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Abstract: 

Existing distributions do not always provide an adequate fit to the complex real world data. 

Hence, the interest in developing more flexible statistical distributions remains strong in statistics 

profession. In this project, we present a family of generalized normal distributions, the T-normal 

family. We study in some details a member of the proposed family namely, the logistic-normal 

(LN) distribution. Some properties of the LN distribution including moments, tail behavior, and 

modes are examined. The distribution is symmetric and can be unimodal or bimodal. The tail of 

the LN distribution can be heavier or lighter than the tail of the normal distribution. The 

performance of the maximum likelihood estimators is evaluated through small simulation study.  

Two bimodal data sets are used to show the applicability of the LN distribution. 

 

1. Introduction 

Since real world data are usually complex and can take a variety of shapes, existing distributions 

do not always provide an adequate fit. Hence, generalizing distributions and studying their 

flexibility are of interest of researchers for last decades. One of the earliest works on generating 

distributions was done by Pearson (1895), who proposed a method of differential equation as 

fundamental approach to generate statistical distributions. Burr (1942) also made a contribution 

on this category and developed another method based on differential equation. Later on method 

of transformation (Johnson, 1949) and method of quantile function (Hastings et al., 1947; Tukey, 

1960) were developed. More recent techniques emerged after 1980s were summarized into five 

major categories (Lee et al., 2013): method of generating skew distributions, method of adding 

parameters, beta generated method, transformed-transformer method, and composite method. 

 

The beta generated (BG) method grasped the interest of modern researchers. Eugene et al. (2002)  
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introduced the beta-generated family of distributions with cumulative distribution function 

(CDF) given by 

 

( )

0
( ) ( )

F x

G x b t dt  ,   (1.1) 

where ( )b t is the probability density function (PDF) of the beta random variable and ( )F x is the 

CDF of any random variable. The PDF corresponding to (1.1) is given by 

       

1 11
( ) ( ) ( )(1 ( )) , , 0; ( ),

( , )

   
 

    g x f x F x F x x Supp F
B

              (1.2) 

where ( , ) ( ) ( ) / ( ( ))         B . 

Several members of BG family of distributions were investigated in recent literature, for 

example, beta-normal (Eugene et al., 2002; Famoye et al., 2004; Gupta and Nadarajah, 2004; 

Rego et al., 2012), beta-Gumbel (Nadarajah and Kotz, 2004), beta-Frechet (Baretto-Souza et al., 

2011), beta-Weibull (Famoye et al., 2005; Lee et al., 2007; Wahed et al., 2009; Cordeiro et al., 

2011), beta-Pareto (Akinsete et al., 2008), beta generalized logistic of type IV (de Morais, 2009) 

and beta-Burr XII (Paranaiba et al., 2011).  Some extensions of BG family such as Kw-G 

distribution (Jones, 2009; Cordeiro and de Castro, 2011), beta type I generalization (Alexander et 

al., 2012), and generalized gamma-generated family (Zografos and Balakrishnan, 2009) were 

recently introduced.  

 

The beta-generated family of distributions is formed by using the beta distribution in (1.2) with 

support between 0 and 1 as a generator. Alzaatreh et al. (2013), in turn, were interested whether 

other distributions with different support can be used as a generator. They extended the family of 

BG distributions and defined the so called T X  family. In the T X  family, the generator 

( )b t was replaced by the generator ( )Tr t , where T  is any random variable with support ( , )a b  and 

[0,1]W   is a link function that is absolutely continuous and satisfies (0)W a  and 

(1)W b . The CDF of the T X family is given by 
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 W( ( ))

( ) ( ) .
F x

a
G x r t dt                                        (1.3) 

Aljarrah et al. (2014) studied a special case of the T X family where the link function, (.)W , is 

a quantile function of a random variable Y. The proposed CDF is defined as 

  

 
 

 Q ( )

