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by
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Abstract

In this thesis, I present different discretization techniques for boundary integral
method for Stokes flow in case of an incompressible Newtonian fluid. Boundary
integral method (BIM) is one of many techniques that are used to solve Partial
Differencial Equations (PDE) numerically. However, the basic advantage of the BIM
is that it reduces the problem from n-dimensional domain to n − 1; for example,
the two-dimensional square-box that contains viscous liquid can be solved by using
the values of an unkown function at the boundary of square. Nevertheless, the BIM
exhibits some challenges in finding the Green’s function for a particular domain or
differential operator, solving the integral equations and, especially, in computing the
values of a complex domain. The latter one is quite difficult because the flow diverges
at corners (exhibits singularity).

The goal of this work is to derive general analytical solution for Stokes equation
(in integral equations form) and to compute the discretized integral equations using
different quadrature rules for cavity problem.

Thesis Supervisor: Yogi A. Erlangga
Title: Assistant Professor
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Chapter 1

Introduction

Stokes flow (also known as creeping flow) occurs in slowly moving and highly

viscous fluids, which can be characterized by the conservation of momentum and mass

[2]. The governing equations for a steady state can be expressed in the following form

−µ∇2u +∇P − ρF = 0 in Ω

∇ · u = 0 in Ω
(1.1)

where u is the velocity vector, ρ the fluid density, µ viscosity, F is a body force acting

per unit mass, P is the pressure and Ω is a domain.

The divergence, ∇ · u can be written in index notation as ∂ui
∂xi
, i = 1, 2, 3, then for

our 2D case, the second part of (1.1) will be written as

∂ux
∂x

+
∂uy
∂y

= 0

The system (1.1) is called the Stokes equations for an incompressible Newtonian

fluid. Its analytic solution may not be easy to obtain because of a conservation of

mass.
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1.1 Motivations for solving Stokes flow equations

using boundary integral method

The Stokes equations can be derived from the general Navier-Stokes Equations

[6]:

• Three momentum equations:

ρ
Du

Dt
+∇p = P + ρF, (1.2)

where term P is defined as

P = (µ+ µ′)grad (div u) + µ∇u,

here µ and µ′ are material constants.

• Continuity equation:

ρt + div (ρu) = 0 (1.3)

• Equation of state:

p = r(ρ) (1.4)

If the flow is assumed to be incompressible, i.e. ρ is constant, (1.2) and (1.3) can

be simplified to

ρ
Du

Dt
+ grad p = ρF, div u = 0 (1.5)

and (1.4) will be dropped as it is no longer coupled with (1.2). Using the definition

of total derivative, (1.5) can be written as [6][7]

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ µ∆u + ρF, in Ω

∇ · u = 0 in Ω,
(1.6)

but for creeping flow, Du
Dt
≈ 0, so we get (1.1). Under incompressibility, the viscosity

can be assumed to be constant.
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The equations (1.2), (1.3) and (1.4) can be made non-dimensionalized (scaled

transformations), by introducing the following transformations:

u∗ =
u

U
, x∗ =

x

L
, t∗ = t

U

L
, p∗ =

pL

µU
.

where U is a reference velocity, L is a length scale and ·∗ denotes dimensionless

quantities. Next, multiply the equation (1.6) by L2/(Uµ)

ρUL2

µL

∂u∗

∂t∗
+
ρUL

µ
u∗ · ∇u∗ = −∇p∗ + ∆u∗ +

ρL2

Uµ
F, in Ω

∇ · u∗ = 0

(1.7)

Let T = L/U be the time scale of flow and ν = µ/ρ. Define

β =
L2

νT
, Re =

UL

ν
, Fr =

U√
gL
.

Then we have,

β
∂u∗

∂t∗
+Reu∗ · ∇u∗ = −∇p∗ + ∆u∗ +

ReF

Fr2|F|
, in Ω

∇ · u∗ = 0

(1.8)

where Fr, Re and β are the Froude, Reynolds and Stokes numbers, respectively. The

Stokes equations can be obtained by assuming Re� 1 and β � 1.

The countless experiments have confirmed this similarity law, thus, supports and

justifies the basic assumptions for the Navier-Stokes Equations. PDEs in form as

in (1.1) are easier to solve than Navier-Stokes Equations. The usage of Stokes flow

in engineering problems is huge: from filtering (virus removal, air conditioning) to

micro-organism propulsion [5], from blood flow [9] to ink-jet printing.

