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1. Introduction 

Separation of data into distinct groups is one of the most important tools of learning and 

means of obtaining valuable information from data. Cluster analysis studies the ways of 

distributing objects into groups with similar characteristics. Real-world examples of such 

applications are age separation of a population, loyalty grouping of customers, classification of 

living organisms into kingdoms, etc. In particular, cluster analysis is an important objective of 

data mining, which focuses on studying ways of extracting key information from data and 

converting it into some more understandable form.  There is no single best algorithm for 

producing data partitions in cluster analysis, but many that perform well in various 

circumstances (Jain, 2008). Many popular clustering algorithms are based on an iterative 

partitioning method, where single items are moved step-by-step from one cluster to another 

based on optimization of some parameter. One of such algorithms, which will be mentioned in 

this paper is K-means algorithm, where data points are partitioned based on optimization of sum 

of squared distances within clusters (MacQueen, 1967). Another large class of algorithms are 

based on finite mixture model clustering methods. For example, stochastic emEMclustering 

method, which will also be covered in this article, is based on maximum likelihood estimation of 

statistical model parameters (Melnykov & Maitra). 
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Figure 1.               a) True partition                                                b) Partition obtained by K-means algorithm 

Misclassification of data is not a rare situation in cluster analysis. For instance, we can observe 

that several points have been misclassified on the previous figure (Figure 1) of true partition (a) 

versus the solution found by the K-means algorithm (b). Various factors lead to misclassification 

in clustering algorithms. The main goal of this paper is to analyze the effect of pairwise overlap, 

number of dimensions of data, and number of clusters on misclassification. The simplest case 

where misclassification can occur is when there are two clusters. The overlap is exact in this 

case, thus, we proceeded to use one of the simplest algorithms – K-means. At the higher number 

of clusters, when overlap is estimated, we considered more complex emEM algorithm. 

 

2. The case of K = 2 clusters 

Firstly, we began our investigation with the most simple scenario in which 

misclassification can occur, a case of two clusters. Most methods provide similar solutions in 

this case. Thus, we decided to use one of the simplest and fastest algorithms, which is K-means. 

Although K-means algorithm was published in 1950s and is 60 years old (Lloyd, 1957), it is still 

one of the most widely used and popular algorithms today.  This algorithm aims at minimizing 

the following objective function: 

𝐽 =∑∑‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑛

𝑖=1

𝑘

𝑗=1

 

Here, ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖is the distance between cluster center 𝑐𝑗   and data point 𝑥𝑖
(𝑗)

. 

 

The K-means algorithm distributes N points in p dimensional space into K clusters, based on the 

minimization of sum of squared distances within clusters (MacQueen, 1967) 
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The algorithms consists of the following steps:  

1) Pick K random points from the data set, these points will represent initial cluster centers. 

2) Assign each point to the cluster with the closest center. 

3) Calculate clusters’ geometrical centers and assign them to be new centers. 

4) Repeat Steps 2 and 3 until the centers are stabilized.  

K-means algorithm is sensitive to the choice of initial centers. In some cases algorithm may 

not converge or one or more clusters can get dissolved. In that case, the algorithm is repeated 

with a different set of initial centers. The solution that produces the lowest value of objective 

function J is recorded as the best. 

2.1 Mixture model 

Other partition optimization algorithms rely on parametric methods, such as finite mixture 

model techniques.  A mixture model is a statistical model, which specifies presence of 

subclasses in a data set, without identification to which subclass individual points belong 

(McLaughlan & Peel, 2000).  

For independent identically distributed p-dimensional observations X1, X2,…,Xn, the 

probability density function for mixture model with K components is 





K

k

kk xfxf
1

)();(   

where 𝑓𝑘 is the kth component and 𝜋𝑘 is the probability that observation belongs to kth 

component (𝜋𝑘 ≥ 0,



K

k

k

1

1 ). Commonly, 𝑓𝑘 is a normal (Gaussian) density 𝜑𝑘(𝑥|𝜇𝑘, ∑𝑘), 

where 𝜇𝑘 is the mean and ∑𝑘 is the covariance matrix. 