 
( ) ( ) ( ( )) ( ( ( ))),

Y RF x

X T Y R T Y R
a

F x f t dt P T Q F x F Q F x                 
(1.4) 

where ,T R  and Y  are random variables with CDF ( ) ( )TF x P T x  , ( ) ( )RF x P R x  and 

( ) ( )YF x P Y x  . The corresponding quantile functions are ( )TQ p , ( )RQ p  and ( )YQ p , where 

the quantile function is defined as ( ) inf{ : ( ) }Z ZQ p z F z p  , 0 1.p   If densities exist, we 

denote them by ( )Tf x , ( )Rf x  and ( )Yf x .  Now assume the random variable ( , )T a b  and 

( , )Y c d , for a b    and c d   , then the corresponding PDF to (1.4) is  

 

( ( ( )))
( ) ( ) .

( ( ( )))

T Y R
X R

Y Y R

f Q F x
f x f x

f Q F x
 

                     

(1.5) 

If R follows the normal distribution with mean   and variance 2  with PDF ( ) ( )Rf x x  and 

CDF ( ) ( )RF x x , then (1.4) reduces to the T-normal family of distributions with PDF given by 

 

( ( ( )))
( ) ( ) .

( ( ( )))

T Y
x

Y Y

f Q x
f x x

f Q x



 


                       (1.6) 

The T-normal family is a general base for generating many different generalizations of the 

normal distribution. The distributions generated from the T-normal family can be symmetric, 

skewed to right, skewed to the left, or bimodal. Some of the existing generalizations of normal 

distributions can be obtained using this framework. In particular, such generalizations of normal 

distribution are beta-normal (Eugene et al., 2002) and Kumaraswamy normal (Cordeiro and de 

Castro, 2011). These are special cases of T-normal family of distributions where the link 

function ( ) .W x x  
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Another generalization of the normal distribution, the gamma-normal distribution, was 

investigated by Alzaatreh et al. (2014a). It is a member of the T-normal family, where 

( ) log(1 )W x x   . The distribution can be right skewed, left skewed, or symmetric. According 

to Alzaatreh et al. (2014a), there are special cases in which gamma-normal distribution can 

provide a more accurate fit to the data compared to normal distribution.  It was shown that if the 

data is skewed, one should fit a gamma-normal distribution instead of a normal distribution. 

 

2. The logistic-normal distribution 

If Y follows the standard logistic distribution and T  follows the logistic distribution with PDF 

  2(1 ) , 0,x x

Tf x e e        then equation (1.4) reduces to  

  
 

 
, 0; ( ).

(1 ( ))
X

G x
F x x Supp G

G x G x



 
  

 
                                     (2.1) 

where ( )G x is CDF of any distribution. It is interesting to see that the family in (2.1) preserves 

the symmetry property.  Now, if we use the normal distribution as the generator in (2.1), we get 

  
 

 
, ,

(1 ( ))
X

x
F x x

x x



 


 
  

                                         (2.2) 

where 0, 0    and .    

When 1,   the logistic-normal (LN for short) in (2.2) reduces to the normal distribution. Thus 

LN distribution is a generalization of the normal distribution.  

The corresponding PDF to (2.2) is 

 
1 1

2

( ) ( )(1 ( ))
( ) , .

[ ( ) (1 ( )) ]
X

x x x
f x x

x x

 

 

   
 

  
  (2.3) 

In Figure 1, various graphs of ( )f x  when 0  , 1   and for various values of   are 

provided.  Figure 1 indicates that the logistic-normal PDF can be unimodal or bimodal. It 

appears that the bimodality occurs when    is less than 0.5. 
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Figure 1. The LN PDF for various values of λ. 

3. Some properties of LN distribution 

Remark 1.  

If a random variable T follows the logistic distribution with PDF   2(1 ) ,x x

Tf x e e       0  ,  

then the random variable 1( / (1 ))T TX e e  follows the LN distribution with parameters ,   

and .   

