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Abstract

In this report we present an SEIS model for infectious diseases with
latent period and no immune response for spatially heterogeneous en-
vironment. Spatial heterogeneity is designed by several metapopula-
tions. It was shown that global dynamics of an epidemics completely
depends on basic reproduction number R0. By fixing the number of
patches to two, we use next generation matrix method to obtain basic
reproduction number and make further analysis on it. Migration rates
of individuals are considered as one of the main factors that influence
R0. Moreover, some numerical simulations for the dynamics of the
system with different initial conditions is presented.
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1 Introduction

Epidemiology is a study of a behavior of infectious diseases. Mathematical
modeling of epidemics predicts the pattern of an epidemics, thus plays an
important role in describing and controlling the disease. It is widely used
nowadays to provide epidemiologists with useful information for policy de-
velopment. Epidemiological models were broadly studied by a number of
authors since its first introduction in 1927 by Kermack and McKendrick
(SIR model) [1]. Since then few more developed forms of a model were
described and studied for various types of infectious diseases.

The general form of the model is SEIRS model, which divides population
into 4 subgroups: S-susceptible, E-exposed, I-infected and R- recovered.
There also exist some other models like SEI model, SIR model or SIS model,
however all of them are particular cases of the general model. In this report
we will focus on SEIS model, which was described for an infectious disease
with latency period in the absence of immune system.

Moreover, most of the deterministic models do not consider migration
of individuals. However, it is unrealistic to assume no migration of species
because population and environment are spatially heterogeneous. Demo-
graphic and spatial parameters of a particular area can vary, because ani-
mals, birds, mosquitoes and any other species same as humans travel through
the surface of the earth. Thus, it is important to include spatial structure to
the epidemic model. Spatial structure can be described as continuous or dis-
crete. Reaction-diffusion equation for continuous time space was discussed
in a paper by Wu [2]. While we will focus on discrete space model which
produces a coupled patch models, usually called metapopulation models.
They consist of a system of ordinary differential equations describing the
dynamics of each patch and the other patches by traveling [3].

The SEIS model for two metapopulations is considered in this study. We
will analyze basic reproduction number to predict pattern of an epidemics.
Also some graphs of simulations are provided.
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2 SEIS model

The basic SEIS model can be shown by the system of ordinary differential
equations as follows:

E′ = αSI − βE (1)

I ′ = βE − γI (2)

S′ = −αSI + γI (3)

where S, E, and I represent the number of susceptible, exposed, and in-
fected individuals, respectively. It is assumed that probability of getting
one more exposed individual is proportional to the number of infected and
susceptible individuals with the rate of α. Exposed individuals enter the
infected compartment at the rate β, and the treatment rate is γ. However
since there is no immune system effect all the recovered individuals join the
susceptible compartment. Also, because epidemics outbreaks occur within a
short time period in comparison with population growth time, it is usually
assumed that population size is constant. Thus for total population size
N = S + E + I, N ′ = S′ + E′ + I ′ = 0, which indicates no population
growth. Figure 1 shows a progression diagram for the given model.

Figure 1: Progression of infection from susceptible (S) individuals through
the exposed (E) and infected (I) compartments

These kind of epidemic models have a disease free (DFE) equilibrium
state, at which the population remains in the absence of disease. Usually
we consider treshold parameter called basic reproduction number R0, such
that if R0 < 1, then DFE is locally assymptotically stable, and the disease
cannot invade the population, but if R0 > 1 then DFE is unstable and
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invasion is always possible. In a simple words, basic reproduction number is
an expected amount of succeptibles infected by one infective individual, so
R0 > 1 means one infected individual spreads the disease to more than one
person, thus amount of infected individuals increases, and for R0 < 1 each
infected individuals produces less than one more infected individual and the
amount of infected individuals slowly decreases. Basic reproduction number
of a disease can be found by next generation matrix method, introduced by
Watmough and van den Driessche [7], where R0 is the spectral radius of the
next generation matrix.

According to the method, we identify Fi, V +
i and V −i to be the rate

of appearance of a new infections in compartment i, the rate of transfer of
individuals into compartment i, and the rate of transfer of individuals out
of compartment i respectively, where each of the functions are continuously
differentiable,(at least twice) and Vi = V −i − V +

i . Moreover, we should
notice that progression through E to I is not considered as a new infection,
but as a progression of infected individual through different levels. Thus,
from definitions of Fi, V +

i and V −i for equations (1)-(3) we get:

F =

F1

F2

F3

 =

αSI0
0

 ,V + =

V +
1

V +
2

V +
3

 =

 0
βE
γI

 , V − =

V −1
V −2
V −3

 =

 βE
γI
αSI


(4)

where each group of susceptible, exposed and infected represents each
compartment, such that i = 1 is compartment of E, i = 2 corresponds to I,
and consequently i = 3 to S.