𝜑𝑘(𝑥|𝜇𝑘 , ∑𝑘) =
exp⁡{−
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Pairwise overlap is the measure of how much clusters penetrate each other. Pairwise overlap is 

the sum of misclassification probabilities 
ji|  and 

ij |  (Melnykov & Maitra, 2009) 

)],(~|),;(),;(Pr[| iipjjjiiiij Nxxx    

To analyze the degree of misclassification, we tried to fit different regression models to observe 

the behavior of misclassification probability relevant to overlap and number of dimensions of 

cluster data. Initially, we expected that misclassification would be higher for higher number of 

dimensions of data, since points can be close to each other in one dimension and be greatly 

separated in another.   

2.2 Simulations 

To generate data we used MixSim R package, which provides ways to generate multi-

dimensional and multi-component Gaussian mixtures and specifies mean and maximum overlap 

between clusters in mixtures (Melnykov, Chen & Maitra, 2013). Datasets of sample size 1000 

were generated using finite mixture model with Gaussian components for pre-specified level of 

maximum overlap between clusters. Covariance matrix structure was set to be spherical and the 

value of smallest mixing proportion was set to imply equal proportions. 1000 simulations of such 

datasets were used to obtain the median values of misclassification probabilities for each 

variation of overlap (ω) and number of dimensions (p). The following results (Table 1) were 

obtained for median values of misclassification proportions: 

 w/p p=2 p=3 p=4 p=5 p=7 p=10 

w=0.01 0,009 0.009 0.009 0.01 0.01 0.01 

w=0.05 0.0360 0.0320 0.0335  0.0395 0.0345 0.0385 

w=0.1 0.0600 0.0650 0.0660  0.0620 0.0650 0.0620 

w=0.15 0.0945 0.0905 0.0940 0.0955 0.0935 0.0945 

w=0.20 0.1175 0.1190 0.1195 0.1170 0.1210 0.1275  

w=0.25 0.1405 0.1445 0.1430 0.1455 0.1385 0.1470 

w=0.30 0.1665 0.1690 0.1720 0.1735 0.1760 0.1770 
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Table 1. Median misclassification probabilities for K=2. 

Misclassification was measured by two parameters, adjusted Rand (AR) index and percentage of 

misclassification. AR index describes the agreement between two data partitions  and attains 

value 1 when they agree perfectly. This index has the expected value equal to 0 when the data 

points are allocated to clusters completely at random (Hubert & Arabie, 1985). Since, labeling of 

the points as correctly or incorrectly classified is easy in the case of two clusters, we decided to 

use misclassification probability in that case. However, when the number of clusters is larger, the 

assignment of labels to the points is not trivial and calls for a more advanced measure, such as 

the adjusted Rand index. 

3. Modeling misclassification probabilities 

3.1 Logistic regression model 

Initially, we tried to fit a logistic function to define the behavior of misclassification probability 

subject to overlap (ω) and number of dimensions (p). One of the reasons to choose the logistic 

model was the value of misclassification probability that ranges between 0 and 1, i.e. its value 

approaches the horizontal asymptotes at 0 and 1 (value 0 when there is no misclassification, 

value 1 when every point is misclassified). Assuming the failure or success of correctly 

identifying the case that a point belongs to a certain cluster as response variable Yi, one may 

consider Y as a Bernoulli random variable with parameter E{Y} =⁡𝜏. Yi, can take value 0 with 

probability 1 - 𝜏, which is a case of misclassifying a point, and value 1 with probability 𝜏, i.e. 

correctly classifying that point. The expected value of Yi is as follows: 

𝐸{𝑌𝑖} =
𝑒𝛽0+𝛽1𝜔+𝛽2𝑝

1 + 𝑒𝛽0+𝛽1𝜔+𝛽2𝑝
 

The results show that misclassification probability of K-means algorithm depends on the overlap 

between clusters and that the number of dimensions p is not a significant predictor in the case of 

two clusters. Table 2).  



