the range

of X is restricted to (0,1).

http://en.wikipedia.org/wiki/Pearson_product_moment_correlation_coefficient
http://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient


(Linear) Correlation Matrix in ANSYS-DXTM
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 Shows correlation (between -1 y 1) among all variables.

 If Pearson, it measures linear relation; if Spearman, it measures
monotonic dependence.

Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨and ANSYS-DX Manual.

4. Parameters Correlation to support DoE



(Non-linear/Quadratic) Correlation in ANSYS-DXTM
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 Sometimes, we´d like to evaluate the non-linear dependence between
two parameters.

 ANSYS-DXTM performs a quadratic least-square fitting (Yf = a + b.X +
c.X2) and calculates the Regression Coefficient R and the Coefficient
of Determination R2:

Source: http://ocw.usu.edu/Civil_and_Environmental_Engineering/Uncertainty_in_Engineering_Analysis/Regression_DataFitting_Part2.pdf

4. Parameters Correlation to support DoE
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(Quadratic) Determination Matrix in ANSYS-DXTM
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 The Coefficient of Determination R2 is displayed for every pair of
parameters. The closer to 1, the better the quadratic regression is.

 The Determination Matrix (R2) is not symmetric:

Source: ANSYS-DX Manual.

4. Parameters Correlation to support DoE



Determination Histogram in ANSYS-DXTM
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 Might be based on linear or quadratic Determination Coefficient R2 of
the full model for a given output parameter vs. input parameters.

 User sets the linear/quadratic, threshold to show influence and output
parameter.

Source: ANSYS-DX Manual.

4. Parameters Correlation to support DoE



ANSYS-DX Tutorial: Optimizing Flow in a Static Mixer

38Source: ANSYS-CFX support material, 2010.

Problem Overview

D , m

What are the combination of m, D

and α to obtain an optimum stream

mixing?

α

D , m

Ø 4m

Initial values

m: 1500 kg/s

D: 1m

α: 0 degrees

4m



Response Surface Methodologies (RSM), with special attention to 

ANSYS-DXTM

62

5. Response Surface Methods (RSM)

Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.
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 RSM is typically an empirical relationship between a

variable y and a set of independent variables X1,

X2, etc.).

 Typically used in engineering to build approximate

surrogates of higher-order analytical tools (e.g.,

FEA, CFD, ect.).

 Predictions within the space design are called

interpolation, while those outside it are called

extrapolations and require caution from user.

Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.

5. Response Surface Methods (RSM)



RSM in ANSYS-DXTM
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 Standard Response Surface or Full 2nd Order Polynomial (default)

 Kriging (accurate interpolation method).

 Non-parametric Regression: provides improved RS and requires initial
seed from a previous DoE.

 Neural Network: non-linear statistical approximation inspired from
biological neural network operation. Number of Cells controls the quality of
the RSM. Typically, it should range from 1 to 10; 3 is the default.

 User Response Surface (analytical expression).

5. Response Surface Methods (RSM)
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 It should be always the first to try due to its low cost and simplicity.

 This method finds coefficients that minimize the sum of standard

deviations squared between DP´s and fitted curve.

 It requires at least 6 DP´s. As a reference, min number of DP´s:

Linear metamodels (3); Quadratic (6); Cubic (10).

Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.

Standard Response Surface or Full 2nd Order Polynomial

5. Response Surface Methods (RSM)



Kriging*
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• Very accurate methodology, belonging to linear least squares fitting

methodologies.

• Not very computational expensive.

• Can interpolate a given field with limited DP´s but keeping the

theoretical spatial correlation.

• Originally developed for geosciencies, but currently widely used in

hydrology and other earth sciences.

(*) Named after Daniel Krige´s Master Thesis, under the advisorship of Professor Georges Matheron (France)

5. Response Surface Methods (RSM)
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 It is recommended for predicted high non-linearity between input and

output variables.

 Assumes a quadratic relationship between output and minimum number of

inputs given at chosen hyperplanes, assuming that such DP´s represent the

output properly.

 Once this reduced set of DP´s is chosen, a Quadratic training function is

used to fit the RS.

Non-Parametric Regression (NPR)

5. Response Surface Methods (RSM)
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• Neural Network (NN) is inspired in the human brain neural

system operation. NN´s are widely used to solve complex

problems.