Since it is natural for the system to have a non-negative initial conditions,
our functions F ,V + and V − should satisfy following axioms:

A(1) Since each function represents direct transfer of individuals, they
are all non-negative. In other worlds, if E, I, S ≥ 0 then F ,V +,V − ≥ 0,
which is true from equations (1)-(3).

A(2) If the compartment is empty, then there can be no transfer of in-
dividuals out of compartment. Thus, if E, I, S = 0 then, V − = 0. It is also
true, according to our definition of V − in (4).

A(3) Incidence of infection for uninfected compartment is zero. In our
example we have only one uninfected compartment - S, which corresponds
to i = 3. Thus, F3 = 0.

A(4) If the population is free of disease, then the population will remain
free of disease. That is, there is no immigration of infectives to the system
by outside. This can be written as, if E = I = 0 (compartments 1 and 2),
then Fi = 0 and V +

i = 0, for i = 1, 2. This is also true for given model.
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A(5) If F is set to zero, then all the eigenvalues of Jacobian matrix
evaluated at DFE have negative real parts.

An equilibrium solution with E = I = 0 has the form x0 = (0, 0, S0)
t. If

we rewrite equations (1)-(3) as vector valued function G = [E′, I ′, S′]t then
the Jacobian matrix evaluated at x0 will be:

J =
[
dG
dE

dG
dI

dG
dS

]
=

−β αS0 0
β −γ 0
0 γ − αS0 0


with eigenvalues: λ1,2 =

−(γ+β)±
√

(γ+β)2−4β(γ−αS0)(γ+β)

2 . Since

γ + β >
√

(γ + β)2 − 4β(γ − αS0)(γ + β)
and α, β, γ’s are all positive, our eigenvalues have negative real parts.

Thus, our model satisfies all of axioms and we can apply next generation
matrix method.

According to [7] next generation matrix has a form of FV −1, where F
and V are defined as follows:

F =
[
dF
dE (x0)

dF
dI (x0)

]
, V =

[
dV
dE (x0)

dV
dI (x0)

]
(5)

From equations (1)-(3) we have

F =

[
0 α
0 0

]
and V =

[
β 0
−β γ

]
This gives us R0 = α

γ . It is clear that R0 < 1 and DFE is asymptotically
stable if α < γ and R0 > 1 and DFE is unstable for α > γ. This means
that disease dies out in a closed system if rate of getting infected is less than
recovery rate.

3 SEIS with spatial heterogeneity

As we have stated before, the model will include spatial effects on a pop-
ulation. For this purposes Lloyd and May [4], in their research, divide the
population into connected subpopulations: such that Si, Ei, and Ii indi-
cates number of susceptible, exposed and infective in patch i and the total
population of patch i is Ni = Si + Ei + Ii. In their model infective in-
dividuals of one patch can infect susceptible individuals of another patch,
however the model does not consider an explicit movement of individuals
between patches. Sattenspiel and Dietz [5] have shown a metapopulation
epidemic model where an explicit movement of individuals is included, and
each sub-group is labelled according to their patch of origin as well as a
patch of residency at a given time. Arino and van den Driessche also used a
similar techniques to formulate SIS model [6]. In this paper we will use the
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notation from [6]. To formulate a model including geographical mobility, let
us denote Sij to indicate the number of susceptible individuals from patch
i staying at patch j at the moment, Iij and Eij will be defined according
to the same logic. Residents of patch i leaves their patch of origin at the
per capita rate of gi ≥ 0 per unit time, with a fraction mij ≥ 0 going to
a particular patch j. Consequently gimij is the travel rate from patch i to

patch j. It logically follows from the definition that mii = 0 and
n∑
j=1

mij = 1.

Also residents of patch i return their home at per capita rate of rij ≥ 0 with
rii = 0. It is natural to assume that gimij > 0 if and only if rij > 0 [3].