                 PAIRWISE OVERLAP AND MISCLASSIFICATION IN CLUSTER ANALYSIS                                         8 
 

 

Call: 
glm(formula = misclass ~ w + p, family = "binomial") 
 
Deviance Residuals:  
      Min         1Q     Median         3Q        Max   
-0.137157  -0.051194   0.003566   0.049659   0.075608   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)   
(Intercept) -3.622416   1.736253  -2.086   0.0369 * 
w            7.211372   6.170064   1.169   0.2425   
p            0.006436   0.203679   0.032   0.9748   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 1.72902  on 41  degrees of freedom 
Residual deviance: 0.18209  on 39  degrees of freedom 
AIC: 14.191 
 
Number of Fisher Scoring iterations: 6 
 
Table 2. Summary of regression of misclassification percentage on degree of overlap (ω) and number of dimensions (p). 

Therefore, we excluded the number of dimensions from the regression model and obtained the 

following result (Table 3) for the logistic model.  

Call: 
glm(formula = misclass ~ w, family = "binomial") 
 
Deviance Residuals:  
      Min         1Q     Median         3Q        Max   
-0.138254  -0.044873   0.004165   0.048136   0.073543   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)   -3.589      1.374  -2.613  0.00898 ** 
w              7.211      6.170   1.169  0.24250    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 1.72902  on 41  degrees of freedom 
Residual deviance: 0.18308  on 40  degrees of freedom 
AIC: 12.191 
 
Number of Fisher Scoring iterations: 6 

 

Table 3. Summary of  regression of misclassification percentage on degree of overlap (ω)  

Thus, the analytic expression of the regression function is as follows: 

𝜏 =
𝑒−3.589+7.211∗𝜔

1 + 𝑒−3.589+7.211∗𝜔
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Figure 2. Observed values of misclassification probabilities and the graph of the fitted logistic model. 

 

However, it can be observed from the graph in Figure 2 that the fit is quite poor; in addition, the 

chi-square goodness-of-fit test suggests that it is very unlikely (p-value < 0.001) that observed 

data comes from our logistic regression model. Thus, we had to search for a better fitting model.  

3.2 Linear regression model 

After denying logistic model, we considered the use of a linear model. Similarly, we tried to fit 

both predictor variables ω and p. The results are as follows: 

Call: 
lm(formula = misclass ~ w + p) 
 
Residuals: 
       Min         1Q     Median         3Q        Max  
-0.0082533 -0.0021750 -0.0002074  0.0020101  0.0069298  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.0045013  0.0013668   3.293  0.00211 **  
w           0.5545801  0.0052282 106.075  < 2e-16 *** 
p           0.0005153  0.0001916   2.690  0.01046 *   
--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.003317 on 39 degrees of freedom 
Multiple R-squared:  0.9965, Adjusted R-squared:  0.9964  
F-statistic:  5630 on 2 and 39 DF,  p-value: < 2.2e-16 

 

Table 4. Summary of linear regression of misclassification percentage on pairwise overlap and number of 

dimensions. 

Again, number of dimensions parameter is not significant, thus we excluded it from further 

consideration: 

𝜏 = 0.007 + 0.555 ∗ ω 

Call: 
lm(formula = misclass ~ w) 
 
Residuals: 
       Min         1Q     Median         3Q        Max  
-0.0073086 -0.0027094 -0.0003506  0.0028059  0.0094204  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.007164   0.001014   7.068 1.51e-08 *** 
w           0.554580   0.005621  98.663  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.003566 on 40 degrees of freedom 
Multiple R-squared:  0.9959, Adjusted R-squared:  0.9958  
F-statistic:  9734 on 1 and 40 DF,  p-value: < 2.2e-16 

 

Table 5. Summary of linear regression of misclassification percentage on pairwise overlap. 
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Figure 3. Observed values of misclassification probabilities and the graph of the fitted linear model. 