• The behavior of a NN is defined by the way its neurons are

connected.

• A NN may learn, but also may be trained to perform a specific

task.

• NN´s are not limited by normality or linearity.

Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.

Neural Network

5. Response Surface Methods (RSM)
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Source: ANSYS-DXTM Manual

Goodness to Fit Analysis (1/4)

Once a RSM has been performed, clicking on any Output Parameter will

give the Goodness-to-fit option to its RSM, based on current DP´s, but

also, we can create Verification Points (VP´s) to test the fitness. Fitness

can be assessed by:

• Coefficient of Determination R2 (CD):

where,

5. Response Surface Methods (RSM)
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Source: ANSYS-DXTM Manual

Goodness to Fit Analysis (2/4)

• Adjusted Coefficient of Determination (ACD):

• Maximum Relative Residual (MRR):

• Root Mean Square Error:

• Relative Maximum Absolute Error:

5. Response Surface Methods (RSM)
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Source: ANSYS-DXTM Manual

Goodness to Fit Analysis (3/4)

Physical meaning or application:

• Coefficient of Determination (CD). Determines if the Response Surface

were to pass through the DP´s. In such a case, CD =1 (Kriging).

• Adjusted Coefficient of Determination (ACD). Appropriate if there are

less than 30 DP´s.

• Maximum Relative Residual. Maximum distance from all DP´s from

calculated DP´s out of the Response Surface.

• Root Mean Square Error. Square root of average square of residuals at

DoE points for regressions. For Kriging, it is 0.

• Relative Maximum Absolute Error. Absolute max. normalized with σ.

• Relative Average Absolute Error. Similar as before, but uses average.

5. Response Surface Methods (RSM)
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Source: ANSYS-DXTM Manual

Goodness to Fit Analysis (4/4)

Graphical Rating of Results:

• Rating is divided in 6 scales: ¨***¨, ¨**¨, ¨*¨,¨+¨, ¨++¨, ¨+++¨.

• While ¨***¨ is the best possible result, ¨+++¨ is the worst.

• The rating is used only for bounded features. For example, the root mean

square error is not rated graphically because it is not bounded.

• Between the ¨*¨ and ¨+¨ scale ratings there is a ¨-¨ (neutral) rating.

• Calculation is as follows:

Given a feature that goes from 0 to 100, being 100 the best, if we have

the actual value of it equal to 70, then:

((Abs(70-100)/(100-0))*6) – (6/2)=-1.2 ≈ -1 (≡ ¨*¨). Negative means better!

If ¨0¨ is the best, then the equation changes to: ¨…Abs(70-0)…¨

5. Response Surface Methods (RSM)
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Source: ANSYS-DXTM Manual

Plots (1/3)

5. Response Surface Methods (RSM)

2D RSM fitting

3D RSM fitting
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Source: http://en.wikipedia.org/wiki/File:Spider_Chart.jpg

Plots (2/3)

5. Response Surface Methods (RSM)

Local Sensitivity (around a given Response Point)

Spider Plot (multivariate data)
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Source: ANSYS-DXTM Manual

Let´s first start with 2nd order polynomial RSM and 1 Verification Point (VP). VP´s

are located by the algorithm as far as possible from DP´s, but not used to build

the RSM. After the RSM is generated, the VP´s are run and compared to RSM

predictions to check the Goodness of Fit.

Preserve DP´s

Standard 2nd-order 

polynomial RSM

(Default)

Optional Verification 

Points, set to 1
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Source: ANSYS-DXTM Manual

Goodness of Fit results

Goodness of Fit 

for DP´s

Goodness of Fit 

for VP´s (only 1 

in this case)

Verification Point automatically generated and calculated (via ANSYS-CFX) 

CFX results
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Source: ANSYS-DXTM Manual

Goodness of Fit results

Results may suggest to include further Refinement Points close to the location of 

the VP, until all errors are within 1%. 

VP introduced into the

RSM to obtain

predicted output

VP

Observed from DP´s

P
re

d
ic

te
d

 f
ro

m
 R

S
M
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Source: ANSYS-DXTM Manual

Plots of RSM

2D (OutTempRange vs. Inlet Diameter) 

3D (OutTempRange vs. Inlet Diameter, Mass Flow) 

2D results suggest that a Kriging fitting might improve the RSM, since

apparently, there are significant non-linearities (non-fitted DP´s).