Remark 1 can be used to simulate random sample from the LN distribution by first simulating 

random sample, , 1, ,it i n  , from logistic( ) distribution and then computing 

1( / (1 ))t it t

ix e e  which follows the LN distribution.  

Remark 2.   

i. The ( , , )LN    is symmetric about .   

ii. The mean and median of LN distribution are equal to   which comes from normal 

distribution.  

Proof.  The symmetricity of normal distribution implies    x x       and 

   1 .x x       Hence, 
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1 1

2

( )(1 ( )) ( )
( ).

[(1 ( )) ( )]
X

x x x
f x

x x

 

 

   


 

     
  

   
  

Lemma 1. 

The mode of the LN distribution is the solution of the equation 

  

2 ( ) ( ) (1 ( ))
2 ( ) 1 ,

( ) ( ) (1 ( ))

h x x x
x x

x x x

 

 
 

   
     

         

 (3.1) 

where ( ) ( ) / [1 ( )]h x x x   is the hazard function of the normal distribution. 

Proof.  Using the fact that 2( ) ( ) ( )x x x       and setting the derivative of log ( )f x in (2.3) 

to 0, one can get the result in (3.1).   

It is clear that   satisfies the equation (3.1). Also, it appears that for 0.5   the distribution is 

always unimodal. A simulation study using Mathematica was conducted and it supported this 

claim. Therefore,  x   is the unique mode for 0.5  . Since LN distribution remains 

symmetric about  for all  , for bimodal case if x a    is a mode, then the other mode is 

2 .x a   

Remark 3. 

If ( ), 0 1Q p p   denotes the quantile function for the LN distribution, then 

 1 1 1/ 1( ) (1 ( 1) ) .Q p p          (3.2) 

The quantile function can also be used to simulate a random sample from LN distribution, by 

first simulating a random sample , 1, , ,iu i n  from uniform [0, 1] distribution and then 

computing ( )iQ u . 

3.1. The tail behavior of LN distribution 

Lemma 2. As x , 



8 

 

      

2 /2

1
( ) , 0.

x

X

e
f x

x









  (3.3) 

Proof.  It is known that as x , 
2 /2( ) , 1 ( ) ( ) /xx e x x x     (Patel and Read, 1982). 

Therefore as x ,  

 

1 1
1

2

( ) ( )(1 ( ))
( ) ( )( ( ) / )

[ ( ) (1 ( )) ]
X

x x x
f x x x x

x x

 


 


 

 
 

  
 

 

   

2

2 2
/2

/2 /2 1

1
( / ) .

x
x x e

e e x
x







  


  

    

Similarly, as x , 
2 /2 1( ) / | |x

Xf x e x    . This implies that as x , the tails of the LN 

distribution behave in similar way as the right tail of the function 
2 /2 1/xe x   .  

Note that when 0 1, ( )Xf x  converges to 0 slowly, while for 1, ( )Xf x   approaches 0 

faster, meaning that the tail weight increases for higher .   

The graphical representation of the connection between tail weight and  can be made using the 

measure of Kurtosis defined by Moore (1988) as 

 

(7 / 8) (5 / 8) (3 / 8) (1/ 8)
.

(6 / 8) (2 / 8)
M

Q Q Q Q

Q Q


  


             (3.4) 

Figure 2 shows the plot of the Moore’s kurtosis versus λ. It indicates that as λ increases the 

Moore’s kurtosis increases. For 0 < λ < 1 there is a sharp change in the kurtosis, while for λ > 1 

the change becomes gradual. Figure 3 provides a clear comparison between the tails of LN and 

normal distributions. Figure 3 indicates that for λ < 1, the tail of LN distribution is lighter than 

that of the normal distribution, while for λ ˃ 1 the tail of LN distribution is heavier than that of 

the normal distribution. Also,  for λ ˃ 1 the LN distribution is leptokurtic with more cone-shaped 

higher peak. And for λ < 1, the LN distribution is platykurtic with more flat-shaped lower peak 

(see Figures 1 and 3). 
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      Figure 2. Moore’s measure of kurtosis vs  . 
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Figure 3. The tails of LN PDF for various  . 