We evaluated the assumptions of the model and in particular tested the residuals for normality. 

Shapiro-Wilk test of normality for residuals yielded p-value = 0.7137. 

Thus, the test of normality does not contradict the assumption that errors follow a normal 

distribution. Although the results for linear regression seemed to be reasonable enough, the 

following plot of residuals versus fitted values (Figure 4) is not evenly distributed and shows 

quadratic tendency. Therefore, we looked for a better model, and proceeded to the analysis of a 

quadratic model in ω.  

 

Figure 4. Residuals of linear model in ω versus the fitted values  

 

3.3 Quadratic regression model 

To obtain a better regression model, we further used a quadratic model to estimate the behavior 

of misclassification probability. The results of regression with both predictor variables ω and p: 

Call: 
lm(formula = misclass ~ w + I(w^2) + p + I(p^2)) 
 
Residuals: 
       Min         1Q     Median         3Q        Max  
-0.0084293 -0.0012760 -0.0002441  0.0019262  0.0053670  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  9.742e-04  2.400e-03   0.406 0.687171     
w            6.232e-01  1.717e-02  36.304  < 2e-16 *** 
I(w^2)      -2.228e-01  5.384e-02  -4.138 0.000194 *** 
p            6.759e-04  8.424e-04   0.802 0.427484     
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I(p^2)      -1.328e-05  6.833e-05  -0.194 0.847004     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.002815 on 37 degrees of freedom 
Multiple R-squared:  0.9976, Adjusted R-squared:  0.9974  
F-statistic:  3913 on 4 and 37 DF,  p-value: < 2.2e-16 

 

Table 6. Summary of quadratic regression of misclassification percentage on pairwise overlap and number of 

dimensions. 

Again, results show the insignificance of number of dimensions parameter. Therefore, it was 

removed from the model: 

𝜏 = 0.004017 + 0.623199ω − 0.222804𝜔2 

 
Call: 
lm(formula = misclass ~ w + I(w^2)) 
 
Residuals: 
       Min         1Q     Median         3Q        Max  
-0.0073915 -0.0019689 -0.0002268  0.0014822  0.0077553  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.004017   0.001213   3.312 0.002002 **  
w            0.623199   0.018862  33.040  < 2e-16 *** 
I(w^2)      -0.222804   0.059164  -3.766 0.000548 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.003093 on 39 degrees of freedom 
Multiple R-squared:  0.997, Adjusted R-squared:  0.9968  
F-statistic:  6478 on 2 and 39 DF,  p-value: < 2.2e-16 
 
Table 7. Summary of quadratic regression of misclassification percentage on pairwise overlap. 

 

Shapiro-Wilk test of normality for residuals resulted in  p-value = 0.8071. 

The test does not contradict that residuals have a Gaussian distribution. Unlike the residuals in a 

linear model, the following plot (Figure 5) represents that residuals in quadratic model are more 

evenly distributed.  
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Figure 5. Residuals of quadratic model in ω versus the fitted values  

We were satisfied with the results of quadratic regression, thus we refrained from considering 

other models and indicated quadratic model as our most successful fit. The following plot 

(Figure 6) represents observed values and fitted graph of quadratic model: 

 

Figure 6. Observed values of misclassification probabilities and the graph of the fitted quadratic model. 
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4. The case of multiple clusters 

4.1 Introduction to emEM Method 

After, studying the misclassification for number of clusters K=2, we wanted to proceed further 

and study how misclassification occurs with a larger number of clusters. Though previous results 

of misclassification percentages, which were obtained for number of clusters K=2, seemed to be 

decent, with the increase in K, K-means algorithm rapidly deteriorate. For example, the 

simulation of 1000 runs of K-means algorithm with K=2 and maximum overlap 𝜔=0.1 gives 

median adjusted Rand (AR) index of 0.7601456, however, the simulation with the same 

parameters except for K=5, shows median AR index of 0.350072. Thus, we sought for a better 

algorithm to obtain good solution for multiple clusters. Another popular clustering algorithm that 

we made an analysis on was Expectation-Maximization (EM) algorithm. The EM algorithm is a 

general statistical method of maximum likelihood estimation and in particular it can be used to 

perform clustering (Ordonez & Omiecinski, 2002).  