80

Source: ANSYS-DXTM Manual

Plots of RSM

Spider Plot at RP, shows highest influence on OutTempRange 

Local Sensitivity Plot. It shows the relevance of the Inlet Diameter 
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Single vs. Multi-Objective Optimization

Single Objective Optimization (example: minimize F(X)). Then A is the

best design point obtained at the moment. Then we have a Simple

Optimization.

Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South America
ANSYS Users Conference, November 2009, Florianópolis, Brasil.

6. Multi-Objective Optimization
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America ANSYS Users Conference, November 2009, Florianópolis, Brasil.

When there is more than 1 Objective Function, but they do not conflict

against each other, it means that maximizing one of them lead to maximizing

the other one, and viceversa. Then, we have again a Simple Optimization

case.

¨A¨ dominates all the solutions

Multi-Objective Optimization (example: minimize non-conflicting Z1 and Z2)

Z2
Z2

Z1 Z1

7. Multi-Objective Optimization
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America ANSYS Users Conference, November 2009, Florianópolis, Brasil.

If we try to minimize two or more Objective Functions, it may happen that

there is not a unique optimum, but a compromise between both objectives or

a boundary of ¨optima¨, name Pareto Frontier.

For example:

B dominates A because B is

better than A for both objectives.

C & D dominate A & B, because

the former are Pareto points.

However, C & D do not dominate

each other.

Which one is more important?

Ans. Later on …

Multi-Objective Optimization (example: minimize conflicting Z1 and Z2)

Z2

Z1

7. Multi-Objective Optimization



84

Constraints:

The constraints are quantities or limits mandatory to the project, e.g., limits

or restrictions associated to functionality, standards, etc. These, as a whole,

define the feasibility region.

• General constraints

• Maximum drag

• Minimum lift

• Minimum pressure 

drop

• Function of variables

• etc.

• Constraints on variables

• Total weight (volume)

• Width range

• Explicit function of variables.

• etc.

Source: Course: modeFrontier por ESTECO

What are the Constraints and how do they affect the Optimization? 

7. Multi-Objective Optimization
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Constraints may be dimensional (input variable), but also they might be

associated to output variables (e.g., drag, lift, etc.)

For example:

Designs with a Drag force

larger than 100 N are NOT

viables.

Z2 = Drag

Z
1

=
 B

la
d

e
 c

h
o

rd

c
o

n
s
tr

a
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t

Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil.

How do the constraints affect the Optimization? 

7. Multi-Objective Optimization
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Weighting Functions:

 n objetives may be coupled as a simple objective, using weights:

 Pros:

 Simple formulation.

 Weights depend on Decision Maker judgement.

 Cons:

 Weights depend on each problem and must be defined empirically.

   



n

i

ii xfxF
1



Source: Course: modeFrontier por ESTECO

How to deal with conflicting Multi-Objectives?

7. Multi-Objective Optimization
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• GDO may be invoked from:

• Parameters set bar. In this case, GDO will generate its own DP´s

using the known DoE and RSM techniques.

• Design of Experiments cell of a Response Surface. In this case, GDO

will share all data generated from the DoE.

• Response Surface cell of a Response Surface. In this case, GDO will

share all data generated from DoE and RSM.

• Optimization options: Screening, MOGA and NLPQL

• Graphical Rating of Candidates: as explained in Goodness of Fit section

(6 scales: ¨***¨, ¨**¨, ¨*¨,¨+¨, ¨++¨, ¨+++¨).

Source: ANSYS-DX Manual

Optimization in ANSYS-DXTM: Goal Driven Optimization (GDO)

7. Multi-Objective Optimization
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• Based on shifted Hammersley sampling algorithm.

• Conventional Hammersley sampling is a quasi-random generator, with low

discrepancy (high uniformity). The quasi-random number generator uses the

¨radical inverse function¨ to produce numbers in the range (0, 1) .

Source: ANSYS-DX Manual

ANSYS-DXTM GDO: Screening

7. Multi-Objective Optimization
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ANSYS-DXTM GDO. Evolutionary Design ➔ Genetic Algorithms

Steps:

• Select initial population (DoE-like).

• Check fitness of elements.

• Selection and sorting according to fitness.

• Crossover between better fitted samples.

