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Abstract 
 
This paper is concerned with the existence of equilibrium states of a thin-walled hollow 
elasto-plastic cylinders fully or partially submerged in a fluid. This problem serves as a 
model for many problems with engineering importance. Previous studies on the 
deformation of such a shell assumed that the material is linear elastic. This paper takes 
into consideration the nonlinear Hollomon materials that (are plastic) can deform 
plastically. The effect of gravity on pressure is also taken into account.  
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1. INTRODUCTION 
 
In this paper, we consider the existence of equilibrium states of hollow plastic 

cylinders fully or partially submerged in a fluid. The materials considered represent the 
Hollomon power-law plastics. We treat the fluid pressure as non-uniform by taking 
gravity into account. To balance the buoyancy force due to the fluid an external line load 
is applied at the bottom of the cylinder. By treating the problem as independent of the 
variable along the axis of the cylinder we arrive at a similar system of nonlinear ordinary 
differential equations governing the equilibrium to that of an inextensible Hollomon 
elasto-plastica for a circular ring presented in [9]. Our work generalizes that of [7], [8] 
and [10], where linear elastic cylinders are considered.  
 

In Section 2 we give several mathematical formulations for the equilibrium equations. 
These are obtained by generalizing the formulations given in [8] for linear (elastica ) 
elastic cylinders to the case when the cylinder is made of Hollomon plastic material. In 
Section 3, we use the Implicit Function Theorem to give a proof of the existence of 
positive bifurcation solutions of small norms merging off the trivial solution for the case 
when the pressure is uniform. In Section 4, we present a proof of the existence of 
solutions of arbitrary large norms. In section 5, we prove existence of equilibrium states 
treating the pressure parameters as given constants. In Section 6 we give some 
concluding remarks. The main mathematical tools used in the proofs of Sections 4 and 5 
come from variational methods for nonlinear monotone elliptic eigenvalue problems and 
the Browder theory for monotone operators on Sobolev spaces (see [1]-[6] and [11].) 

 
 

2. THE MATHEMATICAL FORMULATION 
 
We consider a typical cross section of a hollow cylinder as shown in Figure 1. 
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The coordinates and x y′ ′ of a point on the ring are related to the local angle θ  by the 
relations:     
 

cos ,  sin .                                                                                           (2.1) dx dy
ds ds

θ θ
′ ′
= =

′ ′
 

 
The hydrostatic pressure at a point ( , )x y′ ′ (per unit length along the cylinder) is 
 

0 ( )                                                                                                      (2.2)p s p gyρ′ ′= +  
 
where 0p  is the external pressure at 0s′ = , ρ  the fluid density, and g  the gravitational 
acceleration. 
 
For Hollomon material, since 1| |nKσ ε ε−= , the local bending moment is given by: 
 

 

1

,                                                                                                   (2.3)   
n

n
d dm KI
ds ds
θ θ−

=
′ ′

 

 
where 1n

n
A

I r dA+= ∫  represents the cylinder’s flexural rigidity, see [9] for more details.  

 
Balancing the moments acting on an element of length 'ds (Figure 2) yields to: 
 

0 0

( ( )sin ( ) )sin ( ( ) cos ( ) ) cos ,                                    (2.4)           
s sdm h p t t dt p t t dt

ds
θ θ θ θ

′ ′

′= − + +
′ ∫ ∫

 
where h′  represents the horizontal component of the internal force at 0s′ = . 

 
Using the non-dimensional quantities: 

2 3 1 1
0,  ,  ,  ,  ,  ,  ,

n n n n

n n n n

s x y p L gL h L Ls x y h
L L L KI KI KI KI

ρλ τ
+ + + +′ ′ ′ ′ ′Γ

= = = = = = Γ =  

equations (2.1)-(2.4) lead to the θ - formulation: 
cos , sin ,                                                                                                  (2.5)s sx yθ θ= =  

1 21( ) sin ( cos sin ) ( cos sin ),                           (2.6)
2

n
s s s h x y u yθ θ θ λ θ θ τ θ θ− = − + + + +  

where: 
 



3274                                                                                        M. B. M. Elgindi and D. Wei 
 
 

0 0

( ) cos ( ) ,  and    cos sin cos( ( ) ( ))                         (2.7)
s s

u y t t dt x y s t dtθ θ θ θ θ= + = −∫ ∫  

          Let (s) represents the (deviation from the circular case) function defined by:ϕ   
(s) = (s)- s.                                                                                                             (2.8)ϕ θ π   

Using (s)ϕ  equations (2.5)-(2.8) lead to the ϕ - formulation: 
 

1

0

2

( ( )) sin( ) cos( ( ) ( ) ( ))