The EM algorithm step by step improves a starting clustering model to better fit the data set and 

stops at a solution which is locally ideal or a saddle point (Bradley, Fayyad & Reina, 1998). 

In analysis of EM algorithm, we continued to use Gaussian mixture as our choice for mixture 

model. The mixture density of which is the following: 





K

k

kkk xxf
1

),;();(   

where 𝜇𝑘 is mean and ∑𝑘 is covariance matrix for k-th component.  

 

The normal (Gaussian) density 𝜑𝑘(𝑥|𝜇𝑘, ∑𝑘) is: 

𝜑𝑘(𝑥|𝜇𝑘 , ∑𝑘) =
exp⁡{−

1
2
(𝑥𝑖 − 𝜇𝑘)

′∑𝑘
−1(𝑥𝑖 − 𝜇𝑘)}

(2𝜋)−
𝑝
2|∑𝑘|

−
1
2
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According to V. Melnykov and R. Maitra (2009) the EM algorithm is carried out by assuming 

that there are missing data points, which together with the observed data compose “complete” 

data. The appropriate likelihood function is commonly easier to operate. Two steps, the 

expectation (E) and the maximization (M), compose the algorithm.  

The M-step of s-th iteration aims to maximize the conditional loglikelihood function, called Q-

function, with respect to parameter vector ),...,,,;(: 21

)1(

n

s xxxQ   

The corresponding Q-function is given by:  
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Given the current parameter 𝜗𝑠−1⁡ estimates, E-step focuses on calculation of the following 

conditional probabilities: 
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Considering covariance matrix ∑𝑘 as a general unstructured dispersion matrix, the M-step gives 

the following solutions:  
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When the respective increase in likelihood function is not considerable, the algorithm is stopped.  

 

4.2 Initialization of the algorithm 

The likelihood function commonly can have multiple local maxima, thus the algorithm is very 

sensitive to the choice of starting points and good initialization is critical. There exist numerous 

initialization algorithms (Melnykov & Maitra, 2009). Since we chose the stochastic emEM 

method proposed by V. Melnykov and R. Maitra for clustering, the initialization was carried out 

as a part of the method. The emEM algorithm consists of two EM stages. First one, called short 

EM, runs EM algorithm with set of initial points chosen randomly. The solution, which produces 

the best log likelihood, is used afterwards as an initializer for the second long EM stage. The 

long EM runs until convergence criterion is met and final solution is obtained.  

4.3 Simulations 

The generation of datasets was similar to the simulations done for K-means algorithm. We used 

MixSim package, mentioned before and EMCluster R package, which provides ways for 

execution of EM algorithm. Datasets were again of size 1000 and generated using Gaussian 

finite mixture model with pre-specified levels of maximum overlap between clusters. The value 

of the smallest mixing proportion was set to imply equal proportions and covariance matrix 

structure was set to be non-spherical. Due to the complexity of algorithm, unlike for K-means we 

did 100 simulations of such datasets for obtaining values of AR index for each value of overlap 