• Random mutation according to set levels.

• Check fitness of elements and repeat until enough

generations have been produced; then stop.

Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil y material del Curso ModeFrontier, ESTECO, 2009.

7. Multi-Objective Optimization
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ANSYS-DXTM GDO. Evolutionary Design ➔ Genetic Algorithms

Flow diagram:

Initial population
Checks fittness function 

and sort

Enough 

generations?

Stops

Sort-selection of new 

parents 

Crossover

mutation

Starts

7. Multi-Objective Optimization
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• Mimics the evolutionary principles for living systems, obeying Darwin´s

idea of ¨survival of the fittest¨.

• Genetic Algorithms belongs to the more general family of Evolutionary

Algorithms (EA) which generate solutions using a meta-heuristic model

(based on experience-learning, rule-of-thumb, trial-and-error, etc).

• These methods have the ambition to solve optimization problems for which

we do not know a polynomial algorithm.

• Based on a hybrid variant of the Non-dominated Sorted Genetic

Algorithm-II (NSGA-II) , which is used for continuous variables.

But, how is the Evolutionary Theory applied to Optimization Genetic

Algorithms?

Source: ANSYS-DX Manual

ANSYS-DXTM GDO: MOGA (Multiple Optimization Genetic Algorithm)

7. Multi-Objective Optimization
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ANSYS-DXTM GDO: MOGA

Source: ANSYS-DXTM Manual

• Based on NSGA-II (Non-dominated Sorted Genetic Algorithm)

• NSGA-II is a Multiple Objective algorithm based on continuous

variables, while original MOGA is for discrete spaces.

• Need to specify:

• number of initial samples (if want to start from new set).

Recommended 10 times input variables, but less than 300.

• number of samples per iteration. Samples iterated and

updated at each iteration. Must be smaller than previous.

• maximum allowable Pareto percentage with respect to

samples. 50-70% is recommended.

7. Multi-Objective Optimization
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ANSYS-DXTM GDO: MOGA

Source: ANSYS-DXTM Manual

• Need to specify (cont´d):

• maximum number of iterations, before the solver stops, unless

the error target is met. It gives an idea of how long would it take

for a full cycle.

• initial samples. Use if a new set of samples has to be

produced or else, use previous ¨Screening¨ samples.

• PROS: high robustness (in terms of finding global critical points)

and good at handling multi-objective problems.

• CONS: low-convergence rate if accuracy is an issue.

7. Multi-Objective Optimization
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America ANSYS Users Conference, November 2009, Florianópolis, Brasil.

ANSYS-DXTM GDO. Gradient-based Algorithms (GBA)

• Local maximum/minimum (accuracy ↑, robustness ↓).

• It gives the direction with highest increase of function:

→ convergence speed

• It is for SINGLE-OBJECTIVE non-linear problems. Derivatives:

Forward differences:                                                      Gradient

Central differences:
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 Can only handle one output parameter objective; however, other

output limits may be handled via constraints.

 User needs to specify:

 Allowable Convergence Percentage. Larger → less

convergence iterations and ↓accuracy (but faster), and

viceversa. 1E-06 is default, as typically error is scaled.

 Maximum number of iterations.

ANSYS-DXTM GDO: NLPQL

7. Multi-Objective Optimization
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96Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil.

Six Sigma and Robust Design

• Six-Sigma (6σ):

- Group of best practices to

systematically improve, via reduction of

defects (Motorola, 1986).

- Processes under Six-Sigma standards,

generate less than 3.4 defective parts

per million units.

• Robust Design:

- Includes uncertainties during the

design stage to guarantee robustness.

Applies Six-Sigma principles.

7. Six Sigma Analysis (SSA) and Robust Design
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97Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil.

What does Robust Design mean?

• In many engineering problems the design parameters may be

known only within certain tolerance.

• In many problems, parameters are described by a probabilistic

distribution.

Standard

deviation

Mean value

6. Six Sigma Analysis (SSA) and Robust Design
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98Source: Course ¨Optimization Techniques using modeFrontierFundamentals and Applications¨, Ing. Ana Paula Curty Cuco, 2009 ESSS,South
America ANSYS Users Conference, November 2009, Florianópolis, Brasil.