1                     [ cos( ) sin( )],                                                        (2.9)
2

s
n

s s s h s s t s t dt

u s y s

ϕ π ϕ π ϕ π λ ϕ ϕ π

τ ϕ π ϕ π

−+ + = − + + − + − +

+ + +

∫
 

where  

0 0 0

( ) cos( ( ) ) , ( ) sin( ( ) ) ,  ( ) ( ) cos( ( ) ) .    (2.10)
s s s

x s t t dt y s t t dt u s y t t t dtϕ π ϕ π ϕ π= + = + = +∫ ∫ ∫   

We seek equilibrium states ϕ that are symmetric about the y-axis and therefore, 
confine ourselves to the interval 0 1s< < . Since (0) 0θ = and (1)θ π= , (s)ϕ must satisfy 
the boundary conditions:  

(0) (1) 0,                                                                                                        (2.11)  ϕ ϕ= =  
and the nonlinear constraints:  

(1) 0 and (1 ) .                                                                                           (2.12) ssx ϕ −= = Γ   
Using sw ϕ π= +  in equations (2.9)-(2.12) lead to the w - 

formulation:

( )1

0 0

( ) sin( ( ) ) ,                                            (2.13)       
s t

n

ss
w w w f w t w d dtν δ τ π ξ ξ− + = − − +∫ ∫

 where 

 

2 2 2

3 3 2
2

1 1(0) [ (0) ] ,
2 2

and                                                                                                                          (2.14)
3 3,    ,    ( )
2 2 2 2

s sc h h

w wc c f w

θ ϕ π

π πν π δ λ π

= − = + −

= − = + − = + ,

 

2 21 1(0) [ (0) ]
2 2s sc h hθ ϕ π= − = + −  

 
with the following boundary conditions and constraints: 

1 1

0 0 0

(0) 0,   (1) ,  ( ) 0,  cos( ( ) ) 0, (1) 0,             (2.15)
s

s sw w w s ds s w d ds xπ ξ ξ= = Γ = + = =∫ ∫ ∫
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where c is an arbitrary constant of integration to be determined along with the solutions, 
and (0) (0) 0s sw θ= =  due to symmetry. 

Finally, with 1| |nu w w−= , we get 
1 1

| |nw u u
−

=  and equation (2.13) takes the form: 

( ) ( )
1 1 11 1 1

0 0

| | (| | ) sin( | | ) ,                    (2.16)                      
s t

n n n
ssu u u f u u t u u d dtν δ τ π ξ ξ ξ

− − −
+ = − − +∫ ∫

3 21 12
2

where                                                                                                                    

3 | | 3 | |, , ( ) .       
2 2 2 2

n nu u u uc c f uπ πν π δ λ π
− −

= − = + − = +
 

 
 
3. EXISTENCE OF SOLUTIONS WITH SMALL NORMS 
 
 In this section we consider the existence of positive solutions of the boundary 
value problem (2.13)-(2.16) with small norms. We apply the implicit function theorem to 
prove the existence of positive solution in the neighborhood of some linearized solutions. 

Let 0ε > denotes the value of the solution at 0s = , that is (0) ,w ε= and seek 
positive solutions of (12) in the form: 
                                                ( ) ( )w s v sε= ,                                                           (3.1) 
and therefore, ( )v s satisfies the (initial) conditions: 
                                                 (0) 1v = , (0) 0,sv =                                                   (3.2)  
and the constraints: 

1 1

0 0 0

(1) 0,    ( ) 0,  and cos( ( ) ) 0.
s

sv v s ds s v d dsπ ε ξ ξ
ε
Γ

− = = + =∫ ∫ ∫                                (3.3)  

The differential equation ( )v s need to satisfy is given by: 
3 2

2 ( ) 3 ( )( ( )) ( ) ( )
2 2

n n
ss

v s v sv s v s πεμ δ ε τ−′ ′ ′+ = − + −
0 0

sin( ( ) ) ,
s t

t v d dtπ ε ξ ξ+∫ ∫           (3.4) 

 
 
where: 1 1,  ,  .n n nμ ε ν δ ε δ τ ε τ− − −′ ′ ′= = =  
We observe that the differential equation (3.4) has a unique solution 

*( , , , , )v s ε μ δ τ′ ′ ′ which satisfies (3.2), exists for all [0,1],s∈  is bounded and is 
differentiable with respect to the parameters , , ,  and .ε μ δ τ′ ′ ′   (In fact, (3.4) can be 
transformed into an equation similar to (2.16) with differentiable and Lipchitz functions 
on the right hand side, therefore standard existence and uniqueness and smoothness of 
solutions apply).  The existence of smooth functions ( ), ( ),  and ( )μ ε δ ε τ ε′ ′ ′ defined in a  
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neighborhood of 0ε = satisfying the set of the three constraints (3.3), and  