 

3.2. Moments of LN distribution 

Using Remark 1, the moments for the LN distribution in (2.3) can be written as 

 1( ) ( / (1 )
r

r T TE X E e e    where T follows the logistic distribution with parameter . 

Therefore, 
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 1 2( ) ( / (1 ) (1 ) ,
r

r t t t tE X e e e e dt 


 


     

Since 1 12 erf (2 1)     F , where 
2

0

2
erf(x) ,

x
te dt



   it is easy to see that  

1 1( / (1 ) 2 erf {( 1) / ( 1)}T T T Te e e e          1 12 erf (1 2(1 ) )    Te .  Hence, 

 1 1 /2

0

( ) 2 erf (1 2(1 ) ) 2 ,
rr

r T j j r j

j

j

r
E X E e

j
      



 
      

 
  

where 1 1 2[erf (1 2(1 ) )] (1 ) 


  


   

T j t t

j e e e dt . As far as we know, no closed form value for 

j  exist. However, j  can be evaluated using numerical integration from available software such 

as Mathematica.   

Lemma 3.  

If ( ,0,1)X LN  , then ( ) 0rE X   for odd positive integers r. 

Proof.  From Remark 2 (i), it follows that PDF ( )f x  of ( ,0,1)LN  is symmetric around 0. 

Hence, for all odd positive integers r , the function ( )rx f x  is an odd function and, hence, 

( ) ( ) 0r rE x x f x dx



  .    

Lemma 4.  

If ( , , )X LN    , then 

  ( ) ( ), ( ,0,1)
r

r k r k k

even k

r
E X E Z Z LN

k
   

  
 

    

Proof. Since ( ) /Z X    , it is true that X Z   . Rising X  to the power r and taking 

its expectation gives 

0 0

( ) ( ) ( ) ( ).
r r r

r r k r k k k r k k k r k k

k k even k

r r r
E X E Z E Z E Z E Z

k k k
         

 

     
         

     
    

Only even cases are considered due to Lemma 3.    
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4. Parameter estimation and simulation for LN distribution  

Let 1 2, , , nx x x  be a random sample of size n taken from LN distribution. Then the log-

likelihood function is given by 

 
1 1

( , , ) log ( ) log ( ) ( 1) log ( )
n n

i i

i i

n x x     
 

     
    

                        1 1

( 1) log (1 ( )) 2 log{ ( ) (1 ( )) }.
n n

i i i

i i

x x x 
 

                (4.1) 

Using the facts that   
( )

( )
x

x



 


, 

( ) ( ) ( )x x x 

 

  



 , 

2

( ) ( )
( )

x x
x

 


 

  



,  and 

2 2

3

( ) ( )
( )

x x
x

  


 

  



, the derivatives of (4.1) with respect to  ,   and   respectively, 

are given by 

  
1 1

log ( ) log(1 ( ))
n n

i i

i i

n
x x

   


    


 



 

                                          
1

( ) log ( ) log(1 ( ))
2 ,

( ) 1

n
i i i

i i

g x x x

g x






  





( )
( )

1 ( )

i
i

i

x
g x

x





                   (4.2) 

2
1 1

( ) ( )
( 1) ( 1)

( ) 1 ( )

n n
i i

i ii i

x xx

x x
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2 ( )

( ) (1 ( ))

n
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i
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x x
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2 2

3
1 1 1

( ) ( ) ( ) ( )1 1 1
(( ) )

( ) 1 ( )

n n n
i i i i

i

i i ii i

x x x x
x
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1 1

1

( ) (1 ( ))2
( ) ( )