Best solution (if robustness is not an issue)

Best solution (if Robust Design is the goal)

Robust Designs

• The uncertainties in the input parameters is reflected on the system

outputs. For example, a good solution for deterministic input data, may not

be robust to small variations.

• The robustness of a solution is defined as the response quality to be

insensible to variation in input parameters.

• A Robust design optimization aims at robust solutions using Six-Sigma

principles.

6. Six Sigma Analysis (SSA) and Robust Design
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Source: ANSYS-DX Manual

Six-Sigma Analysis (SSA) in ANSYS-DXTM

• Requires mean value and specify statistical distribution function of

randomness.

• Statistical distribution functions available: Uniform, Triangular,

Normal, Truncated Normal, Lognormal, Exponential, Beta and

Weibull.

• For example, if a given input variable has a histogram like this:

User must specify Xmin, Xmax, and

applies for cases with similar likelihood

for all possible values of random

variable.

6. Six Sigma Analysis (SSA) and Robust Design
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Source: ANSYS-DX Manual

• User must specify Xmin, Xmax and

most likely value limit Xmlv.

• Applies when for cases when actual

data is unavailable. For instance, based

on opinion of experts.

Six-Sigma Analysis (SSA) in ANSYS-DXTM

6. Six Sigma Analysis (SSA) and Robust Design
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Source: ANSYS-DX Manual

• User must specify mean value “µ” and

standard deviation “σ”.

• Applies for scattering of truly random

variables.

Six-Sigma Analysis (SSA) in ANSYS-DXTM

6. Six Sigma Analysis (SSA) and Robust Design
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Source: ANSYS-DX Manual

• User must specify mean value “µ”

and standard deviation “σ”. But also,

the user specifies lower and higher

limits, Xmin and Xmax, respectively.

• Applies for scattering of truly

random variables, when a lower and

higher limits are established by

quality control.

Six-Sigma Analysis (SSA) in ANSYS-DXTM

6. Six Sigma Analysis (SSA) and Robust Design
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Source: ANSYS-DX Manual

• User must specify the logarithmic

mean value “ξ” and the logarithmic

deviation “δ”, calculated as:

• Appropriate for scattered data for which

the ln(X) follows a normal distribution.

Six-Sigma Analysis (SSA) in ANSYS-DXTM

6. Six Sigma Analysis (SSA) and Robust Design
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Source: ANSYS-DX Manual

• User must specify the decay parameter

“λ” and the lower limit Xmin.

• Applies to cases for which the

probability density decays as the

random variable grows. For example in

time-phenomena, among others.

Six-Sigma Analysis (SSA) in ANSYS-DXTM

6. Six Sigma Analysis (SSA) and Robust Design
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Source: ANSYS-DX Manual

• User must provide shape parameters

“r” and “t”, and lower/upper limits of

variable, Xmin, Xmax, respectively.

• Applies to random variables bounded

on both sides. This case occurs mostly

on random variables that follow normal

distribution after being subject to a linear

operation (e.g., subtraction of a

geometric magnitude).

Six-Sigma Analysis (SSA) in ANSYS-DXTM

6. Six Sigma Analysis (SSA) and Robust Design
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Source: ANSYS-DX Manual

Six-Sigma Analysis (SSA) in ANSYS-DXTM

• User must provide Weibull

characteristic parameter Xchr, Weibull

exponent “m”, and the minimum value

Xmin (m=2 gives Rayleigh distribution(.

• Applies to strength/related lifetime

parameters. Used for wind velocities,

giving a 2-year data collection, for

example.

6. Six Sigma Analysis (SSA) and Robust Design
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Source: ANSYS-DX Manual

Six-Sigma Analysis (SSA) in ANSYS-DXTM

• Example. If a given input variable has a histogram like this:

Then, the most appropriate statistical

distribution will be the Exponential.

6. Six Sigma Analysis (SSA) and Robust Design
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108Source: http://people.richland.edu/james/lecture/m170/ch05-rul.html
(*) This assumption is made on the basis that Input Parameters are independent variables by definition (note by LRRS)

• Probability operation rules

• Mutually exclusive events A and B (can´t occur simultaneously).

• P(A and B) = 0

• P(A or B) = P(A) + P(B)

• Non-Mutually exclusive events A and B (can occur

simultaneously).