2 3(0) ( 1) , (0) 0,  and (0) 0,  N 2,n Nμ π δ τ′ ′ ′= − = = ≥ follow from the Implicit Function 

Theorem by observing that the Jacobean: ( , , ) 0 at 0
( , , )

A B CJ ε
μ δ τ

∂
= ≠ =

′ ′ ′∂
, where: 

1 1

0 0 0

( , , ) (1) ,  ( , , ) ( ) , and ( , , ) cos( ( ) ) .
s

sA v B v s ds C s v d dsμ δ τ μ δ τ μ δ τ π ε ξ ξ
ε
Γ′ ′ ′ ′ ′ ′ ′ ′ ′= − = = +∫ ∫ ∫      

The perturbation expansions of the functions ( , ), ( ), ( ),  and ( )w s ε ν ε δ ε τ ε for the case of 
uniform pressure: 0,τ = Γ = are given in [9]. 
 
 
4. EXISTENCE OF SOLUTIONS WITH ARBITRARY LARGE NORMS 

 
In this section we consider the existence of solutions of the w -problem described 

by equations (2.13)-(2.15) for a given value of K , where: 
1 1

2 2

0 0

( ) ( ) .nu s ds w s ds K= =∫ ∫  

Since the function w is a measure of the departure of the curvature from the circular state, 
K   is a measure the bending energy level of the deformation. 
THEOREM 4.1 For given values of 0Γ >  and 0K > , there are , ,ν δ τ  in R  and w  in 

1,2 (0,1)nW such that ( , , , )w ν δ τ is a weak solution of the nonlinear eigenvalue problem 
(2.13) satisfying the following boundary conditions and constraints: 

1 1 1
2

0 0 0 0

(0) 0,    (1) ,

( ) ,   ( ) 0,    cos( ( ) ) 0.

s s
s

n

w w

w s ds K w s ds s w d dsπ ξ ξ

= = Γ

= = + =∫ ∫ ∫ ∫
 

Equivalently, there are , ,ν δ τ in R  and u  in the Hilbert space 1,2 (0,1)W such 
that ( , , , )u v δ τ is a weak solution of the nonlinear eigenvalue problem (2.16) satisfying the 
following boundary conditions and constraints: 
 

1

1 1 11 11 12

0 0 0 0

(0) 0,   (1) | (1) | (1),

( ) ,   | ( ) | ( ) 0,    cos( | ( ) | ( ) ) 0. 

n
n

s s
s

n n

u u n u u

u s ds K u s u s ds s u u d dsπ ξ ξ ξ

−

− −

= = Γ

= = + =∫ ∫ ∫ ∫
 

To prove Theorem 4.1 we need to verify some properties of the following 
functional on 1,2 1,2(0,1) (0,1)W W× : 

1 1 3 2 1 12

0 0

1( , ) [ [ ( )] [ ( )] ] | (1) | (1)
2 2(3 ) 2

n n
n n n

s
n nv u v ds u s u s ds n v v

n n
π

+ +
−

Φ = − + − Γ
+ +∫ ∫  , 

and the following functionals on 1,2 (0,1)W : 
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1 1 1

1
0

1
2

2
0
1 1 1

3
0 0

( ) | ( ) | ( ) ,

( ) ( ) ,  and

( ) cos( | ( ) | ( ) ) .

n

s
n

g u u s u s ds

g u u s ds

g u s u u d dsπ ξ ξ ξ

−

−

=

=

= +

∫

∫

∫ ∫

 

 
We state the properties of the above functionals needed for the proof of Theorem 

4.1 in the following lemma. 
 
Lemma 4.1 The functionals defined above satisfy the following properties: 
(i) Φ  is differentiable semi-convex on 1,2 1,2(0,1) (0,1)W W× ; 
(ii) Each of ( 1,2,3)ig i = , is differentiable and weakly continuous on 1,2 (0,1)W ;  

(iii) The set { }1,2 (0,1) : ( ) , 1, 2,3,are real constantsi iC w W g w c i≡ ∈ = = is non-empty;  

(vi) , 1,2,3,ig i′ = are linearly independent  in 1,2 (0,1)W ; and  
(v) 1,2( ) ( , )  as || ||J u u u u≡ Φ →∞ →∞  on the setC . 
 The proof s of properties (i)-(iii) of Lemma 3.1 are similar to those given in [8], 
and therefore omitted here.   