( ) (1 ( ))

n
i i

i i

i i i

x x
x x

x x

 

 


 



 



  
 

  
 .                       (4.4) 

 The MLE, ̂ , ̂  and ̂  , of the parameters  ,   and    can be obtained by setting equations 

(4.2), (4.3), and (4.4) to zero and solving them numerically. 
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The initial value for   is taken to be the moment estimates x . The initial value for  is taken to 

be the sample standard deviation, s. To obtain the initial value for the parameter   we use 

Remark 1 as follows; assume the random sample 
2

2

( , , )
log , 1, ,

1 ( , , ))

i
i

i

x x s
t i n

x x s

 
  

 


 
is taken 

from the logistic distribution with parameter . By equating the population variance 2 2/ (3 )   

of logistic distribution with the sample variance 2

Ts  of the random sample it  and solving it for  , 

we obtain 
0 1/ 3 / Ts  . 

 

We used the trust-region optimization routine in SAS (PROC IML and CALL NLPTR) in order 

to maximize the likelihood function in (4.1). The trust-region optimization routine is a powerful 

technique that can optimize complicated function. It outputs the iteration details including 

parameter estimates, their standard errors, and the value of a gradient at which iteration stops. 

In order to evaluate the performance of maximum likelihood estimators, we conducted a small 

simulation study with sample sizes 30, 50,70n   and three different parameter combinations. 

The study involved computing and analyzing the relative bias of the estimators [(Estimate-

Actual)/Actual] and standard deviation. The results of the study are reported in Table 1. Based 

on the small simulation study in Table 1, it is evident that the MLE for the parameter   is 

overestimated. Also, when 1  , the MLEs for   and   are overestimated while when 1   

they are underestimated. It can be seen that for small sample size (n=30) and 1  , MLE does 

not perform well. However, the results for 1   show that the MLE method performs quite well 

in estimating the model parameters.  
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Table 1: Relative bias and standard deviation for the MLE estimates 

n           Relative bias Standard deviation 

30 0.5 2 1 1.2698  0.0276  0.8064 1.5928 0.2797 1.8965 

50    0.6606  0.0256  0.4205 0.4651 0.2749 0.5992 

70    0.3290  0.0140  0.1422 0.4005 0.2013 0.4485 

30 1.5 2 1 -0.1422  0.0101  -0.1210 0.7309 0.1224 0.4959 

50    -0.0692  0.0339  -0.1074 0.5927 0.1005 0.3494 

70    -0.0671  0.0087  -0.0898 0.3460 0.0773 0.2153 

30 2 3 1 -0.3089  0.0113  -0.3005 0.8190 0.0978 0.3418 

50    -0.3247  0.0083  -0.2915 0.8695 0.0827 0.2212 

70    -0.3162  0.0076  -0.2990 0.8007 0.0575 0.2379 

 

 

5. Application 

In this section the LN distribution is fitted to two bimodal data sets. The results of the maximum 

likelihood estimates, the log-likelihood value, the AIC (Akaike Information Criterion), the 

Kolmogorov-Smirnov (K-S) test statistic, and the p-value for the K-S statistic for the fitted 

distributions are reported in Tables 2 and 3. Figures 4-6 display the empirical and the fitted 

cumulative distribution as well as the probability density functions for the fitted distributions.  

 

The first data is obtained from National Data Buoy Center (NDBC). It represents the number of 

buoys situated in the North East Pacific: Buoy 46005 (46 N, 131 W).The time period January 1, 

1983, to December 31, 2003, was investigated. For each calendar year, the maximum 

observation was extracted; hence, for each buoy 21 yearly maxima were found. The data is 

available from Persson et al. (2010). Histogram in Figure 4 shows that the data is bimodal. 