Since Stokes equations describe the motion of a viscous flows, they are studied by

a subject called Fluid Dynamics and the numerical solution of the Stokes equations

can be found in many textbooks of Computational Fluid Dynamics. Currently, there

are three popular methods available for numerical solution such as (1) Finite Element
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Methods, (2) Finite Difference Methods and (3) Finite Volume Methods. Recently,

numerical methods other than those presented above have been also used, and one

of them is Boundary Element Methods that exploit boundary integral equations in

which only the boundaries of the domain are utilized to obtain approximate solutions

[2].

For Finite Element Methods, first, a two-dimensional domain is discretized by

simpler small domains such as triangular or quadrilateral elements as in Figure 1-1

and 1-2. The computational domains in both figures contain many subdomains or

finite elements, within which the PDEs are approximated.

Figure 1-1: Triangular elements (from
Wikipedia)

Figure 1-2: Quadrilateral elements

Boundary elements, however, is based on the finding solutions along the boundary

of the domain. If we look at Figure 1-3, for two-dimensional domain only along the

boundary curve the discretization is exploited, thus reducing the problem into one-

dimensional. Since the solution we are seeking on the boundaries are the Green’s

function, that satisfies PDEs and boundary conditions, the solutions in the interior

are calculated for this boundary data [2].
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Figure 1-3: Boundary discretization of a kite (from Simon Fraser University)

1.2 Constructing Green’s function for Stokes flow

As previously mentioned, the fundamental solution for Stokes can be expressed

in a variety of ways depending on the dimension of the domain of Ω. The three-

dimensional fundamental solution for Stokes flow is a type of 1/r, while two-dimensional

one is a logarithmic type [7]. Since the work is done on two-dimensional space we

restrict the calculations only for this dimension. Also, the fundamental solution for

Stokes flow differ according to whether the problem requires the free-space solution

involves bounded domain.

Consider a point force acting in the direction F at the point x0 within highly

viscous flow, here F = Fxi + Fyj. Including the forcing singular term in the Stokes

equations (1.1), we have

−∇P + Fδ(x− x0) + µ∇2u = 0, (1.9)

where δ is the Dirac delta function. The general solution for equation (1.9) is assumed

to take the form: for velocity,

ui(x) =
1

4πµ
Gij(x,x0)Fj, (1.10)
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where the Gij is the Green’s function yet to be determined.1, and for the pressure

P =
1

4π
pjFj. (1.11)

Since the above solution u and P are rather arbitary, Pi and Gij are linked via (1.9).

In index notation, the momentum equation (1.1) becomes

0 = −∂P
∂xi

+ Fiδ(xi − x0i) + µ

2∑
k=1

∂2ui
∂x2

k

i = 1, 2.

Substituting the equation (1.10) and equation of pressure P into (1.1), we obtain

−4πδ(xi − x0i) = −∂pj
∂xi

+
∂2Gij

∂x2
k

. (1.12)

Thus, any possible choice of P and Gij are considered to be a solution, if they sat-

isfy (1.12). In the next subsection, we present the type of Green’s function with

corresponding p that meet the condition (1.12).

1.2.1 The stokeslet in 2D flow

The Green’s function for Stokes flow in two-dimensional space is a solution of the

singularity forced equation

−∇P + Fδ(x− x0) + µ∇2u = 0. (1.13)

Definition. The stokeslet, or a free-space Green’s function for Stokes flow (some-

times called the Oseen-Burgers tensor), is a solution of (1.13) when there are no

boundaries in the flow, that is when the point force at x0 acts in an unbounded fluid

[8].

In the two-dimensional space, the stokeslet takes the form (for a derivation, see

the Appendix A)

Gij = δij log r +
x̂ix̂j
r2

(1.14)

1The factor of 1/4πµ is included purely for convenience [8]
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where δij is the Kronecker delta, x̂i = x − x0. This Green’s function induced the

Stokeslet pressure

pj = 2
x̂j
r2
,

needed to compute in (1.11).