 
 
The proof of Theorem 4.1follows by applying Lemma 3.2 of [8] and observing 

that the weak formulation of the nonlinear eigenvalue problem (2.13)-(2.15) requires us 
to solve for 1,2 3( , ) (0,1)u W Rλ ∈ ×  , 1 2 3( , , )λ λ λ λ=  such that: 

3

1
( ) ( ) 0i i

i
J u g uλ

=

′ ′− =∑ , where 1,2 (0,1)u W∈ . 

That is  
1 1 13 2 1

0 0 0
1 11 1

0 0 0 0

1 3( ) ( ) [ ( ) ( ) ] ( ) | ( ) | ( )
2 2

[ sin( | ( ) | ( ) ) ] ( ) ( )

n n n
s s

s t
n

u s v s ds u s u s v s ds u s v s ds
n

t u u d dt v s ds v s ds

νπ

τ π ξ ξ ξ δ
−

+ + +

+ + =

∫ ∫ ∫

∫ ∫ ∫ ∫
 

 where: 
1 1 1

2 3 1 3
0 0

2 , , sin( ( ) | ( ) ) .
t

nt u u d dtν λ τ λ δ λ λ π ξ ξ ξ
−

= − = − = − +∫ ∫  

 
This completes the proof for Theorem 4.1. 
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5. EXISTENCE OF SOLUTIONS FOR GIVEN PRESSURE GRADIENTS 
 
In this section we establish two existence theorems with τ  being given but with K  
unspecified. In the first theorem both τ  and Γ  are given. It turns out that they must 

satisfy the inequality 
2
τ
π

Γ < which has a simple geometric interpretation. 

THEOREM 5.1 For given values of 0τ > and 0Γ >  such that 
2
τ
π

Γ < there exists a  

weak solution   of the boundary value problem described by (2.9) through (2.12). 
Proof:   

1,1

1 1
2

0 0

We let (0,1),  and define for ,  the following three functionals:

1 1( , ) ( ( )) [ ( )sin( ) ( ) cos( )] ,   
1 2

n

n
s s s

H W H

ds u t y t dt
n

ψ ϕ

ψ ϕ ψ π ψ π τ ϕ ϕ π ϕ ϕ π

+≡ ∈

Φ = + + + + − +
+ ∫ ∫

 

1

1
0

1

2
0

( ) cos( ) ,  

and

( ) ( ) cos( ) .

g t dt

g y t dt

ϕ ϕ π

ϕ ϕ ϕ π

= +

= +

∫

∫

 

We can verify (see [8] for details) the following properties: 
(i)  Φ is differentiable, semi-convex on H H× ,  
(ii) The functionals ,  1, 2,  are differentiable and weakly continuous on H,ig i =  
(iii) 'The functionals ,  1,2,  are linearly independent,

i
g i =  

(iv) 1 2The set: C : ( ) 0, ( )  is non-empty,H g gϕ ϕ ϕ
τ
Γ⎧ ⎫≡ ∈ = = −⎨ ⎬

⎩ ⎭
 and 

(v) ( , )  as  on C. ϕ ϕ ϕΦ →∞ →∞  
Properties (i)-(v) above allow us to apply Theorem 5 of [2] (which holds for any reflexive 
Banach space and in particular for H) to conclude the existence 
of  in H and constantsϕ 1 2 and  such that:λ λ

( ) ( )

' ' '
1 1 2 2

1 2

                                                ( , ) ( ) ( ).
Taking  and  = , it follows that ( , , ) is a weak solution of the boundary 
value problem 2.9 - 2.12 .

g g
h h

ϕ ϕ λ ϕ λ ϕ
λ λ λ ϕ λ

Φ = +
=   

 
THEOREM 5.2 For given positive values of the parameters and λ τ , there exists a weak 
solution ( , ),  ,  of the boundary value problemh Hϕ ϕ∈ (2.9)-(2.12). 
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The proof of this theorem goes along the same lines as that of Theorem 5.1, and is, 
therefore, omitted.    
 
 
6. CONCLUDING REMARKS 
 
(1) In this paper, we have been concerned with the existence of equilibrium states of 
hollow elasto-plastic cylinders fully submerged in a fluid. By considering "planar" 
deformations of the cylinders we have generalized the results obtained for an inextensible 
elastic model in [8]. 
 
 
(2) A similar existence of solutions theorem to Theorem 4.3 of [8] can be verified for 
case of a hollow Hollomon cylindrical tube partially submerged in a fluid.  
(3) The buoyancy force Γ in Theorem 5.2 is to be determined along the solution by the 

formula:
1

0

( ) cos( ( ) ) .y t t t dtτ ϕ πΓ = − +∫  
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