Hence, the data is fitted to the LN and mixture normal distributions. The K-S values in Table 2 
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indicate that the LN distribution provides an adequate fit and performs much better than the 

mixture normal distribution. In fact, the CDF in Figure 4 shows that the mixture normal 

distribution does not provide an adequate fit. The fact that the LN distribution has only three 

parameters adds an extra advantage to the distribution over the mixture normal distribution.  

Table 2: Parameter estimates for the buoys data 

Distribution LN
 

Mixture Normal 

Parameter 

Estimates 
̂=0.2734 (0.3304) 

̂ =10.5700 (0.3145) 

̂ =0.6507 (0.5051) 

 

̂=0.5515 (0.2920) 

1̂ =8.6051 (0.6836) 

2̂ =11.4634 (0.6930) 

1̂ =1.4994 (0.7293) 

2̂ =1.0750 (0.3770) 

Log-likelihood 80.7 109.5 

AIC 86.7 119.5 

K-S 0.2273 0.6901 

 

 
Figure 4: CDF and PDF for the fitted distributions for the buoys data 

 

The second application is from Emlet et al. (1987). It represents the asteroid and echinoid egg 

size. The data consists of 88 asteroid species divided into three types; 35 planktotrophic larvae, 

36 lecithotrophic larvae, and 17 brooding larvae. Since the logarithm of the egg diameters of the 

asteroids data has a bimodal shape, Famoye et al. (2004) applied the beta-normal distribution to 

the logarithm of the data set. The results in Table 3 show that both the LN and beta-normal 
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distributions provide an adequate fit to the data. However, the K-S values indicate that the LN 

distribution provides a better fit. This is also evident from Figures 5 and 6. The fact that the LN 

distribution involves less number of parameters also adds an advantage over the beta-normal 

distribution. 

Table 3: Parameter estimates for the asteroids data 

Distribution LN Beta-normal
 

Parameter 

Estimates 
̂ = 0.1498 (0.0185) 

̂ = 6.0348 (0.0685) 

̂ = 0.2604 (0.010) 

̂  = 0.0129 

̂  = 0.0070 

̂ = 5.7466 

̂ = 0.0675 

Log-likelihood -111.4287 -109.4800 

AIC 228.4974 226.9600 

K-S 0.0988 0.1233 

 

 
Figure 5: PDF for the fitted distributions for the asteroids data 

 

             Logistic-N 

             Beta Normal 

 
 

log(asteroid egg size) 

PDF 
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Figure 6: CDF for the fitted distributions for the asteroids data 

 

Conclusion 

In this project the generalization of the normal distribution, the logistic normal (LN), is 

introduced. We study the LN distribution in some detail. Some properties of the LN distribution 

are investigated, including moments, modes and tail behavior. The LN distribution is a 

symmetric distribution, which can be unimodal or bimodal. A small simulation study showed 

that maximum likelihood estimators perform well. It is noteworthy to mention that we fitted the 

LN distribution to several unimodal data sets with approximately symmetric characteristic. The 

results showed that the LN provides excellent fit to most of these data. The results are available 

from the author upon request. In this project, we showed the applicability of fitting the LN 

distribution to two bimodal datasets. The LN distribution provided a good fit for each data.  

 

For skewed type of data one can generate a skewed LN distribution by exponentiating the CDF 

of the LN distribution as 

 
 

 
, , 0; .

(1 ( ))
X

x
F x x

x x




 
 

 
       

  

To analyze the skewness and kurtosis regions of the distribution, the Galton’s skewness S (1883)  

and Moore’s kurtosis K (1988) measures were plotted against the parameters   and  .  Figure 7 
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shows that the distribution is right skewed for , 1    and left skewed for 1, 1    and 

1, 1   . The plot of kurtosis in Figure 7 demonstrates the flexibility of the proposed 

distribution. For 1  , the tails of the skewed LN can be heavier or lighter than that tail of the 

normal distribution, while for 1  the kurtosis is always higher than that of the normal 

distribution. The skewed LN distribution was also fitted to different skewed unimodal and 

bimodal real data sets. For most of the cases, the distribution provided a very good fit. 