1.2.2 Layer Potentials

Let h be a continuous function on ∂Ω and Φ(x) is a fundamental solution for a

given equation. The the single layer potential with moment h is defined as [4]:

ū(x) = −
∫
∂Ω

h(y)Φ(x− y) dS(y) (1.15)

The double layer potential with moment h is defined as

¯̄u(x) = −
∫
∂Ω

h(y)
∂Φ

∂νy
(x− y) dS(y) (1.16)

For a moment, consider that for h a continuous function on ∂Ω, ¯̄u defined as in

(1.16). Now, by choosing h appropriately, such that for all x0 ∈ ∂Ω,

lim
x∈Ω→x0

¯̄u(x) = g(x0)

then solution for a given harmonic PDE can be found. However, lets first introduce

the Gauss’ Lemma.

Lemma 1. (Gauss’ Lemma) Consider the double layer potential,

¯̄u(x) = −
∫
∂Ω

∂Φ

∂νy
(x− y) dS(y).

Then,

¯̄u(x) =


0 x ∈ Ωc

1 x ∈ Ω

1/2 x ∈ ∂Ω

(1.17)
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where the Ωc is a compliment of Ω.

Now, the single and double layer potentials for two dimensional Stokes flow can

be introduced:

The single layer potential

ISLj (x0) =

∫
C

fi(x)Gij(x,x0) dl(x) (1.18)

and the double layer potential

IDLj (x0) =

∫
C

ui(x)Tijk(x,x0)nk dl(x) (1.19)

where, Gij is a Green’s function for Stokes flow and Tijk(x,x0) is a stress tensor

corresponding to the two-dimensional stokeslet

Tijk(x,x0) = −4
x̂ix̂jx̂k
r4

(1.20)

with notation x− x0 = x̂ and nk =
xk − xk0

|xk − xk0|
.

1.2.3 Stress tensor identity in two dimensions

For a closed contour C, and the unit normal n points out of C, the two-dimensional

stress tensor identity is

∫
C

Tijk(x,x0)ni(x) dl(x) = −


4π

2π

0

 δjk. (1.21)

Also note that,

• 0, if x0 ∈ Ωc.

• 2π, if x0 ∈ ∂Ω or C.

• 4π, if x0 ∈ Ω.
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Finally, the stress tensor corresponding to the two-dimensional stokeslet can be

described as following

Tijk(x,x0) = 4
x̂ix̂jx̂k
r4

. (1.22)
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Chapter 2

The boundary integral equation for

Stokes flow in 2D

2.1 The Driven Cavity Problem

As an example consider the driven cavity problem in fluid machenics. Take a two

dimensional square box as in figure 2-1, which is filled with the viscous liquid with

a given density ρ. Consider that the top of the box moves at a speed U along the

positive x direction.

x

y

1

1
U

Fluid

L

W

∂Ω = C = L ∪W

Ω ΩC

Figure 2-1: Cavity problem

Using the Gauss Lemma (see the Lemma 1 on section 1.2.2) for potentials, the

17



boundary integral equations for two-dimensional flow bounded by a contour C are as

follows:

• If x0 ∈ Ω (main domain), the boundary integral equation is

uj(x0) = − 1

4πµ

∫
C

Gij(x,x0)fi(x) dl(x) +
1

4π

∫
C

ui(x)Tijk(x,x0)nk dl(x) (2.1)

• If x0 ∈ Ωc (complement of the main domain), the boundary integral equation

takes form as

− 1

4πµ

∫
C

Gij(x,x0)fi(x) dl(x) +
1

4π

∫
C

ui(x)Tijk(x,x0)nk dl(x) = 0 (2.2)

• Finally, if x0 ∈ ∂Ω or x0 ∈ C (along the contour/boundary), the boundary

integral equation becomes

1

2
uj(x0) = − 1

4πµ

∫
C

Gij(x,x0)fi(x) dl(x) +
1

4π

∫
C

ui(x)Tijk(x,x0)nk dl(x)

(2.3)

Using (2.3) and taking the point x0 to lie on the walls of the box, we obtain

− 1

4πν

∫
C

fi(x)Gij(x,x0) dl(x) +
1

4π

∫
C

ui(x)Tijk(x,x0)nk dl(x) =
1

2
Uδ1j if x0 is on L

0 if x0 is on W .