(ω) and number of dimensions (p). Unlike the case of K=2 number of clusters, where we used 

misclassification percentage as a measure of misclassification, here we used AR index. The 
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reason for the change was the difficulty in calculating misclassification percentages; thus, the 

following results (Table 6) were obtained for the median AR index: 

w/p p=2 p=4 p=5 p=7 p=10 

w=0,001 0.8973324 0.8923708 0.888494 0.8823739 0.8775253 

w=0,005 0.8812297 0.8804144 0.8643471 0.8446646  0.8191256 

w=0,01 0.8700241 0.8507911 0.8190255 0.8005175 0.738382 

w=0,03 0.7199319 0.6639654 0.6512065 0.5963805 0.5772604 

w=0,04 0.6619233 0.6022783 0.590545 0.5137298 0.4294371 

w=0,05  0.601245 0.5523285 0.5272748 0.4543913 0.3461704 

w=0,07 0.512055  0.4411077 0.4112382 0.3361598 0.2577662 

w=0,1 0.4084238 0.337837 0.3018632 0.2372028 0.1625142 

w=0,15 0.3065079 0.2291579 0.1901517 0.1377378 0.0914074 

 

Table 6.Medians of AR index values for K=5 number of clusters  

5. Modeling AR Index 

5.1 Logistic regression model 

The value of AR index ranges between 0 and 1, thus first of all we tried to fit a logistic model. 

The summary of logistic regression (Table 8) shows that number of dimensions is not significant 

parameter.  

𝐴𝑅 =
𝑒2.1510−24.1801∗𝜔−0.1140∗𝑝

1 + 𝑒2.1510−24.1801∗𝜔−0.1140∗𝑝
 

Call: 
glm(formula = ARIndex ~ w + p, family = "binomial") 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-0.21221  -0.13066   0.01292   0.14064   0.38259   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)   2.1510     0.9442   2.278  0.02272 *  
w           -24.1801     8.7604  -2.760  0.00578 ** 
p            -0.1140     0.1263  -0.903  0.36651    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 12.1746  on 44  degrees of freedom 
Residual deviance:  1.1413  on 42  degrees of freedom 
AIC: 37.541 
 
Number of Fisher Scoring iterations: 4 
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Table 8. Summary of  regression of AR index on degree of overlap (ω) and number of dimensions (p). 

Therefore, we excluded the number of dimensions from the regression model. However, it 

should be noted that p-value is larger in this case, thus the number of dimensions is less 

significant than in the case of K=2 clusters. The summary of regression (Table 9) is the 

following: 

Call: 
glm(formula = ARIndex ~ w, family = "binomial") 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-0.45781  -0.08996   0.05744   0.18694   0.52454   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)   1.4820     0.5366   2.762  0.00575 ** 
w           -23.6985     8.6287  -2.746  0.00602 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 12.1746  on 44  degrees of freedom 
Residual deviance:  1.9713  on 43  degrees of freedom 
AIC: 38.199 
 
Number of Fisher Scoring iterations: 4 
 

Table 9. Summary of logistic regression of AR index on degree of overlap (ω) 

 

The result of regression: 

𝐴𝑅 =
𝑒1.4820−23.6985∗𝜔

1 + 𝑒1.4820−23.6985∗𝜔
 

The chi-square goodness of fit shows p-value < 0.001, suggesting that logistic model is a poor fit 

for observed data. Hence, we proceeded to consideration of a linear model. 
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5.2 Linear regression model 

As the logistic model was unsatisfactory, a linear model in ω and p was tried. 

The result for linear model was the following:  

𝐴𝑅 = 0.94101 − 4.90510 ∗ ω⁡- 0.02181*p 
 
Call: 
lm(formula = AR ~ w + p) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.13148 -0.05618 -0.02542  0.06124  0.15953  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.941005   0.029374  32.035  < 2e-16 *** 
w           -4.905102   0.249856 -19.632  < 2e-16 *** 
p           -0.021810   0.004255  -5.125 7.08e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.07786 on 42 degrees of freedom 
Multiple R-squared:  0.9074, Adjusted R-squared:  0.903  
F-statistic: 205.8 on 2 and 42 DF,  p-value: < 2.2e-16 
 
Table 10. Summary of linear regression of median AR index on pairwise overlap and number of dimensions 

Due to the problems with curvature that we experienced before, the residuals were examined by 

means of the plot of residuals versus pairwise overlap (Figure 7). Once again it was clear that a 

quadratic term in ω needs to be added. We fitted a model with both quadratic terms (in ω and p) 

as well as the interaction term.  