 

 

     Figure 7. 3D plots of Galton’s skewness and Moore’s kurtosis for various values of and  . 

A detailed investigation of the skewed LN distribution and general properties of the LN 

distribution, such as moments and bimodality-unimodality regions can be studied in future 

research. SAS and R codes for simulation study and goodness of fit are provided in the appendix. 

 

Appendix 

SAS code for the simulation study 

proc iml; 

n=50; p={2 3 1}; ld=p[1]; mu=p[2]; s=p[3]; nsim=100; m=j(nsim,3); 

pi=constant("pi"); 

do k=1 to nsim; 

  

  u=j(n,1); 



18 

 

  call randseed(12345); 

again: call randgen(u, "Uniform",0,1); 

  q=1/(1+(1/u-1)##(1/ld)); 

  y=quantile("Normal",q, mu,s); 

 

  start f_ln(x) global(y); 

   p=nrow(y);  

   sum1=0.; sum2=0.;  sum3=0.;  sum4=0; 

   thet=t(y);    

   /* x[1]=ld; x[2]=mu; x[3]=sigma;*/ 

   pnorm=pdf('normal', thet, x[2], x[3]); 

   cnorm=cdf('normal', thet, x[2], x[3]); 

    

   do i=1 to p; 

    surv[i]=1-cnorm[i]; 

if (pnorm[i]>0 & cnorm[i]>0 & surv[i]^=0) then 

do; 

     sum1=sum1+log(pnorm[i]); 

     sum2=sum2+log(cnorm[i]); 

     sum3=sum3+log(surv[i]); 

     sum4=sum4+log((cnorm[i])##x[1]+(surv[i])##x[1]); 

    end; 

   end; 

   f=p*log(x[1])+sum1+(x[1]-1)*sum2+(x[1]-1)*sum3-2*sum4; 

   return(f); 

  finish f_ln; 

   

  thet=t(y); 

           mu0=mean(y); 

  s0=std(y); 

           

  /*building initial for lambda*/  

  cnorm_t=cdf('normal', thet, mu0, s0); 

  t_i=log(cnorm_t/(1-cnorm_t)); 

  st=std(t(t_i)); 

  ld0=((1/3)##(1/2))*(pi/st); 

   

  x={1 1 1}; 

  x[1]=ld0; x[2]=mu0; x[3]=s0; 

  optn={1 0}; 

  con={0.001 . 0.001, 

    . . .}; 

   

  call nlptr(rc, xres, "f_ln", x, optn, con); 

  if (rc<0) then goto again;  

  xopt=t(xres);  

  fopt=f_ln(xopt); 

   

  call nlpfdd (f,g,hess,"f_ln",xopt); 

  gld=g[1]; 

  gmu=g[2]; 

  gs=g[3]; 

  *print gld gmu gs; 

  if (abs(gld)>0.0001|abs(gmu)>0.0001|abs(gs)>0.0001) then 

goto    again;  
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/*bias calculations*/ 

  m[k,1]=ld-xopt[1]; 

  m[k,2]=mu-xopt[2]; 

  m[k,3]=s-xopt[3]; 

 

end; 

 

/* average and std of bias for ld, mu, s*/ 

  av=mean(m); 

  st=std(m); 

   

print n nsim ld mu s av st; 

   

quit; 

 

SAS code for estimating the parameters for the first data  

data one; 

input y @@;  

datalines; 

 

10.70 10.70 7.00 11.30 13.60 11.70 8.20  

12.00 9.30 8.80 11.00 11.90 9.20 8.71  

9.63 9.87 13.04 9.79 12.26 11.52 12.92;  

 

proc means data=one; run; 

 

/* L-N */ 

proc nlmixed data=one tech=trureg; 

title 'logistic normal'; 

a=1; 