(2.4)

where L is the lid and W the other three walls of the box, and C = L∪W . The first

case in (2.4) corresponds to moving lid L, and the second case corresponds to no-slip

condition on the wall W .

Modifying the double layer potential integral,

1

4π

∫
C

ui(x)Tijk(x,x0)nk dl(x) =
1

4π
Uδ1i

∫
L

Tijk(x,x0)nk dl(x).

18



Denoting

Dj(x0) =
1

4π
U

∫
L

T1jk(x,x0)nk dl(x),

then

1

4πν

∫
C

fi(x)Gij(x,x0) dl(x) =


Dj(x0)− 1

2
Uδ1j if x0 ∈ L

Dj(x0) if x0 ∈ W .

(2.5)

in the above equations, we set (see previous chapter)

Gij = δij log r +
x̂ix̂j
r2

,

and the stress tensor is

Tijk(x,x0) = −4
x̂ix̂jx̂k
r4

,

where, x̂ = x− x0 and r = |x− x0|.

2.2 On Numerical Solution in R2

Now, by discretizing each four sides of the contour C using elements of equal

length h such that the contour C is covered by N elements, then

h =
N

4

where N (a multiple of 4) is the total number of elements. The starting point is the

left of the top of the box, and label the elements clockwise.

So, (2.5) can be rewritten as

1

4πν

∫
C

fi(x)Gij(x,x0) dl(x) =


Dj(x0)− 1

2
Uδ1j if x0 ∈ Ek for 1 ≤ k ≤ N

4

Dj(x0) if x0 ∈ Ek for N
4

+ 1 ≤ k ≤ N

(2.6)

where Ek denotes the kth element.

At this point, the integral on the left cannot be evaluated as fi(x) in general is not

known. Approximation to this integral can be, however, be constructed by assuming
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x

y

0

E1

x0

Ek−1

Ek

Ek+1

EN

E2

1

1

Figure 2-2: Boundary discretization

a function typically polynomial, that approximates f .

Now, denote

Ikij(x0) =

∫
Ek

Gij(x,x0) dl(x) =

∫
Ek

[
−δij log r +

x̂ix̂j
r2

]
dl(x). (2.7)

This will help us when, we discretize equation (2.6). For each part of the boundary,

the explicit form of Ikij(x) can be computed. In this work, we consider fi as a constant

over Ei. ∫
C

fi(x)Gij(x,x0) d(x) =

N∑
k=1

∫ k

E

fki (x)Gij(x,x0) dl(x) ≈

≈
∞∑
k=1

f
(k)
i

∫
Ek

Gij(x,x0) dl(x)

where
∫
Ek Gij(x,x0) dl(x) = Ikij.

• Left vertical elements

For the left vertical side of the box (where x = 0), we obtain

Ikij(x0) =

∫ yk+1

yk

[
−δij log r +

x̂ix̂j
r2

]
x=0

dy,

where

r2 = (x− x0)2 + (y − y0)2 = x2
0 + (y − y0)2

20



For instance, since δij = 1, when i = j and δij = 0, when i 6= j, then

Ik11(x0) =

∫ yk+1

yk

[
−1

2
log[x2

0 + (y − y0)2] +
x2

0

x2
0 + (y − y0)2

]
dy

and

Ik12(x0) =

∫ yk+1

yk

−x0(y − y0)

x2
0 + (y − y0)2

dy.

• Right vertical elements

For the right vertical element parallel to the y axis at x = 1, we have

r2 = (x− x0)2 + (y − y0)2 = (1− x0)2 + (y − y0)2.

As an example,

Ik11(x0) =

∫ yk+1

yk

[
−1

2
log[(1− x0)2 + (y − y0)2] +

(1− x0)2

(1− x0)2 + (y − y0)2

]
dy

and

Ik12(x0) =

∫ yk+1

yk

(1− x0)(y − y0)

(1− x0)2 + (y − y0)2
dy.

• Bottom horizontal elements

For the bottom horizontal side of the cavity (where y = 0), we obtain

r2 = (x− x0)2 + (y − y0)2 = (x− x0)2 + y2
0.