 

 Figure 7. Residuals of linear model in ω versus the fitted values. 
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5.2 Second order regression model 

Due to potential problems with high correlation among predictors and high order terms, the 

centering of predictor variables was performed. Those variables are ω𝑐 and⁡p𝑐, where 

 ω𝑐𝑖
= ω𝑖 −ω and p𝑐𝑖 = p𝑖 − p.  

The results of regression (Table 11): 

Call: 
lm(formula = AR ~ wc + I(wc^2) + pc + I(pc^2) + wc:pc) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.066103 -0.018914  0.004224  0.014751  0.052868  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.4984362  0.0070101  71.103  < 2e-16 *** 
wc          -6.2489450  0.1145204 -54.566  < 2e-16 *** 
I(wc^2)     32.1279955  1.8444322  17.419  < 2e-16 *** 
pc          -0.0221540  0.0015478 -14.313  < 2e-16 *** 
I(pc^2)      0.0003459  0.0005677   0.609    0.546     
wc:pc       -0.1496286  0.0310286  -4.822 2.19e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.02637 on 39 degrees of freedom 
Multiple R-squared:  0.9901, Adjusted R-squared:  0.9889  
F-statistic:   783 on 5 and 39 DF,  p-value: < 2.2e-16 
 

Table 11. Summary of second order regression of AR index on pairwise overlap and number of dimensions. 

All terms except the quadratic term for the number of dimensions were significant. Thus, only 

that term had to be dropped and the model was refit: 

Call: 
lm(formula = AR ~ wc + I(wc^2) + pc + wc:pc) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.063493 -0.021262  0.004211  0.015743  0.055479  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.501010   0.005551  90.263  < 2e-16 *** 
wc          -6.248945   0.113617 -55.000  < 2e-16 *** 
I(wc^2)     32.127996   1.829877  17.557  < 2e-16 *** 
pc          -0.021810   0.001430 -15.252  < 2e-16 *** 
wc:pc       -0.149629   0.030784  -4.861 1.84e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.02617 on 40 degrees of freedom 
Multiple R-squared:   0.99, Adjusted R-squared:  0.989  
F-statistic: 994.3 on 4 and 40 DF,  p-value: < 2.2e-16 
 

Table 12. The summary of the final second order regression of AR index on pairwise overlap and number of 

dimensions. 
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The plots of residuals versus both predictor variables as well as fitted values (Figure 8 a, b, c)   

were examined and did not reveal further problems.  

 

a) 

 

b) 
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c) 

Figure 8. Residuals of second order model plotted against a) fitted values, b) ω𝑐 , c) p𝑐 

 

Figure 9. The histogram of residuals of the final model.  
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Shapiro-Wilk test of normality for residuals resulted in p-value = 0.4401. The assumption of a 

normal distribution of errors is upheld. 

Rewriting the model in terms of non-centered variables we obtain the following equation: 

AR = 0.979782 - 8.66668*ω + 32.128 *⁡ω2- 0.0142288 * p - 0.149629*ω*p 

Outside of the scope of our model, an extrapolation would lead to inaccurate results. Thus, the 

model should be used for values of p between 2 and 10, ω between 0.001 and 0.15 and number 

of clusters K=5. 

We can observe that both predictors negatively affect the values of AR index and in addition the 

interaction term between ω and p has a negative coefficient meaning that the adverse effect of 

the increase in number of dimensions and pairwise overlap on AR index is reinforced when both 

of them occur at the same time. 

We stopped further model selection and chose the second order model to be our best fit to the 

observed data.  

