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Abstract

Intraocular Pressure (IOP) is a main factor for the diagnosis of glaucoma. In this report,

the kinematic viscoelastic corneal models, specifically the Maxwell and the Kelvin-Voight

models, of human eye ball will be proposed for determining the displacement of the cornea

during the air-puff tonometry simulations and its relationship to IOP. The purpose of

project is to study the influence of elasticity and viscosity to the corneal deformations

under an air puff.
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Introduction

The eyes are one of the most complex and important organs that provide us with vision.

Eyes detect the light and converse it into electrochemical signals. The primary function of

the cornea is to focus the light on the retina for producing an accurate image. Glaucoma

is a condition in which the optic nerve, which is responsible for the transmission of images

to the brain, is damaged, and without treatment may lead to a permanent blindness [1].

The high intraocular pressure (IOP) is a main cause of glaucomatous damage to the optic

nerves in the lamina cribrosa (LC) (Fig. 1).

In this report we intend to use some simple mechanical and mathematical models to

analyze and assess the corneal movements and the stress-strain dependence of corneal

tissue.

Figure 1: The ocular structure [2].

Modeling one dimensional human eye ball

In recent years, researchers have began to use computational models to understand the

biomechanical properties of the eye and the linkage between IOP and glaucoma [3]. The

cornea of the eye has a nonlinear viscoelastic behaviour and requires nonlinear structural

models that captures stiffening induced by the relation of stress and strain. The cornea

allows for an immediate deformation when the external force applied and then followed

by a progressive deformation. This process can be simply described with a simple spring
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and dashpot system.

The Kelvin-Voight model

For cases when time-dependent effects cannot be neglected a viscoelasticity constitutive

models should be utilized. Kelvin-Voight (also known as Voight model) is a viscoelastic

model that has both elasticity and viscosity properties and it is represented by a viscous

damper and elastic spring in parallel as shown in Fig. 2(b). The strains of parallel com-

ponents are identical. When the stress is released, elastic component changes gradually

to its undeformed state and does not allow for an immediate deformation.

Given the nonlinear dynamic model [4]:


md2y(t)

dt2
+ cdy(t)

dt
+ ky(t) = F (t) = FIOP − Fair

y(0) = FIOP/k

y(T ) = FIOP/k

(1)

where A, the effective area for the IOP with radius, r, equals to 1.5 mm and 0 ≤ t ≤ 0.03.

Figure 2: (a) An illustration of the cornea under intraocular pressure (IOP) and air

pressure. (b) A kinematic model of the cornea under air puff deformation [4].

F(t) is a total external force applied on the cornea and it is divided into two parts (see

Eq. (2)): the one comes from the intraocular pressure, FIOP , and from the air puff force,

Fair(t):

F (t) = FIOP − Fair(t) (2)
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where FIOP = IOP ∗ A and Fair(t) = Pair(t) ∗ Aair. The measurement of IOP made

by Goldmann applanation tonometer equals to 13.8 mmHg and the effective area for the

IOP.

The spatial radius of the air puff Aair is 1.5 mm and Aair = πr2. Pair(t) is the air pressure

that changes with time and have the following function:

Pair(t) = a1e
−( t−b1

c1
)2

+ a2e
−( t−b2

c2
)2

(3)

where a1, a2, b1, b2, c1, c2 are parameters obtained from [4] and their corresponding values

are a1 = 5149, b1 = 0.01752, c1 = 0.00441, a2 = 3398, b2 = 0.01167 and c2 = 0.04311. For

the graphical representation of Eq.(2) refer to Fig.2. The corneal elasticity coefficient, k,

is 85 N/m [5]. The viscoelasticity coefficient was set between 0.01 and 0.26 Ns/m [5].

Figure 3: Total external force of IOP and air puff.

The second external force (also called as force model 2) is based on the experimental

results that represents the bell shaped curve [5] and therefore, the normal distribution

formula was applied with ψ = 0.018 and σ = 0.003 as shown in Fig. 4.