• P(A or B) = P(A) + P(B) – P(A and B) (always valid)

• Independent events A and B: P(A and B) = P(A) * P(B)

• In ANSYS-DXTM Input Parameters are treated as independent

variables (events) in 6σ*.

6. Six Sigma Analysis (SSA) and Robust Design

Six-Sigma Analysis (SSA) Input-to-Output Transformation (1/2)
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(*) CCD or another DoE sampling, as previously shown.
(**) As before, points will lie on fitted curve when using Kriging

Six-Sigma Analysis (SSA) Input-to-Output Transformation (2/2)

6. Six Sigma Analysis (SSA) and Robust Design

Input Parameter A

Input Parameter B

ANSYS-

CFXTM

RSM ➔ 6σDoE

CCD*

• Each DP has a combined probability

P(A and B) = P(A)*P(B).

• Therefore, Point A1B1 produces, via

CFX, an Ouput Point C11 with

Probability: P(C11) = P(A1)*P(B1).

• System non-linearity may stretch or

shrink location of output points in

probability density plot wrt mean input-

output location.

≈ 3σA1

A2

A3

B1

B2

B3

Ouput Parameter C

CFX´s calculated

points from Am

and Bn

Cmn

Fitted

RSM**
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Source: ANSYS-DX Manual

Six-Sigma Analysis (SSA) Ouptut Analysis in ANSYS-DXTM

• Histogram

• Cumulative Distribution Function

• Probability Table

• Statistical Sensitivities

6. Six Sigma Analysis (SSA) and Robust Design
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Source: ANSYS-DX Manual

Six-Sigma Analysis (SSA) Ouptut Analysis in ANSYS-DXTM

Histogram (for inputs-outputs):

• Derived by dividing the global range between min-value and

max-value, into intervals of equal length.

• It shows the fidelity of the sampling process (check if loops are

enough, for example).

6. Six Sigma Analysis (SSA) and Robust Design



Luis R. Rojas-Solórzano, Ph.D.

112

Source: ANSYS-DX Manual

Six-Sigma Analysis (SSA) Ouptut Analysis in ANSYS-DXTM

• Cumulative Distribution Function (for inputs-outputs).

• Assesses the reliability or the failure probability of a component

or product.

• Basically, evaluates the probabilty of a given output parameter of

exceeding or being under a threshold value.

• Example: the figure shows that there is a

93% probability of having stress smaller

than 1.71E+5.

6. Six Sigma Analysis (SSA) and Robust Design
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Source: ANSYS-DX Manual

Six-Sigma Analysis (SSA) Ouptut Analysis in ANSYS-DXTM

Probability Table. Provides probabilities of input or output

parameters as a Table (similar to Cumulative Distribution Function).

6. Six Sigma Analysis (SSA) and Robust Design

Quantile-Percentile

Percentile-Quantile

¨σ¨-distance from mean
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Source: ANSYS-DX Manual

Six-Sigma Analysis (SSA) Ouptut Analysis in ANSYS-DXTM

Probability Table. Analysis:

6. Six Sigma Analysis (SSA) and Robust Design

• 6σ (SSA) is very useful after performing

Optimization, as a tool to determine the

robustness of the chosen design.

• We can check, writing in lowest row-cell,

the value of Probability 6σ (P=0.9999966)

and we´ll get the the value of the Output

Parameter (OP) at such a limit. All values

larger than this, will be in the ¨3.4/1000000

defects tolerated¨. Any customer

specification lower than this OP, satisfies

6σ.

• Same for the lower bound

(P=3.4/1000000).

Percentile-Quantile

¨σ¨-distance 

from mean
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Source: ANSYS-DX Manual

Six-Sigma Analysis (SSA) Ouptut Analysis in ANSYS-DXTM

• Statistical Sensitivities. Charts to help improving design towards a

better quality design. It´s available for any continuous output

parameter.

• Changes of output parameters vs. input parameter change:

• Mean value (average of a set of values)

• Standard deviation (dispersion of data around the mean)

• Sigma Level (measure of data dispersion from the mean)

• Skewness (asymmetry of data around the mean)

• Kurtosis (relative peakedness or flatness of distribution)

• Shannon Entropy (complexity and predictability)

• Taguchi Signal-to-Noise ratios

• Minimum and Maximum values

6. Six Sigma Analysis (SSA) and Robust Design
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Have an original design

which you want to

¨optimize¨

Define Objective Function(s) OP´s

and constraint(s)

Establish initial ¨guessed¨ input

parameters (IP´s) of Design Space

Develop 3D CAD using IP´s as

parameters and using defaults

START

Prepare 3D mesh that complies quality

conditions. Setup (CFX-Pre) physical

properties-models, BC/IC´s and

numerical-convergence conditions. Set

further IP´s as needed.