Taking to account all the factors that we have already stated, we came
up with the following model:

Within the patch

E′ii =

n∑
k=1

rikEik − giEii +

n∑
k=1

αSiiIki − βEii, (6)

I ′ii =

n∑
k=1

rikIik − giIii + βEii − γIii, (7)

S′ii =

n∑
k=1

rikSik − giSii −
n∑
k=1

αSiiIki + γIii. (8)

Between patches

E′ij = gimjiEii −
n∑
k=1

rikEik +

n∑
k=1

αSijIkj − βEij , (9)

I ′ij = gimjiIii −
n∑
k=1

rikIik + βEij − γIij , (10)

S′ij = gimjiSii −
n∑
k=1

rikSik −
n∑
k=1

αSijIkj + γIij . (11)

Now for the sake of our research and in order to simplify our calculations, we
fix the number of patches to be 2, and get the following system of differential
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Figure 2: Progression of infection from susceptible (S) individuals through
the exposed (E) and infected (I) compartments for the treatment model with
spatial heterogeneity
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equations:

E′11 = r12E12 − g1E11 + αS11(I11 + I21)− βE11, (12)

E′12 = g1E11 − r12E12 + αS12(I12 + I22)− βE12, (13)

E′21 = g2E22 − r21E21 + αS21(I11 + I21)− βE21, (14)

E′22 = r21E21 − g2E22 + αS22(I12 + I22)− βE22, (15)

I ′11 = r12I12 − g1I11 + βE11 − γI11, (16)

I ′12 = g1I11 − r12I12 + βE12 − γI12, (17)

I ′21 = g2I22 − r21I21 + βE21 − γI21. (18)

I ′22 = r21I21 − g2I22 + βE22 − γI22, (19)

S′11 = r12S12 − g1S11 − αS11(I11 + I21) + γI11, (20)

S′12 = g1S11 − r12S12 − αS12(I12 + I22) + γI12, (21)

S′21 = g2S22 − r21S21 − αS21(I11 + I21) + γI21, (22)

S′22 = r21S21 − g2S22 − αS22(I12 + I22) + γI22 (23)

If we sum up all equations we will see that N ′ = 0, which means there is no
population increase.

Same as we did it before, our F ,V +,V − functions are respectively:

αS11(I11 + I21)
αS12(I12 + I22)
αS21(I11 + I21)
αS22(I12 + I22)

0
0
0
0
0
0
0
0



,



r12E12

g1E11

g2E22

r21E21

r12I12 + βE11

g1I11 + βE12

g2I22 + βE21

r21I21 + βE22

r12S12 + γI11
g1S11 + γI12
g2S22 + γI21
r21S21 + γI22



,



g1E11 + βE11

r12E12 + βE12

r21E21 + βE21

g2E22 + βE22

g1I11 + γI11
r12I12 + γI12
r21I21 + γI21
g2I22 + γI22

g1S11 + αS11(I21 + I11)
r12S12 + αS12(I12 + I22)
r21S21 + αS21(I11 + I21)
g2S22 + αS22(I22 + I12)



.

Infected compartments Eij and Iij gives m = 8, and equilibrium solution

with Eij = Iij = 0 has a form x0 = (0, 0, 0, 0, 0, 0, 0, 0, S1,
g1S1

r12
, g2S2

r21
, S2)

t,
where S1 and S2 are positive solutions of r12S12 = g1S11 and r21S21 = g2S22
respectively. We assume S1 = S11 and S2 = S22 and from the statements
above we can derive S12 and S21.

Before proceeding to constructing next generation matrix, we should
check whether axioms A(1)-A(5) still hold: all the functions are non-negative
for positive Sij , Eij and Iij ; for Sij = Iij = Eij = 0, V −i = 0; Fi = 0 for
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i > 8; and for Eij = Iij = 0, Fi = V +
i = 0 for i = 1, ..., 8. Thus, our

system satisfies A(1)-A(4). Next, we construct a Jacobian matrix of a system
evaluated at DFE to check for A(5). We will not write all the eigenvalues of
the system, because some of them are too long and complicated, the most
simplest ones are λ1 = −g1−r12 and λ2 = −g2−r21. Tacking to account that
gi’s and rij ’s are all positive, we conclude that eigenvalues has negative real
parts, which satisfies axiom A(5). Since all the axioms hold, we can move to
the construction of next generation matrix and finding basic reproduction
number. In order to simplify our calculations, without loss of generality, let
us assume S1 = S2 = 1 is a DFE. Thus, our F and V matrix, defined in the
same manner as in equation (5) are:

F =



0 0 0 0 α 0 α 0
0 0 0 0 0 αg1/r12 0 αg1/r12
0 0 0 0 αg2/r21 0 αg2/r21 0
0 0 0 0 0 α 0 α
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(24)

V =



g1 + β −r12 0 0 0 0 0 0
−g1 r12 + β 0 0 0 0 0 0

0 0 r21 + β −g2 0 0 0 0
0 0 −r21 g2 + β 0 0 0 0
−β 0 0 0 g1 + γ −r12 0 0
0 −β 0 0 −g1 r12 + γ 0 0
0 0 −β 0 0 0 r21 + γ −g2
0 0 0 −β 0 0 −r21 g2 + γ


(25)

The largest eigenvalue of a matrix FV −1 will be the basic reproduction
number.