F (t) = −Ae−(t−ψ)2/σ (4)
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(a) For t from 0 to 0.03 (b) For t from 0 to 0.003

Figure 4: Representation of the normal distribution force.

Matlab Code with numerical solutions for air-puff force model 1

Script 1:

f unc t i on xdot=f o r c e 1 ( t , x )

% s t a t e equat ions f o r numerica l s o l u t i o n

m=15∗10ˆ−6;

k=85;

c =0.05;

a1 =5149;

a2 =3398;

b1 =0.01752;

b2 =0.001167;

c1 =0.00441;

c2 =0.04311;

A=7.068∗10ˆ−6;

FIOP = 13 .8/7500∗7 . 35 ;

xdot=ze ro s ( 2 , 1 ) ;

xdot (1)=x ( 2 ) ;

xdot (2)=−(k/m)∗x(1)−( c/m)∗x(2)−( a1∗exp (−1∗(( t−b1 )/ c1 ) . ˆ 2 )

+a2∗exp (−1∗(( t−b2 )/ c2 ) . ˆ 2 ) ) ∗A/m +FIOP/m;

Command Window:
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t0 =0; t f =0.04;

x0 =[13.8/7500∗7.35/85 ; 13 . 8/7500∗7 . 35/85 ] ;

t t = t0 : 0 . 0 0 0 1 : t f ;

A = 7.068∗10ˆ−6;

Fair=(a1∗exp (−1∗(( tt−b1 )/ c1 ) . ˆ 2 )

+a2∗exp (−1∗(( tt−b2 )/ c2 ) . ˆ 2 ) ) . ∗A;

FIOP = 13 .8/7500∗7 . 35 ;

$ [ t , x ] $=ode45 ( ’ f o rce1 ’ , [ t0 , t f ] , x0 ) ;

subplot (211) , p l o t ( tt , Fair , ’−b ’ ) ;

g r i d on ;

hold on ;

p l o t ( tt , FIOP,’−−b ’ ) ;

x l a b e l ( ’ Time ( sec ) ’ ) ;

y l a b e l ( ’ Force (N) ’ ) ;

subp lot (212) , p l o t ( t , x ( : ,1)∗10ˆ3 , ’− r ’ ) ;

g r i d on ;

hold on ;

x l a b e l ( ’ Time ( sec ) ’ ) ;

y l a b e l ( ’ Response (mm) ’ ) ;

l egend ( ’ k=65 N/m’ , ’ k=85 N/m’ , ’ k=105 N/m’ , ’ Location ’ , ’ SouthEast ’ ) ;

According to the Fig. 5 we can observe that for damping coefficient, c, equals to 0.05

Ns/m, and elasticity coefficient, k, equals to 65 N/m, the maximum force that was applied

approximately at 0.0175 s is 0.058 N; regarding the force, the displacement of the cornea

at its maximum of about 0.73 mm (it is in the negative direction because when the

force is applied the cornea moves inward the eye).So, the external force remains constant

and does not depends on elasticity and viscoelasticity coefficients. However, when the

elasticity coefficient increases the cornea response decreases in displacement.

Fig. 6 compares the cornea response for c=0.01, 0.15, 0.26 Ns/m and k=65, 85, 105 N/m.

When the viscoelasticity capacity increases to c=0.01 Ns/m, it starts to oscillate with

an amplitude of 0.6 mm and it damps at 0.01 s; as k increases, the oscillation slightly

reduces.

However, when the damping coefficient increases the curve from 0 to 0.01 s become smooth

without any oscillations and goes down to 0.63 mm for k=65 N/m. So, as the elasticity

coefficient grows up the amplitude of the displacement becomes smaller. For k=85 N/m
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Figure 5: Total external force of IOP and response of the corneal movements at given

time.

the displacement, y, equals to 0.50 mm and y=0.38 mm when k=105 N/m.