For example,

Ik11(x0) =

∫ xk+1

xk

[
−1

2
log[(x− x0)2 + y2

0] +
(x− x0)2

(x− x0)2 + y2
0

]
dx

and

Ik12(x0) =

∫ xk+1

xk

−(x− x0)y0

(x− x0)2 + y2
0

dx.
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Chapter 3

The boundary element method for

Stokes flow

3.1 Discretization methods

For general geometry of the boundary, the integral equation (2.7) cannot be eval-

uated analytically. An approximation to the intergal can be done via numerical

intergration. As this approach requires a finite number of points on each element Ek,

approximation leads to a discrete equation, which forms a system of linear equations

that can be solved with a Gauss elimination procedure. Now, when the kernels have

been derived for computing the numerical solution of Stokes flow, it is required to

show the appropriated convertation methods from continuous integral equations into

discrete forms. There are several methods that can be employed for this problem:

(1) the Nystrom method, (2) the collocation method and (3) the Galerkin method,

the Nystrom method is more practical for one-dimensional integral equations and

requires less computation[3]. If Nystrom method requires the computation of only

the kernel function, the Galerkin method demands numerical quadratures. Moreover,

the Nystrom method is more stable, because it preserves the condition of the integral

equations, while the collocation and the Galerkin methods depend on only basis and

if the latter is chosen poorly, then the condition can be disturbed.

In this work, we shall focus only on the quadrature type methods. The quadrature
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method seeks for the solution of the integral by equation replacing the the integral

with a weighted sum of integrals, evaluated at a finite number of points. In par-

ticular, we consider three quadratures: (1) the Gauss-Legendre Quadrature, (2) the

Chebyshev-Gauss Quadrature of the first kind and (3) Chebyshev-Gauss Quadrature

of the second kind.

3.1.1 Gaussian Quadrature

The general Gaussian quadrature for a piece-wise continuous function f is given

as ∫ 1

−1

f(x) dx ≈
n∑
i=1

wif(xi) (3.1)

with wi be the weights of a function value at xi. This equation approximately fail, if

the integrating function f(x) has a singularity in the integrating domain (like in our

case). Nevertheless, if we are able to write integrating function as f(x) = ω(x)g(x),

where g(x) is a polynomial, then by introducing alternative weight function w′i and

points x′i that depend on the ω(x), the error at the singularity can be controlled.

The Gauss-Legendre quadrature formula is constructed by approximating f

with the Legendre polynomials of degree n.

∫ 1

−1

f(x) dx ≈
∫ 1

−1

Pn(x) dx =
n∑
i=1

2

(1− x2
i )[P

′
n(xi)]2

Pn(xi), (3.2)

In this case, the weights depend on the derivative of Pn at xi. Next, the Chebyshev-

Gauss of the first kind quadrature rule is

∫ 1

−1

f(x) dx =

∫ 1

−1

˜f(x)√
1− x2

dx ≈
n∑
i=1

wig(xi). (3.3)

with wi = 1√
1−x2i

and g(xi) = f̃(xi) =
√

1− x2
i f(xi), evaluated at xi, the roots of

Chebyshev polynomials of the first kind. The Chebyshev-Gauss of the second
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Quadrature name Interval ω(x) Weights, wi Points, xi
Legendre [-1, 1] 1 wi = xi is the

2

(1− x2
i )[P

′
n(xi)]2

i−th root

of Pn

Chebyshev (first (-1, 1)
1√

1− x2
wi =

π

n
xi =

kind) cos

(
2i− 1

2n
π

)
Chebyshev (second [-1, 1]

√
1− x2 wi = xi =

kind)
π

n+ 1
sin2

(
i

n+ 1
π

)
cos

(
i

n+ 1
π

)
Table 3.1: Quadrature types

kind quadrature is given by following

∫ 1

−1

f(x) dx =

∫ 1

−1

√
1− x2u(x) dx ≈

n∑
i=1

wig(xi), (3.4)

where u(x) = 1√
1−x2i

f(x) and xi roots of Chebyshev polynomials of the second kind.

Table 3.1 illustrates the weight functions wi and the correspoding points xi, where

the function g is defined.