3.1 Equal travel rates

Since we have two square matrices of size 8 and 7 parameters, it will be
too complicated to analyze basic reproduction number. That is why, let us
start with a slightly simplified case, with 5 parameters.In order to do so,
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Figure 3: Basic reproduction number as a function travel rates with α = 0.7
γ = 0.01

lets assume that g1 = g2 = g and r12 = r21 = r, such that rates of return
and transfer are equal for both cities. Tacking it into account, we construct
next generation matrix, and it gives us

R0 =
α(g + r)

γr
. (26)

We can consider R0 as a function of g and r. Taking to account α > 0 and
γ > 0 we find partial derivatives with respect to each variable and get:

dR0

dg
=

α

γr
> 0, (27)

dR0

dr
= − αg

γr2
< 0. (28)

Thus, R0 is increasing with respect to g and decreasing with respect to r,
which also can be seen from the Figure 3, 4. Also,

lim
r→1

lim
g→1

α(g + r)

γr
=

2α

γ
(29)

From the graphs we also can see that as g and r goes to 1, R0 approaches
to 2α

γ . For Figure 3, R0 goes to 140 and for Figure 4 it approaches to 0.3428

Thus, R0 < 1 for 2α < γ and R0 > 1 for 2α > γ. We can assume that
infection dies out if recovering rate of infected individuals is more than twice
larger that rate of getting infected.
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Figure 4: Basic reproduction number as a function of travel rates with
α = 0.12 γ = 0.7

3.2 Unequal travel rates

Although it is much simpler to analyze R0 for equal travel rates, it is not
quite realistic. In a real life we don’t have two almost identical cities with
equal travel rates among each other. It is more common to have one big city
and a province or suburb, so that rate of moving into one is much higher
than to another. That is why it is important to consider unequal travel
rates case. For this reason we will go back to our original situation with 7
parameters. Using software we can find an exact value of R0. However as
you can see from equation (30), is too complicated to analyze. Thus, we will
only try to represent it graphically using mathematical software.

R0 =
α(β2γ2r12g2 + ...+

√
(−β2γ2r12g2 − ...)2 − 4(β4γ4r212g2r21 + ...))

2γr12r21(β + r12 + g1)(γ + r12 + g1)(β + g2 + r21)(γ + g2 + r21)
(30)

Since, we do not have a control over parameters α, β and γ, we will consider
them as numbers. However, we have a control over travel rates: g1, g2, r12
and r21, and since there are 4 parameters, we cannot present it graphically
simultaneously. Thus we will fix some of them and do numerical simulations.
Since we have noticed from previous examples that R0 usually depends on a
ratio of α

γ , we will consider few cases with them. All of the values of α and
γ were chosen randomly, such that it satisfies conditions written below.
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α γ

α > γ α = 0.65 γ = 0.21

α < γ α = 0.3 γ = 0.7

2α > γ α = 0.47 γ = 0.39

2α < γ α = 0.19 γ = 0.81

(a) α > γ (b) α < γ

(c) 2α > γ (d) 2α < γ

Figure 5: R0 as a function of g1 and g2 for fixed rij ’s, α, β and γ

For the Figure 5 we fix r12 = 0.104, r21 = 0.07 and β = 0.37. It is clear from
the graph that R0 is increasing function with respect to gi’s, however we can
observe the changes on a scale of R0 depending on each case. Figure 6 repre-
sents the same function R0 as Figure 5, but this time we chose r12 = 0.8 and
r21 = 0.73. All other parameters are the same. If we compare two figures,
it is clear that for a larger rij ’s the values of R0 considerably decreases. In

13



(a) α > γ (b) α < γ

(c) 2α > γ (d) 2α < γ

Figure 6: R0 as a function of g1 and g2 for fixed rij ’s, α, β and γ
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Figure 7 we fix g1 = 0.12 and g2 = 0.09, for the other parameters we use
the same values as before, except for rij ’s which are now variables. Here
we see the same situation as we have discussed before, R0 increases as gi’s
increase and less than one for α < γ or 2α < γ. Figure 8 also supports
our hypothesis, since for g1 = 0.64 and g2 = 0.71, which are greater than
assigned values from previous case, the range of basic reproduction number
is also larger.