For c=0.26 Ns/m and k=65 N/m, the displacement slightly reduces to 0.57 mm and as it

happens for other viscoelasticity coefficients, as k increases the displacement of the cornea

also becomes smaller.

So, if we compare all three different cases of damping coefficient, it can be seen that

as c increases the oscillation reduces and the curve becomes smoother that is shows the

viscoelasticity characteristic. Moreover, for larger c the cornea changes less. We know

that the ability to deform immediately shows a pure viscous behavior and the ability to

return to its original place is a pure elastic behavior and so, when these two character-

istics combined together they compensate each other and that is why an increase of the

viscoelastic component causes to the change in the amplitude of the cornea displacement.

The same happens when the elastic coefficient increases, but the displacement reduces

more significantly. In addition, a viscoelastic material that is initially compliant becomes

stiffer when the load is increased.
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(a) c=0.01 Ns/m

(b) c=0.05 Ns/m

(c) c=0.26 Ns/m

Figure 6: Time-dependent corneal movement response on force model 1 for different

elasticity coefficients.
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(a) k=65 N/m

(b) k=85 N/m

(c) k=105 N/m

Figure 7: Time-dependent corneal movement response on force model 1 for different

viscoelasticity coefficients.
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Matlab Code with numerical solutions for air-puff force model 2

Script 2:

f unc t i on xdot=f o r c e 2 ( t , x )

m=15∗10ˆ−6; %kg

k=105; %N/m

c =0.26; %Ns/m

xdot=ze ro s ( 2 , 1 ) ;

xdot (1)=x ( 2 ) ;

xdot (2)=−(k/m)∗x(1)−( c/m)∗x(2)− (0 . 08∗ exp (−(( t −0 .018)ˆ2)/0 .000018))/m;

Command Window:

t0 =0; t f =0.04;

x0 =[13.8/7500∗7.35/105 ; 13 . 8/7500∗7 . 35/105 ] ;

t t = t0 : 0 . 0 0 0 1 : t f ;

[ t , x]=ode45 ( ’ f o rce2 ’ , [ t0 , t f ] , x0 ) ;

subplot (212) , p l o t ( t , x ( : ,1)∗10ˆ3 , ’− r ’ ) ;

g r i d on ;

hold on ;

x l a b e l ( ’ Time ( sec ) ’ ) ;

y l a b e l ( ’ Response (mm) ’ ) ;

l egend ( ’ k=65 N/m’ , ’ k=85 N/m’ , ’ k=105 N/m’ , ’ Location ’ , ’ SouthEast ’ ) ;

When k (elasticity) increases the displacement decreases, it caused by the fact that the

material tends to return to its original place faster. So, for c=0.01 Ns/m when k=65 N/m

the amplitude of the response is about 1.25 mm and when k=105 N/m it becomes 0.75

mm.

Increase in viscoelasticity coefficient causes the more progressive deformation. If we com-

pare the graphs for c=0.01, 0.05 and 0.26 Ns/m, we can notice that when the load is

applied after reaching its peak, it requires more time to return to its initial position and

the decreasing curve becomes more linear.
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(a) c=0.01 Ns/m

(b) c=0.05 Ns/m

(c) c=0.26 Ns/m

Figure 8: Time-dependent corneal movement response on force model 2 for different

elasticity coefficients.

Capstone Project Report



11

(a) k=65 N/m

(b) k=85 N/m

(c) k=105 N/m

Figure 9: Time-dependent corneal movement response on force model 2 for different

viscoelasticity coefficients.
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The Nonlinear Kelvin-Voight model

Given an exponential stress-strain relationship equation in order to determine how the

strain rate affects on the material’s stress-strain behaviour:

σ = α(eβε1 − 1)

It is known that

f = Aσ

and

ε = y/R

where f is a restoring force and R = 7.8 mm the radius from the center to the mid-cornea

layer.