As (3.2), (3.3) and (3.4) show, the intergating domain is between -1 and 1. Thus,

we are required to introduce the change of interval formula

∫ b

a

f(x) dx =
b− a

2

∫ 1

−1

f

(
b− a

2
x+

b+ a

2

)
dx, (3.5)

and when applied to Gaussian quadrature rule

∫ b

a

f(x) dx ≈ b− a
2

n∑
i=1

wif

(
b− a

2
xi +

b+ a

2

)
. (3.6)

3.1.2 System of Linear equations

Knowing (2.7) and using the quadrature methods, the left hand side of (2.6)

becomes
1

4πν

N∑
k=1

fki (x)Ikij(x0).
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Now, we can apply the discretized boundary integral elements at the midpoints of the

elements, which means that x0 lies between k and k + 1 elements, here k = 1, ..., N .

Thus, we will obtain 2N linear algebraic equations with 2N unknowns with

Dm =

D1(x0)

D2(x0)

 ,

Ikm(x0) =

Ik11(x0) Ik12(x0)

Ik21(x0) Ik22(x0)

 ,
which is a local matrix, and

fk =

fk1
fk2

 ,

and finally,

1

4πµ


I1

1 I2
1 · · · IN1

I1
2 I2

2 · · · IN2
...

...
. . .

...

I1
N I2

N · · · INN




f1

f2

...

fN

 =


D1

D2

...

DN

−
1

2
U



1

0
...

1

0

– –

0
...

0



. (3.7)

3.2 Computational results

After computing the wall tractions, the fluid velocity can be be determined at any

point in the flow using (2.1) and (1.21).

uj(x0) = − 1

4πµ

∫
C

Gij(x,x0)fi(x) dl(x)− U

4π

∫
L

T1j2(x,x0) dl(x).

Figure 3-1 shows the discretization of the boundary of the cavity, while figure 3-2
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illustrates the computed tractions using Gauss-Legendre quadrature, where U = 2.0

Figure 3-1: Boundary elements for cav-
ity with N = 16

Figure 3-2: The computed tractions with
N = 64

is the lid velocity and µ = 1.0 is the fluid viscosity.

Figure 3-3: Velocity profiles along y = x Figure 3-4: Streamlines using N = 64

Next, in figure 3-3 velocity profiles ux and uy, which stand for vertical and hori-

zontal components, repectively, are plotted along the line x = y, while in figure 3-4

typical streamlines are shown (also using Gauss-Legendre quadrature).

Similar results can be obtained using Chebyshev-Gauss quadrature of first and

second kinds’ methods. Figures 3-5 and 3-6 illustrate the same problem with using

Chebyshev-Gauss quadrature of the first kind.
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Figure 3-5: The computed tractions with
N = 64 using Chebyshev-Gauss quad.

Figure 3-6: Velocity profiles along y = x
using Chebyshev-Gauss quad.

3.2.1 Convergence analysis

Now, denote uNi as a speed of a motion, where Ni is a fourth of a total number

of elements (see subsection 2.2, i.e. Ni = N/4) and

uNi(x0) =
√
u2
x + u2

y,

i.e, write the relation between speed and velocity, and let

εNi = |uNi − uNi
2
|

be error at point x0 with different values of Ni.

Figure 3-7 illustrates the error for the speed at two different points: (1) when x0

is far from the sides of the box, (2) when x0 is located closer to the corner. As we

can see, for the first case the error gets small faster than for the second case, thus,

making the points closer to the wall more dependent on the values at the boundary.

3.3 Conclusion

As we have observed, the Stokes flow equation is not explicitly time dependent, and

it forms linear partial differential equations. For small Reynolds number, the Navier-
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Figure 3-7: εNi vs. Ni = N/4 using logarithmic scale

Stokes equation can be reduced to Stokes equations. Next, by using boundary element

method, we can come up with intergral equations that can be solved only on boundary

of the given domain. Considering well-known, numerical discretization methods such

as Gaussian quadrature, continuous intergal equations can be transformed into the

discrete values for a particular N .

As mentioned above that the boundary element method is quite difficult, because

it is not possible to find a fundamental solution for a particular equation (in our

case, Stokes equation) and for a particular domain (stokeslet) all the time. However,

since the Green’s function for Stokes equation has been derived before, we can easily

implement numerical solution using boundary element method.

Coming to applications, the Stokes equation and its solution using BIM is used

in small regions or small particles, such as blood flow, hemodialysis, virus removal

because of it is easiness to implement for complicated geometries.
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Appendix A

Vector calculus derivation of the

Stokeslet

There are several derivations of the Stokeslet [7] such as the derivation using

Fourier Transformation in [8] and the derivation based on vector calculus approach.