 

bounds th g > 0; 

parms th 1 m 10.6257143 g 1.7430736; 

pd=pdf('normal', y, m, g);  

cd=cdf('normal', y, m, g); 

cc=log(th)+log(a); 

f1=log(cd); f2=log(1-cd); f3=log(pd); 

f4=log(((cd)**th)+((1-cd)**th)); 

ll=cc+f3+(a*th-1)*f1+(th-1)*f2-(a+1)*f4; 

 

model y ~ general(ll); 

 

run;  

 

/* Mixture normal */ 

proc nlmixed data=one tech=trureg; 

title 'mixture normal'; 
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bounds th1 g1 g2 > 0; 

parms th1 0.3 m1 9.5  m2 11.5 g1 1.7430736 g2 1.7430736; 

pd1=pdf('normal', y, m1, g1);  

pd2=pdf('normal', y, m2, g2);  

cd1=cdf('normal', y, m1, g1); 

cd2=cdf('normal', y, m2, g2); 

 

ll=log(th1*pd1*cd1+(1-th1)*pd2*cd2); 

model y ~ general(ll); 

 

run; 

 

R code for the calculations of KS and p-values 

y=c(10.70,10.70,7.00,11.30,13.60,11.70,8.20,12.00,9.30,8.80, 

11.00,11.90,9.20,8.71,9.63,9.87,13.04,9.79,12.26,11.52,12.92);  

yd = sort(y) 

 

# Distributions 

 

# The following are the parameter estimate for mixture normal density 

ld1=0.5515 

ld2=1-ld1 

 

m1=8.6051 

m2= 11.4634 

sg1= 1.4994 

sg2=1.0750 

 

#The cdf of mixture normal distribution 

bbs.cd=ld1*pnorm(yd,m1,sg1)+ld2*pnorm(yd,m2,sg2) 

 

# The following are the parameter estimate for logistic normal density 

ld=0.2734 

mu=10.5700 

g=0.6507 

 

aa=pnorm(yd,mu,g) 

 

#The cdf of logistic normal distribution 

lnl.cd=aa^ld/(aa^ld+(1-aa)^ld) 

 

y.sort = yd 

n=length(yd) 

ecdf = rep(n, 0.0) 

bbs.cd[n] = 1.0 

lnl.cd[n]=1.0 
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for (j in 1:n) {ecdf[j] = sum(y.sort <= y.sort[j])/n} 

bbs.di= abs(bbs.cd - ecdf) 

lnl.di= abs(lnl.cd - ecdf) 

# K-S mixture normal 

bbs.ks= sqrt(n)*max(bbs.di) 

# K-S logistic-normal 

lnl.ks= sqrt(n)*max(lnl.di) 

cbind(n, max(bbs.di),max(lnl.di)) 

 

nk=40 

pv.bbs = rep(nk, 0.0) 

pv.lnl = rep(nk, 0.0) 

for (i in 1:nk) 

{ 

pv.bbs[i] = ((-1)^(i-1))*exp(-2*(bbs.ks*i)^2); 

pv.lnl[i] = ((-1)^(i-1))*exp(-2*(lnl.ks*i)^2); 

} 

bbs.pv = 2.0*sum(pv.bbs) 

 

lnl.pv = 2.0*sum(pv.lnl) 

cbind(n, bbs.pv,lnl.pv) 

 

new0 = cbind(ecdf,bbs.cd,lnl.cd) 

par(lwd=2.5, font=1, tck=-0.01, mgp=c(3,0.5,0)) 

matplot(y.sort, new0, type='l', col=c(1:3), lty=1:3, xlab=" ", ylab=" 

") 

legend("topleft", c("Empirical", "Mixture normal","logistic normal"), 

col=c(1,2,3), lty=1:3) 

mtext(text="x", side=1, line=1.5) 

mtext(text="CDF", side=2, line=2.5) 

box() 

 

lnl.ks 

bbs.ks 
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