Using 2 terms of Taylor expansion we got the updated stress:

σ = α(
βε1
R

+
β2ε21
2R2

) (5)

So, the updated dynamic model is
md2y(t)

dt2
+ cdy(t)

dt
+ Aαβy(t)

R
= F (t)− Aαβ2

2R2y
2

y(0) = FIOP/k

y(T ) = FIOP/k

(6)

Figure 10: Calculated k and geometry constants (α,β).
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Matlab Code with numerical solutions for air-puff force model 1

Script 3:

f unc t i on xdot=non ( t , x )

m=15∗10ˆ−6; %kg

c =0.106; %Ns/m

a1 =5149;

a2 =3398;

b1 =0.01752;

b2 =0.001167;

c1 =0.00441;

c2 =0.04311;

A=7.068∗10ˆ−6;

R=7.8∗10ˆ−3;

a =0.0007425;

b=38.5;

FIOP = 13 .8/7500∗7 . 35 ;

xdot=ze ro s ( 2 , 1 ) ;

xdot (1)=x ( 2 ) ;

xdot (2)=−(A∗a∗b/(R∗m))∗ x(1)−( c/m)∗x(2)− ( a1∗exp

(−1∗(( t−b1 )/ c1 ) .ˆ2)+ a2∗exp (−1∗(( t−b2 )/ c2 ) . ˆ 2 ) ) ∗A/m

+FIOP/m−(A∗a∗b .ˆ2/(2∗R.ˆ2∗m) )∗ ( x ( 1 ) . ˆ 2 ) ;

Command Window:

t0 =0; t f =0.04;

x0 =[13 .8/7500∗7 .35/85 .27501368 ; 13 . 8/7500∗7 . 35/85 . 27501368 ] ;

t t = t0 : 0 . 0 0 0 1 : t f ;

Fa i r=(a1∗exp (−1∗(( tt−b1 )/ c1 ) .ˆ2)+ a2∗exp (−1∗(( tt−b2 )/ c2 ) . ˆ 2 ) ) . ∗A;

FIOP = 13 .8/7500∗7 . 35 ;

[ t1 , y]=ode45 ( ’ Febs ’ , [ t0 , t f ] , x0 ) ;

[ t , x]=ode45 ( ’ np1 ’ , [ t0 , t f ] , [ x0 ; y ( 1 ) ] ) ;

subp lot (211) , p l o t ( tt , Fair , ’− r ’ ) ;

g r i d on ;

hold on ;

p l o t ( tt , FIOP,’−−r ’ ) ;

x l a b e l ( ’ Time ( sec ) ’ ) ; y l a b e l ( ’ Force (N) ’ ) ;
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subplot (212) , p l o t ( t , x ( : ,1)∗10ˆ3 , ’−y ’ ) ;

g r i d on ;

hold on ;

x l a b e l ( ’ Time ( sec ) ’ ) ; y l a b e l ( ’ Response (mm) ’ ) ;

l egend ( ’ 0 . 8 a ; 0 . 8 b ’ , ’ 0 . 9 a ; 0 . 9 b ’ , ’ a ; b ’ , ’ 1 . 1 a ; 1 . 1 b ’ , ’ 1 . 2 a ; 1 . 2 b ’ ,

’ Location ’ , ’ SouthEast ’ ) ;

Figure 11: Time-dependent corneal movement response on force model 1 for different

geometric constants.

Matlab Code with numerical solutions for air-puff force model 2

Script 4:

f unc t i on xdot=f o r c e 2 ( t , x )

m=15∗10ˆ−6; %kg

k =329.5420916; %N/m

c =0.106; %Ns/m

A=7.068∗10ˆ−6;

R=7.8∗10ˆ−3;

a =0.000891;
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b=46.20;

xdot=ze ro s ( 2 , 1 ) ;

xdot (1)=x ( 2 ) ;

xdot (2)=−(A∗a∗b/(R∗m))∗ x(1)−( c/m)∗x(2)−
(0 . 08∗ exp (−(( t −0 .018)ˆ2)/0 .000018))/m−
(A∗a∗b .ˆ2/(2∗R.ˆ2∗m) )∗ ( x ( 1 ) . ˆ 2 ) ;