 

6. Discussion 

This study analyzed the impact of several parameters on misclassification of data in cluster 

analysis. In particular, pairwise overlap and number of dimensions were studied as such 

predictors. Different algorithms were considered for different number of clusters: K-means 

algorithm in the case of two clusters and emEM method in the case when the number of clusters 

is greater than two. The results that were obtained showed that pairwise overlap was a significant 

factor in both cases. However, the number of dimensions was not a significant factor in the case 

of two clusters, but it was a considerable factor in the case of multiple clusters. In general, a 

higher number of dimensions or higher pairwise overlap mean that misclassifications will occur 

more frequently. Logistic, linear, and second order regression models were tried as possible 
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approximations. Due to poor fitting characteristics, both the logistic and linear model were 

rejected.  In the case of multiple clusters, regression shows that both overlap and number of 

dimensions are significant as well as interaction between them.  In both cases, a second order 

regression model provided the best results. 
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Appendix 

Code for simulation of K-means method: 

--------------------------------------------------------------------------------------------------------------------- 

v<-vector() 

m<-vector() 

for (k in 1:10) { 

for (o in 1:1000) { 

A<-MixSim(MaxOmega=0.001*k, p=2, K=5, PiLow=1,sph=TRUE) 

B<-simdataset(1000, Pi = A$Pi, Mu=A$Mu, S=A$S) 

trueID<-B$id 

x<-B$X 

Q<-kmeans(x,5,nstart = 10000,iter.max=200,algorithm="Lloyd") 

estID<-Q$cluster 

t<-table(trueID,estID) 

nom<-0 

for (i in 1:5) { 

column<-t[,i] 

maxPos<-which.max(column) 

nom<-nom+sum(column)-t[maxPos,i] 

for(j in 1:5) { 

if(j!=maxPos) { 

t[j,i]<-0 

} 

} 

} 

for (i in 1:5) { 

row<-t[i,] 

maxPos<-which.max(row) 

nom<-nom+sum(row)-t[i,maxPos] 

} 

v[o]<-nom 

} 
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m[k]<-median(v) 

} 

------------------------------------------------------------------------------------------------------------------- 

 

Code for simulation of emEM method: 

--------------------------------------------------------------------------------------------------------------------- 

library(EMCluster) 

library(MixSim) 

library(e1071) 

 

n<-1000 

K<-10 

p<-2 

v<-c() 

 

for (w in 1:100) { 

    A<-MixSim(BarOmega=0.01, p=2, K=10, PiLow=1,sph=FALSE) 

    B<-simdataset(n, Pi = A$Pi, Mu=A$Mu, S=A$S) 

    trueID<-B$id 

    x<-B$X 

    dim(x)<-dim(B$X) 

 

#### Clustering after initialization with the true cluster centers ##### 

     gamma <- matrix(rep(0, n*K), ncol = K) 

     for (i in 1:n){ 

          gamma[i,trueID[i]] <- 1 

     } 

     init <- m.step(x, Gamma = gamma) 

     Qtarget <- emcluster(x, pi = init$pi, Mu = init$Mu, LTSigma=init$LTSigma, assign.class = 

TRUE) 

     targetID<-Qtarget$class 

 

     targetAR<-classAgreement(table(trueID,targetID))$crand 
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 #### Clustering after random initialization ##### 

  

     bestBIC <- Inf 

  

     .EMC$short.iter <- n / 5 

     .EMC$short.eps <- 0.01 

     EMruns <- 100 

       

     for (i in 1:100) { 

          Q <- em.EM(x, nclass = K) 

          estID<-Q$class 

          m <- K - 1 + K * p + K * p * (p + 1) / 2 

          BIC <- -2 * Q$llhdval + m * log(n) 

  

          AR <- classAgreement(table(trueID, estID))$crand 

 

        if (BIC < bestBIC){ 

              bestBIC <- BIC 

   bestAR <- AR 

  } 

     } 

     cat("Run =", w, " :   Target AR =", targetAR, "  Found AR =", AR, "\n") 

     plot(x, col=estID) 

v<-c(v, AR) 

} # end of loop in w 

--------------------------------------------------------------------------------------------------------------------- 