In this appendix, we will use the latter one in order to obtain fundamental solution

for Stokes flow in 2D [1].

First, rewrite the (1.13) in the following form

∇P − µ∆u = Fδ(x− x0). (A.1)

Now denote ∆G = δ(x − x0) and set ∆H = G, then we obtain the biharmonic

equation ∆∆H = δ(x − x0). To proceed further, we should also know the fact that

the divergence operator (∇) and the Laplacian commute, i.e. ∇(∆u) = ∆(∇u). If

we apply the identity ∇ · (ab) = b∇ · a + a · ∇b to ∇Fδ, we obtain

∇(∇P )− µ∇(∆u) = ∇(Fδ).

Since ∇ · u = 0, we have

∆P = F∇δ,
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which is equivalent to writing as

∆P = F∇(∆G),

and again using the commutative relation, we obtain

P = F · ∇G. (A.2)

By substituting (A.2) into (A.1), we have

u =
1

µ
F(∇∇− I∆)H. (A.3)

Now it remains to solve the biharmonic equation for a point force at x0

∆∆H = δ.

Since, we have already known the fundamental solution for the Laplce equation, i.e.

Φ(r) = − ln(r)/2π, where r = |x − x0|. Thus, we are required to solve ∆H =

− ln(r)/2π. Let’s express the Laplacian in polar coordinates

∆H = Hrr +
Hr

r
+

1

r2
Hθθ. (A.4)

Since, the angle dependency may be dropped, we are left with an ordinary differential

equation

H ′′(r) +
1

r
H ′(r) = − 1

2π
ln r,

can be written as

rH ′′ +H ′ = − r

2π
ln r.

Then,

(rH ′)′ = − r

2π
ln r

32



and after taking the integrals from both sides

rH ′ = − 1

4π
r2 ln r +

1

8π
r2 + C1.

Divide the last equation by r, and we obtain

H ′ = − 1

4π
r ln r +

1

8π
r +

C1

r
.

This is equivalent to writing as

∫
dH =

∫ (
− 1

4π
r ln r +

1

8π
r +

C1

r

)
dr.

Evaluation of integrals gives us

H(r) =
r2

8π
(1− ln r) + C1 ln r + C2.

If we integrate the singularity forced equation over a circle with a radius of a centered

at the singularity, we get

∫
S

∇4H dS =

∫
S

δ(x̂) = 1.

Now,

∇4 = ∇ · (∇∇2H),

so ∫
S

∇ · (∇∇2H) dS = 1

and applying the divergence theorem

∫
l

(∇∇2H) · n dl = 1,

but for circle n = r̂, and so ∫
l

∂

∂r
∇2H dl = −1.
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The last equation can be written as

∫
l

∂

∂r

(
∂2H

∂r2
+

1

r

∂H

∂r

)
dl =

∫
l

=

(
∂3H

∂r3
+

1

r

∂2H

∂r2
− 1

r2

∂H

∂r

)
dl = −1

Substituting, the solution into the last equation

∫
l

(
2C1

r3
− 1

4πr
− C1

r3
− 1

8πr
− 1

4πr
ln r − C1

r3
− 1

8πr
+

1

4πr
ln r

)
dl = − 1

2πa
2πa = −1.

As we can see, the values of C1 and C2 are immaterial, we will leave them C1 = 0

and C2 = 0, and obtain H(r) = r2

8π
(1− ln r). Returning to (A.3), we have

u =
1

µ
F · (∇∇− I∆)(

r2

8π
(1− ln r))

=
1

4πµ
F ·
[
∇∇(

r2

2
(ln r − 1)) +

δij
2

+ δij ln r

]
=

1

4πµ
F ·
[
−δij

2
+
x̂ix̂j
r2

+
δij
2

+ δij ln r

]
.

Thus,

ui =
1

4πµ
Gij(x,x0)Fj, (A.5)

and the Stokeslet is

Gij = δij log r +
x̂ix̂j
r2

. (A.6)

We can also write the pressure associated with the Stokeslet as

P =
1

4π
pjFj, (A.7)

where

pj = 2
x̂j
r2
.
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