Command Window:

t0 =0; t f =0.04;

x0 =[13 .8/7500∗7 .35/329 .5420916 ; 13 . 8/7500∗7 . 35/329 . 5420916 ] ;

t t = t0 : 0 . 0 0 0 1 : t f ;

[ t , x]=ode45 ( ’ f o rce2 ’ , [ t0 , t f ] , x0 ) ;

p l o t ( t , x ( : ,1)∗10ˆ3 , ’− g ’ ) ;

g r i d on ;

hold on ;

x l a b e l ( ’ Time ( sec ) ’ ) ;

y l a b e l ( ’ Response (mm) ’ ) ;

l egend ( ’ 0 . 8 a ; 0 . 8 b ’ , ’ 0 . 9 a ; 0 . 9 b ’ , ’ a ; b ’ , ’ 1 . 1 a ; 1 . 1 b ’ ,

’ 1 . 2 a ; 1 . 2 b ’ , ’ Location ’ , ’ SouthEast ’ ) ;

Figure 12: Time-dependent corneal movement responce on force model 2 for different

geometric constants.
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We can give a k value of 85.27 N/m with α = 7.425 ∗ 10−4 and β = 38.50 [6]. So now,

we can vary α and β with a factor of 0.8 to 1.2 (e.g. 0.8α to 1.2 and 0.8β and 1.2β) and

discuss the contribution of α and β to the overall corneal deformation behavior under

the same damping coefficient. Damping coefficient is the mean value from the linear

part, c=(0.01+0.05+0.26)/3=0.106 Ns/m. As we can see from the table, our k positively

dependent from alpha and beta, where k = E∗t2
a∗(R−(t/2))∗(1−v)1/2 [7]. According to the Fig.

11 after the applying force displacement ranges approximately between 0.7 and 0.05 mm

at the beginning. The graphs show the steady decline before t=0.015 s, after gradually

decline for 0.07 s. From 0.025 s to 0.04 s graphs stay stable at 1.8 mm displacement. When

the geometry constants, α and β, increases the cornea response increases in displacement.

It is reasonable, because our k also increases.

FUTURE LINES OF WORK IN THIS AREA:

Constructing Nonlinear Maxwell model

The second model that will be considered for constructing human eye ball is a nonlinear

Maxwell model composing a nonlinear spring connected in series with a nonlinear dashpot

keeping a power-law with constant material parameters. By using this model we represent

successful time-dependent properties of a diversity of viscoelastic materials. Woo and

Kobayashi [6] determined the isotropy of the corneal material by measuring the lateral

deformations. It was found that in all three directions the deformation is very small. So

to obtain in a three dimensional state the stress-strain curves, a mathematical model,

using the the effective stress and effective trilinear deformation, was constructed.

The formulae for effective stress and effective strain [6] are

σe =
1

3

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

εe =
2

3

√
(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2

and the following exponential function was obtained

σ = p(eqε1 − 1). (7)

In uniaxial case

σe = σ1,

εe = ε1.
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Figure 13: The proposed rheological model [9].

In the following calculations we used σ for σ1.

From [8] given that σ is a total stress, where σ = Eεm1 , and ε is a total strain. So instead

of the given stress we substituted the Eq. (7) and adapted the following model [8]:
σ = p(eqε1 − 1)

σ = η(ε
′
2)

1
n

ε = ε1 + ε2

(8)

where ε1 and ε2 are the strains of the nonlinear spring and nonlinear dashpot; η is the

viscosity module; m and n are nonlinearity parameters; α and β are constants with values

5.4 ∗ 10−4 and 41.8, respectively [6].