(a) α > γ (b) α < γ

(c) 2α > γ (d) 2α < γ

Figure 7: R0 as a function of r12 and r21 for fixed gi’s, α, β and γ
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(a) α > γ (b) α < γ

(c) 2α > γ (d) 2α < γ

Figure 8: R0 as a function of r12 and r21 for fixed gi’s, α, β and γ
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3.3 Generalization

In order to make the results simple, in the two previous subsections we used
a slightly simplified version of DFE state. Now, let us go back to original
DFE, which is x0 = (0, 0, 0, 0, 0, 0, 0, 0, S1,

g1S1

r12
, g2S2

r21
, S2)

t. This time we will
not fix S1 and S2 to be equal 1. Instead, we will consider the general case,
when S11 = m and S22 = n where m,n are real numbers, and accordingly
rewrite S12 and S21. This change will lead to slight modifications in F
matrix, consequently our reproduction number will change. For the general
case,

R0 =
α(β2γ2g2nr12 + ..+

√
(−β2γ2g2nr12 + ..)2 − 4(β4γ4g1g2mnr12r21 + ..))

2γr12(β + g1 + r12)(γ + g1 + r12)r21(β + g2 + r21)(γ + g2 + r21)
(31)

We will not do any mathematical operations on it, since it is too long and
complicated. However, if we carefully look at the expression of R0 at equa-
tion (31) we first see that it looks quite similar to the value in equation (30),
except for existence of m and n which were ones, in above case. This allows
us to assume that it will behave in the same manner. Secondly, as you can
see, our newly introduced parameters m and n appear only on numerator,
which means that R0 is proportional to m and n. This statement seems
logical, since it is natural that the risk of getting infected is higher in large
population areas.

4 Numerical simulations

In this report, we considered an SEIS model with spatial heterogeneity. Now
we present some numerical simulations to the behavior of the whole system

for different values of parameters. We let S =
n∑
i=1

n∑
j=1

Sij , E =
n∑
i=1

n∑
j=1

Eij

and I =
n∑
i=1

n∑
j=1

Iij , then use Matlab software to plot the graph of differential

equations. In Figure 7 green line indicates S(t), blue E(t) and red I(t).

5 Example of a disease

SEIS model describes a disease with dormant periods and absence of immune
effect, like tuberculosis, H1N1 influenza or syphilis. Although, sometimes
they have lethal results, in case of early detection of a disease successful
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(a) α = 0.102, γ = 0.03, β = 0.2R0 = 3.4 (b) α = 0.7, γ = 0.1, β = 0.4R0 = 7

(c) α = 0.12, γ = 0.7, β = 0.35R0 = 0.171 (d) α = 0.01, γ = 0.5, β = 0.14R0 = 0.02

Figure 9: The behavior of each compartment S, E, and I as a function of
time, for indicated parameters.
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treatment can be made. However, even after the recovering an individual
can still be susceptible to the disease, thus they usually analyzed by SEIS
model. One of the most recent H1N1 influenza outbreaks happened in 2009.
It affected many countries all around the world, and caused some serious
results and even death. A study by Haghdoost and Baneshi [8] presents the
data for influenza outbreak in Iran. In their paper, they also found that the
force of infection (in our study denoted by αSI) has a high impact on basic
reproduction number. According to their data, an estimated R0 at the first
month was 1.21, however it kept increasing and become 1.28 and 1.32 for
the second and third months respectively. Also according to the data, the
force of infection increases over time, which is natural since the number of
infected individuals increases.

6 Conclusion

In this report we have examined SEIS model with spatial heterogeneity for
epidemic diseases like TB and influenza. This topic was already considered
in several other papers. However, all of them either consider SEIS model
for spatially homogeneous population or, describe spatial heterogeneity for a
different models (SIR, SIS). In this report we combine both, spatial hetero-
geneity and SEIS model. The next generation matrix method introduced by
van den Driessche and Watmough [7] was used for finding the basic reproduc-
tion number. The basic reproduction number is necessary for describing the
dynamics of the system around DFE. Relations of R0 to infection rates (α, γ)
and travel rates (gi, rij) was given. It is shown above that R0 approaches to
α
γ for spatially homogeneous case and to 2α

γ for equal travel rates case. Also,
it was shown graphically that R0 increases as travel rate from a compart-
ment increases and decreases as return rates increases. The results of our
study allow us to assume that for a spatially heterogeneous population, the
best policy to overcome epidemics is to set rij = 1 and gi = 0. In this case
R0 = α

γ , and this is the lowest possible value of basic reproduction num-
ber, according to the model. This way of fixing parameters represents the
case without movement, when the citizens are captivated in their original
compartments. This results coincides with common governmental practice
of isolating infectious regions.
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