Run default case, check convergence

and set OP´s in CFX-Post

Perform a Parameters Correlation Analysis using

all Objective Output Parameters (OP´s) vs. IP´s

Discard IP´s with a low (≤0.5)

correlation ¨wrt¨ all OP´s

Perform DoE with CCD-default as first

option and get 2nd-order RSM

Number of      

IP´s < 7?

Yes

No

Perform GDO using

Screening

END

Check/determine

manufacturing

tolerances and

variations for IP´s.

Perform 6-σ analysis

(SSA) to determine

robustness limits of

optimal solution.

Guidelines to perform CFD Optimization + 6σ-

Analysis (1/3)

In Percentile-Quantile

table, check the value

of OP´s for 0.9999966

(=1-3.4/1MM) to

determine if design is

within 6σ standard.



117(+) MRR: Maximum Relative Residual; RAE: Relative Absolute Error (see GoF)/ (++) If not getting good GoF after 9 iterations, switch to NPR or NN

Perform a Parameters Correlation Analysis using

all Objective Output Parameters (OP´s) vs. IP´s

Select limit of parameter and choose 20 Latin

Hypercube (LH) max. number of samples. Keep

auto-stop and click to preserve DP´s for future

needs. Choose Spearman or Pearson ¨ρxy¨. Check

results.

Are there IP´s

with ρxy≤ 0.5

for any OP´s?

Increase LH sampling by 50% and check if ρxy

changes are less than 10%. If not, increase again

LH by 50% until ρxy changes meet that criterion.

yes

no

NEXT

Run DoE with CCD-default as

first option and get 2nd-order

RSM. Choose 2+ Verification

Points (VP´s).

Explore Goodness of Fit (GoF). Check

indexes for all OP´s for DP´s and VP´s.

Are all GoF

¨*¨ or

better?

Proceed with

GDO

NEXT

Find on RSM, DP´s with

largest MRR(+) and RAE(+)

and add 2-3 DP´s or VP¨s

closeby.

Are all GoF

¨*¨ or

better?

Switch to Optimal

Filling DoE and

Kriging. Choose 2+

VP´s

Are all GoF

for VP´s ¨*¨

or better?

Add current

VP´s as

Refinement

Points (RP´s)

and choose 2+

VP´s. Update

RSM. Check

VP´s GoF and

repeat up to 5-9

times as needed.

NEXT

yes

yes

yesno

no

no

(++)

Guidelines to perform CFD Optimization + 6σ-

Analysis (2/3)
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Guidelines to perform CFD Optimization + 6σ-

Analysis (3/3)

Perform GDO using

Screening

Perform 6-σ analysis

(SSA) to determine

robustness limits of

optimal solution

Use an initial sample of

1000 . Do not click ¨Verify

Candidate points¨ (CP)

Set Optimization conditions

(Objective function and

constraints)

Update and see ranking of

candidates

Are rankings

¨*¨ or better?

According

with RSM, do

you expect

several

max/min?

More than 1

Objective?

Use NLPQL and set

seed close to expected

max/min and Verify

Candidate Points

Are rankings

¨**¨ or better?

NEXT

Increase 50%

# iterations

and check the

seed location

Use MOGA with 100-300

elements. Set Pareto

equal to 70% of sample

and Verify Candidate

Points

Are rankings

¨**¨ or better?

NEXT

Increase 50%

# iterations if

% Pareto not

met

Open SSA worksheet. Set

variation properties for IP´s

in DoE

Perform DoE using CCD-

default

Perform RSM using 2nd-

order poly or Kriging +

Verification. Refine DoE as

needed to get good GoF

Perform SSA and

determine OP´s

distribution and 6σ limits.

Increase sampling 50% and

repeat until it doesn´t

change more than 10%.

NEXT

Increase 50% #

samples

yes

yes

yes

yes

yes

no

no

no

no

no

Choose 10000 samples to

prepare statistical outputs