Then ε1 and ε2 are found, a differentiation with respect to time is performed and then we

substituted it in the Eq. (8):

σ = p(eqε1 − 1)
σ

p
+ 1 = eqε1

log(
σ

p
+ 1) = qε1

ε1 =
1

q
log(

σ

p
+ 1) = log(

σ + p

p
)
1
q
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u =
σ + p

p

du =
1

p
dσ

ε
′

1 = (
1

q
log(u))

′
=

σ
′

q(σ + p)

ε
′
= ε

′

1 + ε
′

2

ε
′
=
y′

R

ε
′
=

1

q(σ + p)
σ
′
+ |σ

η
|n−1(σ

η
) =

y′

R
(9)

So, our first order differential equation that represents the relation between the total

stress σ and the strain ε of the material is:

σ
′
+ q(σ + p)|σ

η
|n−1(σ

η
) =

y′

R
q(σ + p) (10)

In the next paper we will solve this nonlinear Maxwell model and will attempt to find the

relationship between stress and strain.

Conclusion

To sum up, we duplicated the corneal movements that were simulated under the air

puff tonometry. For this purpose, two external forces, which are originally was taken

from Han’s and Nishiyama’s papers for comparative purposes, was applied to calculate

the kinematic non-homogeneous second order differential equation. All parametric and

experimental results also was provided. However, the model was modified by Taylor

expansion up to quadratic terms and was solved by using the MatLab and Maple. It was

found that the larger values of viscoelasticity, c, and elasticity, k, coefficients are both

affect on the performance of corneal movements: increase in c causes the damping in the

oscillation and as k increases the displacement of the cornea decreases. Moreover, we

attempted to solve the nonlinear model by using the exponential stress-strain function

that will be studied more deeply in the next paper.

Capstone Project Report



19

Acknowledgement

We would like to express our sincere gratitude to Professor Dongming Wei who gave

us an opportunity to be a part of this project and who supervised our work through

the academic year. We are also thankful to Professor Match Wai Lun KO who made a

significant contribution to the final version of the project by giving detailed and helpful

feedback on choosing the proper methods for calculation of linear and nonlinear human

eye ball models. Our special thanks are extended to the staff of Nazarbayev University

Mathematics Departiment for providing the learning opportunities.

At the end it would be impossible to complete our Capstone project without constant

support and care of our beloved families and friends.

Capstone Project Report



BIBLIOGRAPHY 20

Bibliography

[1] Kingman, S. (2004). Glaucoma is second leading cause of blindness globally, Bulletin

of the World Health Organization, 82, 887-888.

[2] Somkiat, A. (2012). Glaucoma. Retrieved April 07, 2016, from

http://glaucoma.doctorsomkiat.com/englo3.htm

[3] Girard, M. J., Downs, J. C., Bottlang, M., Burgoyne, C. F. and Suh, J. F. (2009).

Peripapillary and Posterior Scleral MechanicsPart II: Experimental and Inverse Finite

Element Characterization. Journal of Biomechanical Engineering J. Biomech. Eng.,

131(5), 051012.

[4] Han, Z., Tao C., Zhou, D., Sun, Y., Zhou, C., Ren, Q. and Roberts, C. (2014). Air

Puff Induced Corneal Vibrations: Theoretical Simulations and Clinical Observations.

Journal Of Refractive Surgery, 30(3), 208-213.

[5] Nishiyama, J., Kao, I., and Kaneko, M. (2013). IOP measurement using air-

puff tonometry: Dynamic modeling of human eyeball with experimental results.

2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence

(URAI).http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6677496tag=1

[6] Woo,S.L-Y.,Kobayashi, A. S., Schlegel, W. A. and Lawrence, C.(1972). Nonlinear

Material Properties of Intact Cornea and Sclera,Exp. Eye Res., 14, 29-39.

[7] Match, W. L. Ko., Leo, K. K., David, C. C., Christopher, K.S.(2013). Characteriza-

tion of corneal tangent modulus in vivo,Acta Ophthalmologica, 263-269.

[8] Monsia., M. D. (2011). A Simplified Nonlinear Generalized Maxwell Model for Pre-

dicting the Time Dependent Behavior of Viscoelastic Materials. World Journal of

Mechanics, 1(1), 158-167.

Capstone Project Report


